CN103399315A - 实孔径相控阵雷达高分辨探测成像方法 - Google Patents

实孔径相控阵雷达高分辨探测成像方法 Download PDF

Info

Publication number
CN103399315A
CN103399315A CN2013102961704A CN201310296170A CN103399315A CN 103399315 A CN103399315 A CN 103399315A CN 2013102961704 A CN2013102961704 A CN 2013102961704A CN 201310296170 A CN201310296170 A CN 201310296170A CN 103399315 A CN103399315 A CN 103399315A
Authority
CN
China
Prior art keywords
imaging
array radar
angle
model
phased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102961704A
Other languages
English (en)
Other versions
CN103399315B (zh
Inventor
赵光辉
王雪磊
石光明
李超
刘自成
温超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310296170.4A priority Critical patent/CN103399315B/zh
Publication of CN103399315A publication Critical patent/CN103399315A/zh
Application granted granted Critical
Publication of CN103399315B publication Critical patent/CN103399315B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种实孔径相控阵雷达高分辨探测成像方法,主要解决传统相控阵雷达成像系统角度分辨率较低,无法实现对目标区域的高分辨成像的问题。其实现步骤是:(1)根据相控阵雷达工作方式获取回波信号;(2)由回波信号的理想形式构造观测矩阵;(3)根据回波信号与观测矩阵的关系,建立相控阵雷达成像模型;(4)根据目标场景轮廓稀疏的先验信息,利用正则化的方法将雷达成像模型转化为优化模型;(5)将有约束的优化模型转化为无约束的优化表达式,并利用交替方向迭代法进行求解得到最终成像结果。本发明能在减少探测成像次数和探测数据的同时,实现对轮廓特征明显目标区域的高分辨成像,可用于目标识别。

Description

实孔径相控阵雷达高分辨探测成像方法
技术领域
本发明属于信号处理技术领域,特别涉及相控阵雷达探测成像方法,可用于目标识别。
技术背景
相控阵雷达是由多个辐射源排列组成,每个辐射源的馈电和增益可以由计算机灵活控制,采用数字波束形成技术,可使其具有很强的波束变化能力,能够灵活实现搜索、识别、跟踪、制导、无源探测等多种功能。同时它还具有目标容量大,对复杂环境适应能力强,抗干扰性能好等优点,因此相控阵雷达在许多领域中得到了广泛应用。
相控阵雷达实孔径成像RBM是最早的雷达成像系统,也是最早用于前视的成像方式。实孔径成像方法的优点是:雷达平台与目标之间没有相对运动的情况下也可以实现成像。而且,在相对静止情况下具有更好的成像质量。相控阵雷达实孔径成像RBM,通过脉冲压缩等技术,在距离向获得较高分辨率;采用大孔径天线发射窄波束在方位向进行扫描,通过波束宽度来区分不同方位角度的目标。但由于相控阵雷达实孔径成像系统的方位分辨率与发射波束宽度及探测距离成正比,随着距离的增大,常规尺寸孔径的雷达天线难以获得高分辨率图像。因此仅采用传统的波束形成的方法,相控阵雷达无法实现方位维高分辨成像。
现阶段相控阵雷达实孔径高分辨成像技术主要采用单脉冲成像的方法,单脉冲成像技术通过比较单次脉冲回波的和、差通道信号差异来测量目标方位角,单脉冲成像能够对波束内的较强散射点实现方位向的高分辨,可明显改善实波束成像的质量,但是单脉冲成像技术在波束内存在多个目标时成像质量明显下降,甚至无法确定目标的正确方位。
发明内容
本发明目的在于提出一种实孔径相控阵雷达高分辨探测成像方法,以解决传统相控阵雷达成像系统在阵列天线孔径有限,波束宽度较宽而导致角度分辨率较低,无法实现对目标区域高分辨成像问题。
本发明的技术思路是:对回波数据采用稀疏重构的处理方法,根据相控阵雷达工作方式获取回波信号,由回波信号的理想形式构造观测矩阵,分析回波信号与观测矩阵的关系,建立相控阵雷达成像模型;利用正则化的方法将雷达成像模型转化为优化模型;将有约束的优化模型转化为无约束的优化表达式,并利用交替方向迭代法进行求解得到最终成像结果。实现对轮廓特征明显的目标区域的高分辨成像。其实现步骤包括如下:
(1)根据相控阵雷达工作方式,对整个探测场景进行波束扫描,得到各角度下时域采样后的回波信号列向量
其中,θp表示第p个方位角扫描角度,p∈[1,I],I为方位角扫描角度个数;
Figure BDA00003507639500022
表示第q个俯仰角扫描角度,q∈[1,J],J为俯仰角扫描角度个数;
(2)依据相控阵雷达工作方式,构造各角度下的观测矩阵
Figure BDA00003507639500023
Figure BDA00003507639500024
其中,
Figure BDA00003507639500025
ti∈[t1,tL]表示L点的时域采样;k∈[1,MN]表示待探测二维目标场景离散化采样的第k个目标,M表示水平方向采样点数,N表示垂直方向采样点数;rk表示第k个目标达到相控阵雷达天线中心的距离,
Figure BDA00003507639500026
表示波束指向θp,时的方向图函数在第k个目标方向的响应值;c为光速,λ为雷达工作波长;p(ti)为相控阵雷达发射信号包络时域采样;
(3)构建相控阵雷达成像模型:
3a)将步骤(1)中各个角度得到的回波信号列向量按照扫描角度的顺序排列成一列,得到完整的回波信号列向量:
Figure BDA00003507639500029
其中,T表示转置;
3b)将步骤(2)中各个角度下构造的观测矩阵
Figure BDA000035076395000210
按照扫描角度的顺序排列成一列,得到完整的观测矩阵:
Figure BDA000035076395000211
3c)根据相控阵雷达工作方式,当波束指向角度θp,时,时域采样后的回波信号列向量的具体表达式应为:
Figure BDA00003507639500031
其中,f(k)为目标场景离散化采样后第k个目标的散射系数;
3d)将步骤(2)中的观测矩阵
Figure BDA00003507639500032
带入步骤3c)中的回波信号表达式中,得到单个角度下回波信号列向量
Figure BDA00003507639500033
与构造的观测矩阵之间的数据关系:
其中,f=[f(1)…f(k)…f(MN)]T
3e)根据步骤3d)得到的数据关系,得到完整回波信号列向量g和完整观测矩阵C的数据关系式:g=Cf;若考虑回波信号的噪声,则建立相控阵雷达成像模型为:r=Cf+n,其中,r表示加噪声的完整回波信号列向量,n表示噪声;
(4)根据探测目标场景区域轮廓的稀疏先验特征,利用正则化方法将步骤3e)中建立的成像模型转换为优化模型:
min f | | Df | | 2 s . t . | | Cf - r | | 2 2 ≤ ϵ ,
其中,
Figure BDA00003507639500037
为目标场景区域的离散梯度,D为图像差分算子,D(1),D(2)分别为水平方向差分算子和垂直方向差分算子,s.t.表示约束条件,
Figure BDA000035076395000311
表示2范数的平方,
Figure BDA00003507639500038
表示最小值运算符号,ε为设定误差限;
(5)将步骤(4)中有约束的优化模型转化为无约束的优化表达式,然后利用交替方向迭代法求解该优化表达式,得到复系数向量f;
(6)对求解得到的复系数向量f取模值,得到成像系数向量
Figure BDA00003507639500039
对成像系数向量
Figure BDA000035076395000310
进行排列,得到成像系数矩阵A,即为最终的成像结果。
本发明与现有技术相比具有如下优点:
(1)本发明利用探测目标场景区域轮廓的稀疏先验特征,构造了用于稀疏重构的成像模型,通过求解该模型,实现了相控阵雷达的高分辨成像,解决了当相控阵雷达阵列天线孔径有限时,角度分辨困难而无法实现高分辨成像的问题。
(2)本发明在数据获取时,由于相控阵雷达阵列天线孔径有限,导致扫描波束较宽能够覆盖较大的场景范围,可以在一次波束扫描中能获取更多的目标信息,从而可以在减少波束扫描次数的同时减少成像数据量。
附图说明
图1为本发明的实现流程图;
图2为本发明相控阵雷达探测成像示意图;
图3为本发明对探测场景进行空间采样的示意图;
图4为本发明对离散化后的目标场景按行排成列向量的示意图;
图5为本发明将重构的成像系数排列成图像矩阵的示意图;
图6为本发明采用的相控阵天线阵列模型;
图7为本发明和传统方法的点目标成像结果对比;
图8为本发明用于复杂场景的成像结果。
具体实施方式
参照图1,本发明的具体实施步骤如下:
步骤1.根据相控阵雷达工作方式,对整个探测场景进行波束扫描,得到各个扫描角度下时域采样后的回波信号列向量
Figure BDA00003507639500041
1a)当扫描波束指向第1个方位角扫描角度θ1和第1个俯仰角扫描角度
Figure BDA00003507639500042
时,相控阵雷达接收回波信号,并对其进行时域采样,得到该扫描角度下离散化采样后的回波信号列向量
Figure BDA00003507639500043
1b)根据图2所示的目标场景所处距离和目标场景的大小,确定探测目标场景区域的方位角和俯仰角的扫描角度范围,并结合波束主瓣宽度及探测距离,计算单个波束覆盖的目标场景区域的角度范围;根据单个波束覆盖角度范围设定扫描角度间隔,由扫描角度范围和扫描角度间隔计算出方位角扫描角度个数I和俯仰角扫描角度个数J;
其中,I为方位角扫描角度个数,J为俯仰角扫描角度个数;
1c)根据相控阵雷达在同一观测位置交替工作在发射和接收模式,改变扫描波束指向角度,即将方位角扫描角度从第1个变化到第I个,将俯仰角扫描角度从第1个变化到第J个,实现对目标场景区域的完整扫描,获取各个扫描角度下时域采样后的回波信号列向量
其中,p∈[1,I],q∈[1,J];
步骤2.依据相控阵雷达工作方式,构造各扫描角度下的观测矩阵
Figure BDA00003507639500045
2a)对待探测二维目标场景进行空间采样,得到离散化的目标场景:
参照图3,本步骤的具体实现如下:
2a1)设定距离采样间隔,水平方向采样点数N,垂直方向采样点数M;
2a2)根据设定的距离采样间隔,水平方向和垂直方向的采样点数对目标场景进行离散化处理,得到离散化后的目标场景;
2b)根据相控阵雷达工作方式对离散化后的目标场景进行探测成像,当扫描波束指向角度θp
Figure BDA00003507639500051
时,得到回波信号的具体表达式为:
Figure BDA00003507639500052
其中,k∈[1,MN]表示离散化目标场景的第k个目标,f(k)为第k个目标的散射系数;rk表示第k个目标达到相控阵雷达天线中心的距离,
Figure BDA00003507639500053
表示波束指向θp
Figure BDA00003507639500054
时的方向图函数在第k个目标方向的响应值;c为光速,λ为雷达工作波长;t表示时间,p(t)为相控阵雷达发射信号包络;
2c)根据回波信号表达式的具体形式,用
Figure BDA00003507639500055
代替
Figure BDA00003507639500056
中的
Figure BDA00003507639500057
项,并将离散化后的目标场景按行排成列向量,如图4所示,则回波信号可写成向量相乘的形式:
Figure BDA00003507639500058
2d)对回波信号
Figure BDA00003507639500059
进行时域采样,采样点数为L,得到的回波信号列向量
Figure BDA000035076395000510
则回波信号列向量
Figure BDA000035076395000511
可写成矩阵与向量乘积的形式:
Figure BDA000035076395000512
其中,T表示转置,ti∈[t1,tL]表示L点的时间采样;
2e)选取步骤2d)中
Figure BDA000035076395000513
矩阵与向量乘积形式的第一部分,作为当波束指向第p个方位角扫描角度θp和第q个俯仰角扫描角度
Figure BDA000035076395000514
时的观测矩阵:
Figure BDA000035076395000515
步骤3.构建相控阵雷达成像模型;
3a)将步骤1c)中各个扫描角度下得到的回波信号列向量
Figure BDA00003507639500061
按照步骤1c)中的扫描角度的变化顺序排列成一列,得到完整的回波信号列向量:
Figure BDA00003507639500062
3b)将步骤(2)中各个扫描角度下构造的观测矩阵
Figure BDA00003507639500063
按照步骤1c)中扫描角度的变化顺序排列成一列,得到完整的观测矩阵:
Figure BDA00003507639500064
3c)根据步骤2d)中
Figure BDA00003507639500065
的矩阵与向量乘积形式,得到各扫描角度下回波信号列向量
Figure BDA00003507639500066
与构造的观测矩阵
Figure BDA00003507639500067
之间的数据关系:
Figure BDA00003507639500068
其中,f=[f(1)…f(k)…f(MN)]T,f为目标散射系数向量;
3d)根据步骤3c)中得到的数据关系,得到完整回波信号列向量g和完整观测矩阵C的数据关系式:g=Cf;
3e)考虑回波信号的噪声,建立相控阵雷达成像模型为:r=Cf+n,
其中,r表示加噪声的完整回波信号列向量,n表示噪声。
步骤4.根据探测目标场景区域轮廓的稀疏先验特征,利用正则化方法将步骤3e)中建立的成像模型转换为优化模型:
min f | | Df | | 2 s . t . | | Cf - r | | 2 2 ≤ ϵ ,
其中,
Figure BDA000035076395000610
为目标场景区域的离散梯度,D为图像差分算子,D(1),D(2)分别为水平方向差分算子和垂直方向差分算子,s.t.表示约束条件,
Figure BDA000035076395000615
表示2范数的平方,
Figure BDA000035076395000611
表示最小值运算符号,ε为设定误差限;
4a)将步骤3e)中的相控阵雷达成像模型:r=Cf+n,转化为最优化模型:
min f | | Cf - r | | 2 2 ;
4b)在最优化模型中加入相应的正则项Φ(f):
min f Φ ( f ) s . t . | | Cf - r | | 2 2 ≤ ϵ ;
4c)当正则项为全变差时,得到全变差模型:
min f | | Df | | s . t . | | Cf - r | | 2 2 ≤ ϵ ;
4d)当||Df||取2范数,即对f做各向同性的离散全变差处理,得到优化模型:
min f | | Df | | 2 s . t . | | Cf - r | | 2 2 ≤ ϵ .
步骤5.将步骤(4)中有约束的优化模型转化为无约束的优化表达式,然后利用交替方向迭代法求解该优化表达式,得到复系数向量f;
5a)通过引入松弛变量w将Df从不可微分项||Df||2中分离出来,并对w和Df的残差结果进行惩罚约束;
5b)结合增广拉格朗日乘子模型,得到如下的无约束优化表达式:
J ( f ) = | | w | | 2 - γ H ( w - Df ) + β 2 | | w - Df | | 2 2 + μ 2 | | Cf - r | | 2 2 ,
其中,γ为拉格朗日乘子,μ为r与Cf残差的惩罚参数,β为w与Df残差的惩罚参数;
5c)将无约束优化表达式分解为关于w和f的两个子问题,并利用交替方向迭代法进行求解,得到复系数向量f。
步骤6.对复系数向量f进行处理,得到并显示最终成像结果;
6a)对求解得到的复系数向量f取模值,得到成像系数向量
Figure BDA00003507639500073
6b)将成像系数向量
Figure BDA00003507639500074
排列成N×M维的成像系数矩阵A,如图5所示;
6c)将成像系数矩阵A作为最终的成像结果进行显示。
本发明的效果可以通过下述仿真实验加以说明:
1.仿真条件
运行系统为Intel(R)Core(TM)2Duo CPU E45002.20GHz,32位Windows操作系统,仿真软件采用MATLAB R(2011b),仿真参数设置如下:
发射信号载频fc=5GHz,发射信号采用线性调频信号,发射信号脉冲宽度Tp=0.1μs,调频带宽B=200MHz,接收系统时域采样频率fs=4B。
相控阵阵列天线模型采用如图6所示均匀的正八面阵列,其中阵元间距为0.03m,横纵向最大阵元个数为12个,阵列孔径为0.33m,3dB主瓣波束宽度约为10°。
点目标场景和复杂观测场景均为25×25像素点的图像,如图7(a)和8(a)所示,像素点即空间采样目标,像素点数即为空间采样点数,则M=N=25;相控阵雷达阵列天线中心到目标场景中心的距离R0=300m,场景像素点间的距离分辨率设为10m×10m,距离分辨率即为目标场景空间采样的距离间隔,对应方位角和俯仰角的角度分辨率约为2°,远小于3dB波束主瓣宽度10°;目标场景大小约为240m×240m,结合R0计算得到方位角和俯仰角的扫描角度范围:θ=-20°~20°,
Figure BDA00003507639500081
仿真中,传统成像方法的方位角和俯仰角扫描角度间隔均设为1°,则方位角和俯仰角的扫描角度个数分别为I=40,J=40,本发明成像方法的方位角和俯仰角扫描角度间隔均设为8°,则方位角和俯仰角的扫描角度个数分别为I=5,J=5。
2.仿真内容与结果
仿真1,在图7(a)所示的点目标场景中,按照10m×10m距离分辨率构造观测矩阵C,分别按照传统成像方法和本发明的成像方法,对回波信号进行成像处理,得到的成像结果如图7(b)和7(c)所示。其中图7(b)传统成像方法的成像结果,图7(c)为本发明的成像结果。
从图7可见,在相同参数设置情况下,传统的相控阵雷达实波束成像结果分辨率差,而采用本发明提出的方法,不仅观测次数和成像数据少,而且分辨率高。
仿真2,在图8(a)所示的复杂场景中,分别按照10m×10m和5m×5m的距离分辨率构造观测矩阵C,采用本发明成像方法,对回波信号进行成像处理,得到成像结果如图8(b)和8(c)所示。其中图8(b)为按照10m×10m距离分辨率构造观测矩阵的成像结果,图8(c)为按照5m×5m距离分辨率构造观测矩阵的成像结果。
从图8可见,采用本发明提出的方法,对于不同距离分辨率构造的观测矩阵均可成像,而且可以得到较好的目标场景轮廓信息。证明了在未知目标场景信息情况下,本方法的有效性。

Claims (3)

1.一种实孔径相控阵雷达高分辨探测成像方法,包括如下步骤:
(1)根据相控阵雷达工作方式,对整个探测场景进行波束扫描,得到各角度下时域采样后的回波信号列向量
Figure FDA00003507639400011
其中,θp表示第p个方位角扫描角度,p∈[1,I],I为方位角扫描角度个数;
Figure FDA00003507639400012
表示第q个俯仰角扫描角度,q∈[1,J],J为俯仰角扫描角度个数;
(2)依据相控阵雷达工作方式,构造各角度下的观测矩阵
Figure FDA00003507639400014
其中,
Figure FDA00003507639400015
ti∈[t1,tL]表示L点的时域采样;k∈[1,MN]表示待探测二维目标场景离散化采样后的第k个目标,M表示水平方向采样点数,N表示垂直方向采样点数;rk表示第k个目标达到相控阵雷达天线中心的距离,
Figure FDA00003507639400016
表示波束指向θp,
Figure FDA00003507639400017
时的方向图函数在第k个目标方向的响应值;c为光速,λ为雷达工作波长;p(ti)为相控阵雷达发射信号包络时域采样;
(3)构建相控阵雷达成像模型:
3a)将步骤(1)中各个角度得到的回波信号列向量
Figure FDA00003507639400018
按照扫描角度的顺序排列成一列,得到完整的回波信号列向量:
Figure FDA00003507639400019
其中,T表示转置;
3b)将步骤(2)中各个角度下构造的观测矩阵按照扫描角度的顺序排列成一列,得到完整的观测矩阵:
Figure FDA00003507639400021
3c)根据相控阵雷达工作方式,当波束指向角度θp,
Figure FDA00003507639400022
时,将时域采样后的回波信号列向量表示为:
其中,f(k)为目标场景离散化采样后第k个目标的散射系数;
3d)将步骤(2)中的观测矩阵
Figure FDA00003507639400024
带入步骤3c)中的回波信号表达式中,得到单个角度下回波信号列向量
Figure FDA00003507639400025
与构造的观测矩阵
Figure FDA00003507639400026
之间的数据关系:
Figure FDA00003507639400027
其中,f=[f(1)…f(k)…f(MN)]T
3e)根据步骤3d)得到的数据关系,得到完整回波信号列向量g和完整观测矩阵C的数据关系式:g=Cf;若考虑回波信号的噪声,则建立相控阵雷达成像模型为:r=Cf+n,其中,r表示加噪声的完整回波信号列向量,n表示噪声;
(4)根据探测目标场景区域轮廓的稀疏先验特征,利用正则化方法将步骤3e)中建立的成像模型转换为优化模型:
min f | | Df | | 2 s . t . | | Cf - r | | 2 2 ≤ ϵ ,
其中,
Figure FDA00003507639400029
为目标场景区域的离散梯度,D为图像差分算子,D(1),D(2)分别为水平方向差分算子和垂直方向差分算子,s.t.表示约束条件,
Figure FDA000035076394000213
表示2范数的平方,
Figure FDA000035076394000210
表示最小值运算符号,ε为设定误差限;
(5)将步骤(4)中有约束的优化模型转化为无约束的优化表达式,然后利用交替方向迭代法求解该优化表达式,得到复系数向量f;
(6)对求解得到的复系数向量f取模值,得到成像系数向量
Figure FDA000035076394000211
对成像系数向量
Figure FDA000035076394000212
进行排列,得到成像系数矩阵A,即为最终的成像结果。
2.根据权利要求1所述的方法,其中步骤4)所述的根据探测目标场景区域轮廓的稀疏先验特征,利用正则化方法将步骤3e)中建立的成像模型转换为优化模型,按如下步骤进行:
4a)将步骤3e)中的相控阵雷达成像模型:r=Cf+n,转化为最优化模型:
min f | | Cf - r | | 2 2 ,
4b)在最优化模型中加入相应的正则项Φ(f):
min f Φ ( f ) s . t . | | Cf - r | | 2 2 ≤ ϵ ,
4c)当正则项为全变差时,得到全变差模型:
min f | | Df | | s . t . | | Cf - r | | 2 2 ≤ ϵ ,
4d)当||Df||取2范数时,即对f做各向同性的离散全变差处理,得到优化模型:
min f | | Df | | 2 s . t . | | Cf - r | | 2 2 ≤ ϵ .
3.根据权利要求1所述的方法,其中步骤5)所述的将步骤(4)中的有约束的优化模型转化为无约束的优化表达式,按如下步骤进行:
5a)引入松弛变量w,并对w和Df的残差结果进行惩罚约束;
5b)结合增广拉格朗日乘子模型,得到如下的无约束优化表达式:
J ( f ) = | | w | | 2 - γ H ( w - Df ) + β 2 | | w - Df | | 2 2 + μ 2 | | Cf - r | | 2 2 ,
其中,γ为拉格朗日乘子,μ为r与Cf残差的惩罚参数,β为w与Df残差的惩罚参数。
CN201310296170.4A 2013-07-13 2013-07-13 实孔径相控阵雷达高分辨探测成像方法 Expired - Fee Related CN103399315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310296170.4A CN103399315B (zh) 2013-07-13 2013-07-13 实孔径相控阵雷达高分辨探测成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310296170.4A CN103399315B (zh) 2013-07-13 2013-07-13 实孔径相控阵雷达高分辨探测成像方法

Publications (2)

Publication Number Publication Date
CN103399315A true CN103399315A (zh) 2013-11-20
CN103399315B CN103399315B (zh) 2015-06-17

Family

ID=49562971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310296170.4A Expired - Fee Related CN103399315B (zh) 2013-07-13 2013-07-13 实孔径相控阵雷达高分辨探测成像方法

Country Status (1)

Country Link
CN (1) CN103399315B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744080A (zh) * 2014-01-16 2014-04-23 中国科学院电子学研究所 一种星载多通道合成孔径雷达成像装置
CN104122549A (zh) * 2014-07-21 2014-10-29 电子科技大学 基于反卷积的雷达角超分辨成像方法
CN104483752A (zh) * 2014-12-23 2015-04-01 中国科学院光电研究院 一种反射式数字成像系统的设计方法
CN104569974A (zh) * 2015-02-09 2015-04-29 中国科学技术大学 微波凝视关联成像系统的随机辐射阵元排布定量表征方法
CN105259749A (zh) * 2015-09-11 2016-01-20 中国电子科技集团公司第二十研究所 成像相控阵雷达波束控制方法
CN109765554A (zh) * 2018-11-14 2019-05-17 北京遥感设备研究所 一种雷达前视成像系统及方法
CN109975805A (zh) * 2019-03-04 2019-07-05 广东工业大学 基于稀疏和全变差联合正则化的多平台星座sar成像方法
RU2694235C1 (ru) * 2018-07-05 2019-07-10 Акционерное общество "Радиотехнические и Информационные Системы воздушно-космической обороны" (АО "РТИС ВКО") Способ регуляризованного обнаружения полезных радиосигналов
CN110764088A (zh) * 2019-10-25 2020-02-07 哈尔滨工程大学 一种超分辨率驻点扫描实时成像算法
CN112230212A (zh) * 2020-09-28 2021-01-15 北京环境特性研究所 雷达测距信号处理方法和装置
CN116893413A (zh) * 2023-09-11 2023-10-17 中国电子科技集团公司信息科学研究院 一种分布式实孔径机载预警雷达探测系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169179A (zh) * 2011-01-04 2011-08-31 中国科学技术大学 用于悬停平台的对地凝视成像系统
CN102253386A (zh) * 2011-03-29 2011-11-23 西安电子科技大学 基于发射波束扫描的机载下视三维合成孔径雷达成像系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169179A (zh) * 2011-01-04 2011-08-31 中国科学技术大学 用于悬停平台的对地凝视成像系统
CN102253386A (zh) * 2011-03-29 2011-11-23 西安电子科技大学 基于发射波束扫描的机载下视三维合成孔径雷达成像系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王伟伟 等: "一种基于压缩感知的稀疏孔径SAR成像方法", 《电子学报》 *
肖宿 等: "基于稀疏正则优化的图像复原算法", 《计算机应用》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744080A (zh) * 2014-01-16 2014-04-23 中国科学院电子学研究所 一种星载多通道合成孔径雷达成像装置
CN104122549A (zh) * 2014-07-21 2014-10-29 电子科技大学 基于反卷积的雷达角超分辨成像方法
CN104483752A (zh) * 2014-12-23 2015-04-01 中国科学院光电研究院 一种反射式数字成像系统的设计方法
CN104483752B (zh) * 2014-12-23 2017-02-22 中国科学院光电研究院 一种反射式数字成像系统的设计方法
CN104569974A (zh) * 2015-02-09 2015-04-29 中国科学技术大学 微波凝视关联成像系统的随机辐射阵元排布定量表征方法
CN105259749A (zh) * 2015-09-11 2016-01-20 中国电子科技集团公司第二十研究所 成像相控阵雷达波束控制方法
RU2694235C1 (ru) * 2018-07-05 2019-07-10 Акционерное общество "Радиотехнические и Информационные Системы воздушно-космической обороны" (АО "РТИС ВКО") Способ регуляризованного обнаружения полезных радиосигналов
CN109765554A (zh) * 2018-11-14 2019-05-17 北京遥感设备研究所 一种雷达前视成像系统及方法
CN109975805A (zh) * 2019-03-04 2019-07-05 广东工业大学 基于稀疏和全变差联合正则化的多平台星座sar成像方法
CN110764088A (zh) * 2019-10-25 2020-02-07 哈尔滨工程大学 一种超分辨率驻点扫描实时成像算法
CN110764088B (zh) * 2019-10-25 2023-10-27 哈尔滨工程大学 一种超分辨率驻点扫描实时成像算法
CN112230212A (zh) * 2020-09-28 2021-01-15 北京环境特性研究所 雷达测距信号处理方法和装置
CN112230212B (zh) * 2020-09-28 2023-06-16 北京环境特性研究所 雷达测距信号处理方法和装置
CN116893413A (zh) * 2023-09-11 2023-10-17 中国电子科技集团公司信息科学研究院 一种分布式实孔径机载预警雷达探测系统及方法
CN116893413B (zh) * 2023-09-11 2023-12-01 中国电子科技集团公司信息科学研究院 一种分布式实孔径机载预警雷达探测系统及方法

Also Published As

Publication number Publication date
CN103399315B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN103399315B (zh) 实孔径相控阵雷达高分辨探测成像方法
CN107957574B (zh) 基于ifft和混合匹配追踪的时分地基mimo滑坡雷达成像方法
CN103744080B (zh) 一种星载多通道合成孔径雷达成像装置
CN108872985B (zh) 一种近场圆周sar快速三维成像方法
CN113253234B (zh) 目标微小形变观测雷达系统的信号处理方法及雷达系统
CN104181531A (zh) 一种基于相控阵雷达的三维关联成像方法
CN102914773B (zh) 一种多航过圆周sar三维成像方法
CN110346794B (zh) 一种资源优化配置的分布式雷达成像方法
Yang et al. Multiple-measurement vector model and its application to through-the-wall radar imaging
CN113126087B (zh) 一种星载干涉成像高度计天线
CN110082764A (zh) 基于稳健正则化层析方法的sar图像成像方法
CN107942295A (zh) 一种前视阵列sar系统的稀疏天线
CN107656271B (zh) 基于压缩感知重构的太赫兹雷达成像算法
CN103576151B (zh) 基于压缩感知的方位向多通道sar成像方法及系统
CN111537997A (zh) 一种基于mimo和压缩感知技术的三维雷达成像方法
CN112649806B (zh) 一种mimo雷达近场三维成像方法
CN104020465B (zh) 基于八单元小孔径圆阵天线的外辐射源雷达测角方法
CN110231625B (zh) 一种基于多尺度融合的综合孔径成像方法
CN112213699A (zh) 大斜视成像模式下的星载sar系统性能参数计算方法
CN112230221A (zh) 一种基于三维稀疏成像的rcs测量方法
CN108717188B (zh) 适用于mimo穿墙雷达成像的快速墙体补偿方法
CN113671485B (zh) 基于admm的米波面阵雷达二维doa估计方法
CN111090094A (zh) 脉冲多普勒雷达的双波束角度测量方法、系统及存储介质
CN113359196B (zh) 基于子空间法和dbf的多目标生命体征探测方法
CN104407348B (zh) 一种侧视多普勒波束锐化与前视单脉冲复合成像方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20200713

CF01 Termination of patent right due to non-payment of annual fee