CN107652451B - 银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用 - Google Patents

银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用 Download PDF

Info

Publication number
CN107652451B
CN107652451B CN201710846315.1A CN201710846315A CN107652451B CN 107652451 B CN107652451 B CN 107652451B CN 201710846315 A CN201710846315 A CN 201710846315A CN 107652451 B CN107652451 B CN 107652451B
Authority
CN
China
Prior art keywords
silver
hydrogel
ppegma
paa
cyclodextrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710846315.1A
Other languages
English (en)
Other versions
CN107652451A (zh
Inventor
任丽霞
乔亚平
袁晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710846315.1A priority Critical patent/CN107652451B/zh
Publication of CN107652451A publication Critical patent/CN107652451A/zh
Application granted granted Critical
Publication of CN107652451B publication Critical patent/CN107652451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及银纳米颗粒杂化的基于环糊精/PEG接枝聚丙烯酸的超分子水凝胶的及制备和应用;超分子水凝胶是阴离子聚电解质PPEGMA‑co‑PAA的分子量在10‑600kDa;PPEGMA与PAA在聚合物中的摩尔百分比在10:1到1:4之间;超分子水凝胶中纳米银的含量在0.05‑5%。本发明制备过程简单,得到了均匀分散的球形纳米银粒子,有效地解决了纳米银的团聚问题。并且相比纯聚合物体系只能在酸性条件下形成水凝胶,银杂化体系在中性和碱性条件下也可以形成水凝胶,从而拓展了水凝胶存在的pH范围。该纳米银杂化超分子水凝胶具有自修复性、可注射等性能,在抗菌剂与伤口愈合方面有良好的应用前景。

Description

银纳米颗粒杂化的基于环糊精/PEG接枝聚丙烯酸的超分子水 凝胶及制备和应用
技术领域
本发明涉及一种银纳米颗粒杂化的超分子水凝胶的制备,具体涉及采用可逆加成‐断裂链转移自由基聚合(RAFT)合成聚乙二醇单醚甲基丙烯酸酯接枝聚丙烯酸的无规共聚物(PPEGMA-co-PAA),以含有丙烯酸的PPEGMA-co-PAA阴离子聚电解质为稳定剂原位制备银纳米粒子,通过与α-环糊精的超分子作用制备具有抗菌性能的银纳米颗粒杂化的超分子水凝胶。
背景技术
超分子水凝胶属于物理凝胶,其形成依赖于聚合物链之间的非共价键超分子作用。常见的超分子作用主要包括以下几类:范德华力、氢键相互作用、静电相互作用、疏水相互作用及主‐客体相互作用等。基于环糊精/聚乙二醇的超分子水凝胶由于具有良好的生物相容性与生物降解能力,而在药物输送的可注射水凝胶方面具有许多潜在的应用。
同时,水凝胶作为抗菌剂使用也已经引起了越来越多科研工作者的关注。近年来,医药技术虽然发展迅速,由细菌引发的疾病仍然在全球范围内蔓延。此外,抗生素的滥用导致细菌对传统抗菌剂的耐药性增强以及超级细菌的出现,由细菌引发的传染性疾病的解决仍然迫在眉睫。因此,急需研制出药效持久、使用范围广、高效又安全的新型抗菌材料。水凝胶作为抗菌剂具有吸收伤口渗出物、杀菌、保湿、促进伤口愈合的作用。设计具有理想的抗菌性和生物相容性的超分子水凝胶复合材料对杀死细菌与促进伤口的愈合具有非常重要的意义。
近年来,研究者将水凝胶与无机纳米抗菌剂相复合,使水凝胶既具有固有的性质,又兼具抗菌剂的抗菌性能,并以此来提高抗菌剂的使用寿命。银及其化合物是最常见的抗菌剂之一,具有广谱抗菌性和耐药性,对革兰氏阳性细菌、革兰氏阴性细菌、真菌等都有良好的抗菌作用,尤其是银纳米粒子,还具有可控性好、能够长时间释放银离子以及较容易进行表面功能化等优点,成为了很好的抗菌剂。目前有很多文献和专利都报道了以银纳米粒子杂化的水凝胶作为抗菌剂使用。常见的银纳米水凝胶制备方法包括(1)物理包埋方法,即将预先制备好的银纳米颗粒物理包埋到水凝胶中(彭锋;关莹;孙润仓;任俊莉;张冰;亓宪明,一种抗菌水凝胶的制备方法.2014.);(2)凝胶原位还原,即将制备好的水凝胶依次浸泡到AgNO3水溶液和柠檬酸钠水溶液中原位制备水凝胶-银纳米粒子复合水凝胶(Thomas V,Yallapu M M,Sreedhar B,Bajpai S K.A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobialactivity.Journal of Colloid&Interface Science,2007,315(1):389-395.)。通常条件下,银纳米颗粒的稳定性较差,团聚现象较严重,严重影响其抗菌性能。因此需要一些小分子,如油酸等对其进行稳定化,然而,这些化合物的掺入又从某种程度上影响了凝胶的性能。
发明内容
本发明的目的在于提供一种具有抗菌性的银纳米颗粒杂化的超分子水凝胶及制备方法和应用,具体技术方案如下:
一种银纳米颗粒杂化的基于环糊精/PEG接枝聚丙烯酸的超分子水凝胶;阴离子聚电解质PPEGMA-co-PAA的分子量在10-600kDa;PPEGMA与PAA在聚合物中的摩尔百分比在10:1到1:4之间;超分子水凝胶中纳米银的含量在0.05-5%。
本发明的银纳米颗粒杂化的基于环糊精/PEG接枝聚丙烯酸的超分子水凝胶的制备方法,步骤如下:
(1)制备聚乙二醇单醚甲基丙烯酸酯接枝的聚丙烯酸无规共聚物PPEGMA-co-PAA;
(3)以合成的PPEGMA-co-PAA为稳定剂原位制备银纳米颗粒;
(3)将α-环糊精与PPEGMA-co-PAA稳定的银纳米颗粒水溶液混合,α-环糊精与侧链PEGMA形成管道状包合物制备超分子水凝胶。
所述的步骤(1)制备阴离子聚电解质PPEGMA-co-PAA方法:在Schlenk聚合瓶中加入聚乙二醇单醚甲基丙烯酸酯(PEGMA)、丙烯酸(AA)、4-氰基-4-(硫代苯甲酰)戊酸(CPADB)、偶氮二异丁腈(AIBN),其中PEGMA、AA的摩尔比为10:1~1:4,将混合物溶解在精制甲苯中,单体与甲苯的体积比为50%~70%,经冻融循环除氧充氮气,氮气保护下在60℃油浴中反应5~8h;反应结束后,将反应瓶放入冰水浴中,打开瓶塞暴露于空气中终止聚合;将混合物在乙醚/正己烷混合溶剂中沉淀,直到除去未反应的单体,离心得到粉色固体,35℃真空干燥。
所述的步骤(2)方法为:将聚合物PPEGMA-co-PAA溶于高纯水中,向其中加入0.025M的硝酸银水溶液,室温下高速搅拌0.5h;将配制的0.25M的硼氢化钠水溶液快速加入到上述混合溶液里,继续反应2~4h,得到深棕色的聚合物PPEGMA-co-PAA稳定的银纳米颗粒水溶液。
所述的步骤(3)α-环糊精与侧链PEGMA形成管道状包合物制备超分子水凝胶:称量α-环糊精,向其中加入聚合物稳定的银溶液,超声10~20min后,加热至70℃至环糊精完全溶解;用0.5M的HCl或0.5M的NaOH调溶液pH值至中性,室温静置12h后,银纳米颗粒杂化的超分子水凝胶形成。
本发明所制备的银纳米颗粒杂化的超分子水凝胶对于格兰氏阴性菌和革兰氏阳性菌均具有广谱的抗菌性能。银纳米颗粒杂化的超分子水凝胶具有抗菌作用。
本发明中,首先采用RAFT聚合合成聚乙二醇单醚甲基丙烯酸酯接枝的聚丙烯酸无规共聚物(PPEGMA-co-PAA),此聚合物中的丙烯酸基团通过静电相互作用与银离子复合,可以原位制备尺寸较小的银纳米颗粒,接枝的水溶性PPEGMA可以在水溶液中长效、持久保持阴离子不团聚,提高其稳定性,制得的银纳米颗粒水溶液在室温保持三年没有团聚的现象。进一步,通过将所制备的PPEGMA-co-PAA稳定的银纳米颗粒水溶液与α-环糊精进行包合原位制备具有抗菌性能的银纳米颗粒杂化的超分子水凝胶。本发明与背景技术中提到的水凝胶的制备方法的区别在于首先利用RAFT活性聚合方法制备了分散性较窄的无规共聚物,由于超分子水凝胶的形成机理大多为各种超分子相互作用引起的链段的聚集,所以结构规整的聚合物前体对于超分子水凝胶的形成是有利的。再者,以合成的阴离子聚电解质PPEGMA-co-PAA为稳定剂原位制备银纳米粒子,使得纳米银颗粒稳定分散在聚合物中,解决了纳米银粒子的团聚问题。
本发明制备过程简单,得到了均匀分散的球形纳米银粒子,有效地解决了纳米银的团聚问题。并且相比纯聚合物体系只能在酸性条件下形成水凝胶,银杂化体系在中性和碱性条件下也可以形成水凝胶,从而拓展了水凝胶存在的pH范围。该纳米银杂化超分子水凝胶具有自修复性、可注射等性能,在抗菌剂与伤口愈合方面有良好的应用前景。
本发明的优点和效果:
首先利用RAFT聚合可控合成阴离子聚电解质PPEGMA-co-PAA,以合成的聚电解质为稳定剂原位制备银纳米颗粒。TEM结果表明,得到的纳米银为均匀分散的球形粒子,直径在2-6纳米之间,这有效地解决了纳米银粒子的团聚问题。同时,利用PPEGMA-co-PAA聚合物作为银纳米颗粒的稳定剂,大大提高了室温下银纳米颗粒水溶液的稳定性。同时,将纳米银引入水凝胶以后,其在水凝胶中充当物理交联点的作用,使水凝胶的储能模量较不含银纳米颗粒的水凝胶提高了一个数量级。银纳米粒子的引入使得超分子水凝胶对金黄色葡萄球菌和大肠杆菌均有较好的抗菌作用。
附图说明
图1实施例2阴离子聚电解质PPEGMA-co-PAA的核磁图谱;
图2实施例2聚合物稳定的银纳米粒子的TEM照片;
图3实施例2银纳米颗粒杂化的水凝胶放置12h后在不同pH下的照片;
图4实施例2银纳米颗粒杂化的超分子水凝胶的自修复性的流变表征图;
图5实施例2银杂化水凝胶(左)和空白水凝胶(右)和对S.aureus(A)和E.coli(B)的抗菌活性。
具体实施方式
通过下述实施例和附图进一步说明本发明,但并不限制本发明的权利范围。
本发明的技术方案如下:
(1)制备聚乙二醇单醚甲基丙烯酸酯接枝的聚丙烯酸无规共聚物PPEGMA-co-PAA;
(2)以合成的PPEGMA-co-PAA为稳定剂原位制备银纳米颗粒;
(3)将α-环糊精与PPEGMA-co-PAA稳定的银纳米颗粒水溶液混合,α-环糊精与侧链PEGMA形成管道状包合物制备超分子水凝胶。
其中,阴离子聚电解质PPEGMA-co-PAA的分子量在10-600kDa;PPEGMA与PAA在聚合物中的摩尔百分比在10:1到1:4之间;超分子水凝胶中纳米银的含量在0.05-5%;α-环糊精的量通过其与PPEGMA-co-PAA中乙二醇单元的摩尔比为1:2来确定。
所述的步骤(1)制备阴离子聚电解质PPEGMA-co-PAA:在Schlenk聚合瓶中加入聚乙二醇单醚甲基丙烯酸酯(PEGMA)、丙烯酸(AA)、4-氰基-4-(硫代苯甲酰)戊酸(CPADB)、偶氮二异丁腈(AIBN),其中PEGMA、AA的摩尔比为10:1~1:4,将混合物溶解在精制甲苯中,单体与甲苯的体积比为50%~70%,经冻融循环除氧充氮气,氮气保护下在60℃油浴中反应5~8h;反应结束后,将反应瓶放入冰水浴中,打开瓶塞暴露于空气中终止聚合;将混合物在乙醚/正己烷混合溶剂中沉淀,直到除去未反应的单体,离心得到粉色固体,35℃真空干燥。
所述的步骤(2)以合成的PPEGMA-co-PAA为稳定剂原位制备银纳米粒子:将聚合物PPEGMA-co-PAA溶于高纯水中,向其中加入0.025M的硝酸银水溶液,室温下高速搅拌0.5h。将新鲜配制的0.25M的硼氢化钠水溶液快速加入到上述混合溶液里,继续反应2~4h,得到深棕色的聚合物PPEGMA-co-PAA稳定的银纳米颗粒水溶液。
所述的步骤(3)α-环糊精与侧链PEGMA形成管道状包合物制备超分子水凝胶:称量α-环糊精,向其中加入聚合物稳定的银溶液,超声10~20min后,加热至70℃至环糊精完全溶解。用0.5M的HCl或0.5M的NaOH调溶液pH值至中性,室温静置12h后,银纳米颗粒杂化的超分子水凝胶形成。
实施例1
阴离子聚电解质PPEGMA-co-PAA的结构式为:
Figure BDA0001412077340000061
本发明的聚合物的合成方法,步骤如下:
在Schlenk聚合瓶中加入PEGMA(2.2g,2.3mmol)、AA(82μL,1.2mmol)、CPADB(9.6mg,0.03mmol)、AIBN(1.5mg,0.01mmol),将混合物溶解在3mL精制甲苯中,冻融循环除氧充氮气,氮气保护下在60℃油浴中反应5h。反应结束后,将反应瓶放冰水浴中,打开瓶塞暴露于空气中终止聚合。将混合物在乙醚/正己烷混合溶剂中沉淀,除去未反应的单体,离心得到粉色固体,35℃真空干燥。(Mn,GPC=10.2K,PDI=1.21)
称量聚合物PPEGMA-co-PAA(236.3mg,0.06mmol AA单元)溶于10mL高纯水中,向其中加入0.025M的硝酸银水溶液(1mL),室温下高速搅拌0.5h。将新鲜配制的0.25M的硼氢化钠水溶液(1mL)快速加入到上述混合溶液里,继续反应2h,得到深棕色的聚合物PPEGMA-co-PAA稳定的纳米银水溶液。
称量三份α-环糊精(78.5mg,0.08mmol),分别向其中加入1mL的聚合物稳定的银溶液,超声10min后,加热至70℃至环糊精完全溶解。用0.5M的HCl调节溶液pH值,三瓶聚合物稳定的银溶液分别调至5,7和9。12h后分别记录水凝胶的凝胶情况。
称取4.5g营养琼脂和110mL高纯水加热煮沸后立即倒入锥形瓶中。将培养基、牛津杯、抗菌实验所用工具等立即进行高压蒸汽灭菌。提前一天将实验所用纳米银杂化水凝胶及纯聚合物水凝胶加热至溶胶进行0.2μm过滤膜过滤灭菌,后静置过夜重新形成凝胶。在超净台中,往三个培养皿中分别加入15mL刚灭菌完的培养基,将剩余培养基放50℃水浴中保温。待底层培养基凝固以后,将牛津杯轻轻放置于培养基上面,每个培养皿放两个。将800μL二次活化后的金黄色葡萄球菌液加入到剩余培养基中摇匀,往三个培养皿中分别加入5mL加菌的培养基。待上层培养基凝固以后,将牛津杯轻轻从培养基中拿走。往每个培养皿的左孔中注射150μL纳米银杂化的水凝胶,右孔中注射150μL纯聚合物的水凝胶。将培养皿放37℃培养箱的摇床上培养18h,后观察培养皿实验孔和对照孔周围的抑菌圈情况,抑菌圈宽度均在3mm左右。
实施例2
在Schlenk聚合瓶中加入PEGMA(2.2g,2.3mmol)、AA(238μL,3.5mmol)、CPADB(9.6mg,0.03mmol)、AIBN(1.5mg,0.01mmol),将混合物溶解在3mL精制甲苯中,冻融循环除氧充氮气,氮气保护下在60℃油浴中反应7h。反应结束后,将反应瓶放冰水浴中,打开瓶塞暴露于空气中终止聚合。将混合物在乙醚/正己烷混合溶剂中沉淀,除去未反应的单体,离心得到粉色固体,35℃真空干燥。(Mn,GPC=30.3K,PDI=1.19)
称量聚合物PPEGMA-co-PAA(78.8mg,0.08mmol AA单元)溶于10mL高纯水中,向其中加入0.025M的硝酸银水溶液(1mL),室温下高速搅拌0.5h。将新鲜配制的0.25M的硼氢化钠水溶液(1mL)快速加入到上述混合溶液里,继续反应2h,得到深棕色的聚合物PPEGMA-co-PAA稳定的纳米银水溶液。
称量三份α-环糊精(62.5mg,0.064mmol),分别向其中加入1mL的聚合物稳定的银溶液,超声10min后,加热至70℃至环糊精完全溶解。用0.5M的HCl调节溶液pH值,三瓶聚合物稳定的银溶液分别调至5,7和9。12h后分别记录水凝胶的凝胶情况。
称取4.5g营养琼脂和110mL高纯水加热煮沸后立即倒入锥形瓶中。将培养基、牛津杯、抗菌实验所用工具等立即进行高压蒸汽灭菌。提前一天将实验所用纳米银杂化水凝胶及纯聚合物水凝胶加热至溶胶进行0.2μm过滤膜过滤灭菌,后静置过夜重新形成凝胶。在超净台中,往三个培养皿中分别加入15mL刚灭菌完的培养基,将剩余培养基放50℃水浴中保温。待底层培养基凝固以后,将牛津杯轻轻放置于培养基上面,每个培养皿放两个。将800μL二次活化后的金黄色葡萄球菌液加入到剩余培养基中摇匀,往三个培养皿中分别加入5mL加菌的培养基。待上层培养基凝固以后,将牛津杯轻轻从培养基中拿走。往每个培养皿的左孔中注射150μL纳米银杂化的水凝胶,右孔中注射150μL纯聚合物的水凝胶。将培养皿放37℃培养箱的摇床上培养18h,后观察培养皿实验孔和对照孔周围的抑菌圈情况,抑菌圈宽度均在3mm左右。
实施例3
在Schlenk聚合瓶中加入PEGMA(4.4g,4.6mmol)、AA(1.25mL,18.4mmol)、CPADB(9.6mg,0.03mmol)、AIBN(1.5mg,0.01mmol),将混合物溶解在10mL精制甲苯中,冻融循环除氧充氮气,氮气保护下在60℃油浴中反应8h。反应结束后,将反应瓶放冰水浴中,打开瓶塞暴露于空气中终止聚合。将混合物在过量的乙醚/正己烷混合溶剂中沉淀,除去未反应的单体,离心得到粉色固体,35℃真空干燥。(Mn,GPC=600.1K,PDI=1.37)
称量聚合物PPEGMA-co-PAA(35.0mg,0.08mmol AA单元)溶于10mL高纯水中,向其中加入0.025M的硝酸银水溶液(1mL),室温下高速搅拌0.5h。将新鲜配制的0.25M的硼氢化钠水溶液(1mL)快速加入到上述混合溶液里,继续反应2h,得到深棕色的聚合物PPEGMA-co-PAA稳定的纳米银水溶液。
称量三份α-环糊精(62.5mg,0.064mmol),分别向其中加入1mL的聚合物稳定的银溶液,均超声10min后,加热至70℃至环糊精完全溶解。用0.5M的HCl调节溶液pH值,三瓶聚合物稳定的银溶液分别调至5,7和9。12h后分别记录水凝胶的凝胶情况。
称取4.5g营养琼脂和110mL高纯水加热煮沸后立即倒入锥形瓶中。将培养基、牛津杯、抗菌实验所用工具等立即进行高压蒸汽灭菌。提前一天将实验所用纳米银杂化水凝胶及纯聚合物水凝胶加热至溶胶进行0.2μm过滤膜过滤灭菌,后静置过夜重新形成凝胶。在超净台中,往三个培养皿中分别加入15mL刚灭菌完的培养基,将剩余培养基放50℃水浴中保温。待底层培养基凝固以后,将牛津杯轻轻放置于培养基上面,每个培养皿放两个。将800μL二次活化后的金黄色葡萄球菌液加入到剩余培养基中摇匀,往三个培养皿中分别加入5mL加菌的培养基。待上层培养基凝固以后,将牛津杯轻轻从培养基中拿走。往每个培养皿的左孔中注射150μL纳米银杂化的水凝胶,右孔中注射150μL纯聚合物的水凝胶。将培养皿放37℃培养箱的摇床上培养18h,后观察培养皿实验孔和对照孔周围的抑菌圈情况,抑菌圈宽度均在3mm左右。
本发明公开和提出的技术方案,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (5)

1.一种银纳米颗粒杂化的基于环糊精/PEG接枝聚丙烯酸的超分子水凝胶的制备方法;其特征是阴离子聚电解质PPEGMA-co-PAA的分子量在10-600kDa;PPEGMA与PAA在聚合物中的摩尔百分比在10:1~1:4之间;超分子水凝胶中纳米银的含量在0.05-5%;制备步骤如下:
(1)制备聚乙二醇单醚甲基丙烯酸酯接枝的聚丙烯酸无规共聚物PPEGMA-co-PAA;
(2)以合成的PPEGMA-co-PAA为稳定剂原位制备银纳米颗粒;
(3)将α-环糊精与PPEGMA-co-PAA稳定的银纳米颗粒水溶液混合,α-环糊精与侧链PEGMA形成管道状包合物制备超分子水凝胶。
2.如权利要求1所述的方法,其特征是所述的步骤(1)制备阴离子聚电解质PPEGMA-co-PAA方法:在Schlenk聚合瓶中加入聚乙二醇单醚甲基丙烯酸酯(PEGMA)、丙烯酸(AA)、4-氰基-4-(硫代苯甲酰)戊酸(CPADB)、偶氮二异丁腈(AIBN),其中PEGMA、AA的摩尔比为10:1~1:4,将混合物溶解在精制甲苯中,单体与甲苯的体积比为50%~70%,经冻融循环除氧充氮气,氮气保护下在60℃油浴中反应5~8h;反应结束后,将反应瓶放入冰水浴中,打开瓶塞暴露于空气中终止聚合;将混合物在乙醚/正己烷混合溶剂中沉淀,直到除去未反应的单体,离心得到粉色固体,35℃真空干燥。
3.如权利要求1所述的方法,其特征是所述的步骤(2)方法为:将聚合物PPEGMA-co-PAA溶于高纯水中,向其中加入0.025M的硝酸银水溶液,室温下高速搅拌0.5h;将配制的0.25M的硼氢化钠水溶液快速加入到上述混合溶液里,继续反应2~4h,得到深棕色的聚合物PPEGMA-co-PAA稳定的银纳米颗粒水溶液。
4.如权利要求1所述的方法,其特征是所述的步骤(3)α-环糊精与侧链PEGMA形成管道状包合物制备超分子水凝胶:称量α-环糊精,向其中加入聚合物稳定的银溶液,超声10~20min后,加热至70℃至环糊精完全溶解;用0.5M的HCl或0.5M的NaOH调溶液pH值至中性,室温静置12h后,银纳米颗粒杂化的超分子水凝胶形成。
5.一种根据权利要求1所述的制备方法得到的超分子水凝胶;其特征是对于格兰氏阴性菌和革兰氏阳性菌均具有抗菌性能。
CN201710846315.1A 2017-09-19 2017-09-19 银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用 Active CN107652451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710846315.1A CN107652451B (zh) 2017-09-19 2017-09-19 银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710846315.1A CN107652451B (zh) 2017-09-19 2017-09-19 银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用

Publications (2)

Publication Number Publication Date
CN107652451A CN107652451A (zh) 2018-02-02
CN107652451B true CN107652451B (zh) 2020-05-19

Family

ID=61129950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710846315.1A Active CN107652451B (zh) 2017-09-19 2017-09-19 银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用

Country Status (1)

Country Link
CN (1) CN107652451B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511398A (zh) * 2018-05-21 2019-11-29 天津大学 含季铵阳离子的水凝胶及其制备方法
CN109079153B (zh) * 2018-07-24 2022-03-29 江汉大学 一种含银纳米颗粒的超分子水凝胶制备方法
CN110241636A (zh) * 2019-06-17 2019-09-17 浙江海印数码科技有限公司 一种含纳米银的工业级多功能数码印花喷墨墨水及其制备方法
CN110763050B (zh) * 2019-10-17 2021-04-16 四川页岩气勘探开发有限责任公司 一种用于油基钻井液地面降温处理的冷却介质及冷却装置
CN114085390B (zh) * 2021-11-26 2023-09-26 南京林业大学 一种可超长拉伸超分子水凝胶的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101564400A (zh) * 2009-05-31 2009-10-28 中山大学 一种抗菌性超分子水凝胶及其制备方法和应用
CN102091025B (zh) * 2009-12-14 2012-07-11 中国科学院化学研究所 抗肿瘤可注射水凝胶及其制备方法和用途
CN102050953B (zh) * 2010-10-18 2012-11-07 武汉理工大学 一种可还原降解超分子水凝胶的制备方法
US10124075B2 (en) * 2013-11-14 2018-11-13 The Royal Institution For The Advancement Of Learning/Mc Gill University Bionanofluid for use as a contrast, imaging, disinfecting and/or therapeutic agent

Also Published As

Publication number Publication date
CN107652451A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN107652451B (zh) 银纳米颗粒杂化的基于环糊精/peg接枝聚丙烯酸的超分子水凝胶及制备和应用
Jayaramudu et al. Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications
Wahid et al. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels
Bertolino et al. Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media
Konwar et al. Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm
Ghasemzadeh et al. Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization
Yadollahi et al. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems
Gholamali et al. Bio-nanocomposite polymer hydrogels containing nanoparticles for drug delivery: a review
Hegde et al. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications
Aranaz et al. Chitosan amphiphilic derivatives. Chemistry and applications
Yuan et al. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier
Le Thi et al. Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity
Madhusudana Rao et al. Biodegradable sodium alginate‐based semi‐interpenetrating polymer network hydrogels for antibacterial application
El-Sherif et al. Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities
Shakeri et al. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods
Sakthivel et al. Investigation on pH/salt-responsive multifunctional itaconic acid based polymeric biocompatible, antimicrobial and biodegradable hydrogels
Anirudhan et al. Synthesis and characterization of maleated cyclodextrin-grafted-silylated montmorillonite for the controlled release and colon specific delivery of tetracycline hydrochloride
CN105199039A (zh) 一种纳米银/石墨烯/聚合物复合抗菌乳液及其制备方法
Carrillo‐Rodríguez et al. Composite based on poly (acrylic acid‐co‐itaconic acid) hydrogel with antibacterial performance
Wang et al. Spray-dried magnetic chitosan/Fe 3 O 4/halloysite nanotubes/ofloxacin microspheres for sustained release of ofloxacin
Ma et al. Eco-friendly superabsorbent composite based on sodium alginate and organo-loess with high swelling properties
CN112795098A (zh) 抗菌塑料及其制备方法
CN111574803A (zh) 一种高阻隔抗菌性纳米银-石墨烯改性聚乳酸及其制法
Kazeminava et al. A facile approach to incorporate silver nanoparticles into solvent-free synthesized PEG-based hydrogels for antibacterial and catalytical applications
CN110354072B (zh) 一种近红外光响应的氧化石墨烯/凹凸棒石复合超分子水凝胶的制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 300350 District, Jinnan District, Tianjin Haihe Education Park, 135 beautiful road, Beiyang campus of Tianjin University

Applicant after: Tianjin University

Address before: 300350 Tianjin Nankai District Tianjin city Jinnan District Haihe River education garden Ya Guan Road 135 Tianjin University Beiyang garden campus

Applicant before: Tianjin University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant