CN107649183A - 一种基于石墨烯的光催化剂制备方法 - Google Patents

一种基于石墨烯的光催化剂制备方法 Download PDF

Info

Publication number
CN107649183A
CN107649183A CN201711040070.XA CN201711040070A CN107649183A CN 107649183 A CN107649183 A CN 107649183A CN 201711040070 A CN201711040070 A CN 201711040070A CN 107649183 A CN107649183 A CN 107649183A
Authority
CN
China
Prior art keywords
graphene
photochemical catalyst
tio2
graphene oxide
method based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711040070.XA
Other languages
English (en)
Inventor
朱洋
邵蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Xuyurui Material Technology Co Ltd
Original Assignee
Nanjing Xuyurui Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xuyurui Material Technology Co Ltd filed Critical Nanjing Xuyurui Material Technology Co Ltd
Priority to CN201711040070.XA priority Critical patent/CN107649183A/zh
Publication of CN107649183A publication Critical patent/CN107649183A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及石墨烯制造与石墨烯应用技术领域,具体为一种基于石墨烯的光催化剂制备方法。所述基于石墨烯的光催化剂制备包括以下步骤:s1、制备氧化石墨烯粉末;s2、制备氧化石墨烯‑TiO2复合粉末;s3、制备石墨烯‑TiO2‑酞菁铜复合粉末。本发明的石墨烯相互连通的孔结构能有效固定二氧化钛纳米颗粒和酞菁铜,极大增强了二氧化钛光催化剂与石墨烯纳米片的有效接触面积,同时也能抑制二氧化钛尺寸的增长,增强了光催化剂的吸附性能和光催化性能。传统的石墨烯‑TiO2光催化剂中引入在水中稳定性能良好的有机小分子染料酞菁铜,利用酞菁铜在可见光波段的光吸收作用,大大提高了光制氢过程中对太阳光的利用率,提高了催化剂的光催化性能。

Description

一种基于石墨烯的光催化剂制备方法
技术领域
本发明涉及石墨烯制造与石墨烯应用技术领域,具体为一种基于石墨烯的光催化剂制备方法。
背景技术
石墨烯 ( Graphene)由 Geim 等于 2004 年发现,是拥有 sp2 杂化轨道的二维碳原子晶体。石墨烯不仅有优异的电学性能 , 质量轻 , 导热性好 , 比表面积大,而且还具有一些独特的性能,如量子霍尔效应、量子隧穿效应等。 基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景。近期研究认为,石墨烯作为新型碳材料,与半导体材料复合可以有效提高半导体的光催化性能:石墨烯作为电子导线可以有效分离光生电子和空穴;作为催化剂载体,可以提高半导体的分散,增大复合物的比表面积;作为吸附剂,可以增加对污染物的吸附能力。
碳材料,尤其是碳纳米管的引入对改善复合材料光催化性能的原因有以下几个方面:1、碳材料较高的比表面积促进了复合材料中活性组分的分散程度,增加了有效反应活性位;2、碳材料较高的电子传输速率及碳材料/半导体界面异质结的形成可以促进光生电子空穴对的分离,提高光催化效率。3、碳材料以其较高的比表面积可以提高复合材料对污染物的吸附性能,从而增强污染物的光催化降解效率;4、碳材料的掺入可以作为半导体的光敏剂,使复合材料的费米能级向更正的方向偏移,进而增强了材料对可见光的吸收性能,提高了对光能的利用率。
酞菁铜一种常见而廉价的有机染料,其结构及其能级特点决定了它具有很多优良的功能特性。这些性质已经或将在很多领域中得以广泛的应用,如利用它的光电导性可以制备出性能优良的液晶光阀。利用气敏性可制备出灵敏的气体传感器。利用酞菁铜的光伏效应可制备出性能稳定、廉价的太阳能电池等等。酞菁铜作为有机物却很稳定,难溶或者不溶于很多有机溶剂,特别是其在太阳可见光波段具有良好的吸收,本发明旨在利用酞菁铜对在可见光波段的吸收作用,提高光催化剂的水制氢催化性能。
发明内容
本发明的目的在于提供石墨烯的光催化剂制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种基于石墨烯的光催化剂制备方法,其特征在于,所述基于石墨烯的光催化剂制备包括以下步骤:
s1、制备氧化石墨烯粉末;
s2、制备氧化石墨烯-TiO2复合粉末;
s3、制备石墨烯-TiO2-酞菁铜复合粉末。
进一步的,所述步骤s1氧化石墨烯粉末的制备包括步骤:
(1)将石墨粉与98%的0℃浓硫酸和硝酸溶液缓慢混合;
(2)将混合溶液搅拌均匀,并缓慢加入高锰酸钾,45℃水浴条件下继续搅拌反应24h;
(3)将上述混合溶液冷却至室温,在冰浴下缓慢加入适量30% 双氧水和超纯水;
(4) 将上述液体过滤,用10wt% 盐酸溶液和大量去离子水清洗至中性;
(5) 对液体超声处理60 min 后,在3000rpm下离心分离20 min,去除没有剥离的 氧化石墨烯;
(6) 取上清液,过滤后在 60℃下烘干20小时,得到氧化石墨烯粉末。
进一步的,所述步骤s2氧化石墨烯-TiO2复合粉末的制备包括步骤:
(1)将钛酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液,室温下搅拌混合溶液 24小时,过滤反应溶液,然后用乙醇反复洗涤,干燥后获得二氧化钛前驱体;
(2)将二氧化钛前驱体与步骤s1中制得的氧化石墨烯粉末充分混合,并研磨获得氧化石墨烯-TiO2复合粉末初品;
(3)将上述氧化石墨烯-TiO2复合粉末初品置于管式炉中,在350℃条件下高温烧结3h,研磨后即得到氧化石墨烯-TiO2复合粉末成品,所述高温烧结过程中,管式炉的升温方式设定为5℃每分钟;
进一步的,,所述步骤s3氧化石墨烯-TiO2-酞菁铜复合粉末的制备包括步骤:
(1)将步骤s2中制得的氧化石墨烯-TiO2复合粉末与酞菁铜粉末混合均匀,然后分散于氯化钠溶液中;
(2)在上述混合溶液中加入肼还原剂,在90℃条件下超声反应12h,最后将溶液离心,水洗,40-60℃真空干燥24h后得到石墨烯-TiO2-酞菁铜复合粉末,完成光催化剂的制备。
进一步的,所述步骤s1中,混合溶液加入双氧水和超纯水后的PH为9-10。
进一步的,所述步骤s2中十六胺、去离子水、氯化钾、无水乙醇 和钛酸异丙酯的摩尔比为 0.5:6:0.005:250:1。
进一步的,所述步骤s2中二氧化钛前驱体和氧化石墨烯混合比例为按照摩尔比为1:1。
进一步的,所述步骤s3中氯化钠溶液的浓度为1M。
与现有技术相比,本发明的有益效果是:(1)石墨烯相互连通的孔结构能有效固定二氧化钛纳米颗粒和酞菁铜,极大增强了二氧化钛光催化剂与石墨烯纳米片的有效接触面积,同时也能抑制二氧化钛尺寸的增长,增强了光催化剂的吸附性能和光催化性能。(2)本发明在传统的石墨烯-TiO2光催化剂中引入在水中稳定性能良好的有机小分子染料酞菁铜,利用酞菁铜在可见光波段的光吸收作用,大大提高了光制氢过程中对太阳光的利用率,提高了催化剂的光催化性能。(3)本发明使用的原材料成本低廉,适合于大规模的工业化生产。
附图说明
图1为本发明的基于石墨烯的光催化剂制备流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种基于石墨烯的光催化剂制备方法,其特征在于,所述基于石墨烯的光催化剂制备包括以下步骤:
s1、制备氧化石墨烯粉末:包括步骤,(1)将石墨粉与98%的0℃浓硫酸和硝酸溶液缓慢混合; (2)将混合溶液搅拌均匀,并缓慢加入高锰酸钾,45℃水浴条件下继续搅拌反应24h;(3)将上述混合溶液冷却至室温,在冰浴下缓慢加入适量30% 双氧水和超纯水,混合溶液加入双氧水和超纯水后的PH为9-10;(4) 将上述液体过滤,用10wt% 盐酸溶液和大量去离子水清洗至中性;(5) 对液体超声处理60 min 后,在3000rpm下离心分离20 min,去除没有剥离的氧化石墨烯; (6) 取上清液,过滤后在 60℃下烘干20小时,得到氧化石墨烯粉末。
s2、制备氧化石墨烯-TiO2复合粉末;包括步骤:(1)将钛酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液,室温下搅拌混合溶液 24小时,过滤反应溶液,然后用乙醇反复洗涤,干燥后获得二氧化钛前驱体,其中,十六胺、去离子水、氯化钾、无水乙醇 和钛酸异丙酯的摩尔比为 0.5:6:0.005:250:1;(2)将二氧化钛前驱体与步骤s1中制得的氧化石墨烯粉末充分混合,并研磨获得氧化石墨烯-TiO2复合粉末初品,其中,二氧化钛前驱体和氧化石墨烯混合比例为按照摩尔比为1:1;(3)将上述氧化石墨烯-TiO2复合粉末初品置于管式炉中,在350℃条件下高温烧结3h,研磨后即得到氧化石墨烯-TiO2复合粉末成品,所述高温烧结过程中,管式炉的升温方式设定为5℃每分钟;
s3、制备石墨烯-TiO2-酞菁铜复合粉末;包括步骤:(1)将步骤s2中制得的氧化石墨烯-TiO2复合粉末与酞菁铜粉末混合均匀,然后分散于氯化钠溶液中,其中,氯化钠溶液的浓度为1M; (2)在上述混合溶液中加入肼还原剂,在90℃条件下超声反应12h,最后将溶液离心,水洗,40-60℃真空干燥24h后得到石墨烯-TiO2-酞菁铜复合粉末,完成光催化剂的制备。
本发明的成功是基于以下几点; (1)石墨烯相互连通的孔结构能有效固定二氧化钛纳米颗粒和酞菁铜,极大增强了二氧化钛光催化剂与石墨烯纳米片的有效接触面积,同时也能抑制二氧化钛尺寸的增长,增强了光催化剂的吸附性能和光催化性能。(2)本发明在传统的石墨烯-TiO2光催化剂中引入在水中稳定性能良好的有机小分子染料酞菁铜,利用酞菁铜在可见光波段的光吸收作用,大大提高了光制氢过程中对太阳光的利用率,提高了催化剂的光催化性能。(3)本发明使用的原材料成本低廉,适合于大规模的工业化生产。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于石墨烯的光催化剂制备方法,其特征在于,所述基于石墨烯的光催化剂制备包括以下步骤:
s1、制备氧化石墨烯粉末;
s2、制备氧化石墨烯-TiO2复合粉末;
s3、制备石墨烯-TiO2-酞菁铜复合粉末。
2.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s1氧化石墨烯粉末的制备包括步骤:
(1)将石墨粉与98%的0℃浓硫酸和硝酸溶液缓慢混合;
(2)将混合溶液搅拌均匀,并缓慢加入高锰酸钾,45℃水浴条件下继续搅拌反应24h;
(3)将上述混合溶液冷却至室温,在冰浴下缓慢加入适量30% 双氧水和超纯水;
(4) 将上述液体过滤,用10wt% 盐酸溶液和大量去离子水清洗至中性;
(5) 对液体超声处理60 min 后,在3000rpm下离心分离20 min,去除没有剥离的 氧化石墨烯;
(6) 取上清液,过滤后在 60℃下烘干20小时,得到氧化石墨烯粉末。
3.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s2氧化石墨烯-TiO2复合粉末的制备包括步骤:
(1)将钛酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液,室温下搅拌混合溶液 24小时,过滤反应溶液,然后用乙醇反复洗涤,干燥后获得二氧化钛前驱体;
(2)将二氧化钛前驱体与步骤s1中制得的氧化石墨烯粉末充分混合,并研磨获得氧化石墨烯-TiO2复合粉末初品;
(3)将上述氧化石墨烯-TiO2复合粉末初品置于管式炉中,在350℃条件下高温烧结3h,研磨后即得到氧化石墨烯-TiO2复合粉末成品,所述高温烧结过程中,管式炉的升温方式设定为5℃每分钟。
4.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s3氧化石墨烯-TiO2-酞菁铜复合粉末的制备包括步骤:
(1)将步骤s2中制得的氧化石墨烯-TiO2复合粉末与酞菁铜粉末混合均匀,然后分散于氯化钠溶液中;
(2)在上述混合溶液中加入肼还原剂,在90℃条件下超声反应12h,最后将溶液离心,水洗,40-60℃真空干燥24h后得到石墨烯-TiO2-酞菁铜复合粉末,完成光催化剂的制备。
5.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s1中,混合溶液加入双氧水和超纯水后的PH为9-10。
6.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s2中十六胺、去离子水、氯化钾、无水乙醇 和钛酸异丙酯的摩尔比为 0.5:6:0.005:250:1。
7.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s2中二氧化钛前驱体和氧化石墨烯混合比例为按照摩尔比为1:1。
8.根据权利要求1所述的一种基于石墨烯的光催化剂制备方法,其特征在于,所述步骤s3中氯化钠溶液的浓度为1M。
CN201711040070.XA 2017-10-31 2017-10-31 一种基于石墨烯的光催化剂制备方法 Pending CN107649183A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711040070.XA CN107649183A (zh) 2017-10-31 2017-10-31 一种基于石墨烯的光催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711040070.XA CN107649183A (zh) 2017-10-31 2017-10-31 一种基于石墨烯的光催化剂制备方法

Publications (1)

Publication Number Publication Date
CN107649183A true CN107649183A (zh) 2018-02-02

Family

ID=61096005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711040070.XA Pending CN107649183A (zh) 2017-10-31 2017-10-31 一种基于石墨烯的光催化剂制备方法

Country Status (1)

Country Link
CN (1) CN107649183A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368964A (zh) * 2019-07-31 2019-10-25 安徽科浦环保科技有限公司 一种用于除tvoc的复合催化材料的制备方法
CN110676376A (zh) * 2019-08-27 2020-01-10 深圳大学 一种基于二维MXene材料的阻变存储器及制备方法
CN113477276A (zh) * 2021-06-29 2021-10-08 衡水学院 负载型光催化剂及其制备方法
CN113651356A (zh) * 2021-08-16 2021-11-16 电子科技大学 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN114950561A (zh) * 2022-04-11 2022-08-30 山东大学 一种co2光还原催化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492885A (zh) * 2016-11-15 2017-03-15 河海大学 一种GNs/CoPcS/TiO2光催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492885A (zh) * 2016-11-15 2017-03-15 河海大学 一种GNs/CoPcS/TiO2光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕晶: "敏化剂改性石墨烯/二氧化钛杂化材料的制备及其催化的光解水制氢", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368964A (zh) * 2019-07-31 2019-10-25 安徽科浦环保科技有限公司 一种用于除tvoc的复合催化材料的制备方法
CN110676376A (zh) * 2019-08-27 2020-01-10 深圳大学 一种基于二维MXene材料的阻变存储器及制备方法
CN113477276A (zh) * 2021-06-29 2021-10-08 衡水学院 负载型光催化剂及其制备方法
CN113477276B (zh) * 2021-06-29 2023-08-25 衡水学院 负载型光催化剂及其制备方法
CN113651356A (zh) * 2021-08-16 2021-11-16 电子科技大学 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN113651356B (zh) * 2021-08-16 2022-04-29 电子科技大学 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN114950561A (zh) * 2022-04-11 2022-08-30 山东大学 一种co2光还原催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN107649183A (zh) 一种基于石墨烯的光催化剂制备方法
Zhu et al. Construction of 2D S‐scheme heterojunction photocatalyst
Ge et al. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications
Wang et al. The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight
Zarrin et al. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants
Bai et al. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application
Rani et al. Sn doped α-Fe2O3 (Sn= 0, 10, 20, 30 wt%) photoanodes for photoelectrochemical water splitting applications
EP3617147B1 (en) Process for preparing titanic acid salt, titanic acid, and titanium oxide having controllable particle size and hierarchical structure
CN112521618B (zh) 一种铋基金属有机框架材料及其制备方法和应用
Xu et al. Facile construction of BiOBr/BiOCOOH pn heterojunction photocatalysts with improved visible-light-driven photocatalytic performance
CN103638922B (zh) 介孔三氧化钨/还原氧化石墨烯复合光催化剂的制备方法
Wang et al. Visible-light-driven double-shell SnIn4S8/TiO2 heterostructure with enhanced photocatalytic activity for MO removal and Cr (VI) cleanup
CN106944116A (zh) 氮化碳/二氧化钛纳米片阵列异质结光催化剂及制备方法
WO2021068570A1 (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
CN105502286B (zh) 一种多孔纳米NiFe2O4的制备方法
Pei et al. Enhancing visible-light degradation performance of g-C3N4 on organic pollutants by constructing heterojunctions via combining tubular g-C3N4 with Bi2O3 nanosheets
Wang et al. When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications
Truc et al. Novel overall photocatalytic water splitting of tantalum nitride sensitized/protected by conducting polymers
Heshmatpour et al. A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants
Mohamed et al. Facile synthesis of GO@ SnO2/TiO2 nanofibers and their behavior in photovoltaics
Tan et al. Ag3PO4/MXene-TiO2-T: As an all-solid Z-type photocatalytic system with stable and enhanced photocatalytic performance
Bao et al. Heterostructured WO3/RGO/protonated g-C3N4 three-layer nanosheets for enhanced visible-light photocatalytic activity
Shen et al. Unravelling the favorable photocatalytic effect of hydrogenation process on the novel g-C3N4-TiO2 catalysts for water purification
CN103721713B (zh) 一种高效降解染料的三相复合可见光催化剂
CN101319405A (zh) TiO2纳米管和/或TiO2纳米须的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180202

RJ01 Rejection of invention patent application after publication