CN107634734A - 声表面波谐振器、滤波器及其制备方法 - Google Patents

声表面波谐振器、滤波器及其制备方法 Download PDF

Info

Publication number
CN107634734A
CN107634734A CN201710893349.6A CN201710893349A CN107634734A CN 107634734 A CN107634734 A CN 107634734A CN 201710893349 A CN201710893349 A CN 201710893349A CN 107634734 A CN107634734 A CN 107634734A
Authority
CN
China
Prior art keywords
nitride film
film layer
interdigital electrode
monocrystalline nitride
saw resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710893349.6A
Other languages
English (en)
Inventor
艾玉杰
杨帅
张韵
孙莉莉
程哲
张连
贾丽芳
王军喜
李晋闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201710893349.6A priority Critical patent/CN107634734A/zh
Publication of CN107634734A publication Critical patent/CN107634734A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

声表面波谐振器、滤波器及其制备方法,其中声表面波谐振器自下而上包括:衬底层、叉指电极及单晶氮化物薄膜层,还包括介于叉指电极和单晶氮化物薄膜层之间的AlN成核层;该AlN成核层覆盖于叉指电极的上表面、侧面及叉指电极中各电极单元之间的间隔区域,该AlN成核层的边缘与衬底层的边缘平齐;单晶氮化物薄膜层的上表面与水平面平行。因此,本发明的谐振器结构,在叉指电极与单晶氮化物薄膜层之间形成有覆盖叉指电极的AlN成核层,一方面消除了叉指电极在高温形成单晶氮化物薄膜层的过程中,表面变粗糙和极易与氨气发生反应的问题;另一方面为后续其他材料层的高温生长提供了理想的模板,因此为研制单晶氮化物声表面波谐振器及滤波器奠定了基础。

Description

声表面波谐振器、滤波器及其制备方法
技术领域
本发明属于射频MEMS器件研究领域,更具体地涉及一种声表面波谐振器、滤波器及其制备方法。
背景技术
基于铌酸锂的声表面波(SAW)滤波器件已经在射频移动通讯设备的前端实现了大规模商业化应用。随着移动通讯技术的迅猛发展,通讯系统所需的滤波器的工作频率越来越高。SAW滤波器由多个SAW谐振器连接构成,因此SAW滤波器的工作频率由SAW谐振器决定。由于受限于铌酸锂材料的声速低(3400-4000m/s),目前基于铌酸锂的SAW谐振器的工作频率普遍在3GHz以下,无法满足现代移动通讯对高频滤波器的需求。在相同的器件参数下,提高压电材料的声速可有效提高器件的谐振频率。因此,基于高声速(5500-6200m/s)、低声学损耗、热稳定性高的AlN薄膜制备高频SAW谐振器成为目前的研究热点。
如图1所示,为现有的一种基于AlN材料的SAW谐振器结构100,该结构包括衬底101、衬底101上方的金属叉指电极102、以及覆盖在衬底101和金属叉指电极102上方的AlN压电薄膜103。AlN压电薄膜的结晶质量直接决定着A1N基射频谐振器的性能,晶体结晶质量越高、压电效应越强、声学传输损耗越低、则器件的品质因数和有效机电常数越大。
目前AlN薄膜的主流制备方法包括射频磁控溅射和金属有机化学气相沉积(MOCVD)两种技术。射频磁控溅射生长AlN薄膜的优势是生长温度低,一般在500℃以下,缺点是生长出的AlN薄膜一般为多晶材料,(0002)面X射线衍射(XRD)的摇摆曲线半高宽为2-5°之间。MOCVD生长的AlN薄膜为晶体质量很高的单晶材料,(0002)面XRD摇摆曲线范围一般在几十到几百弧秒(1°=3600弧秒)之间,但其缺点是生长温度极高,一般生长温度在1200℃以上。目前,已报道的AlN基SAW谐振器均采用射频磁控溅射技术制备的多晶AlN薄膜研制,AlN薄膜的质量成为限制器件性能提升的瓶颈问题。
发明内容
基于以上问题,本发明的主要目的在于提出一种声表面波谐振器、滤波器及其制备方法,用于解决以上技术问题的至少之一。
为了实现上述目的,作为本发明的一个方面,提出一种声表面波谐振器,自下而上包括:衬底层、叉指电极及单晶氮化物薄膜层,其还包括介于叉指电极和单晶氮化物薄膜层之间的AlN成核层;该AlN成核层覆盖于叉指电极的上表面、侧面及叉指电极中各电极单元之间的间隔区域,该AlN成核层的边缘与衬底层的边缘平齐;单晶氮化物薄膜层的上表面与水平面平行。
在本发明的一些实施例中,上述声表面波谐振器还包括:介于衬底层和叉指电极之间的另一单晶氮化物薄膜层;优选地,该另一单晶氮化物薄膜层的厚度为1nm~2μm。
在本发明的一些实施例中,上述AlN成核层的厚度为1nm~500nm;和/或单晶氮化物薄膜层的厚度为10nm~2μm。
在本发明的一些实施例中,上述衬底层的材质包括硅、蓝宝石、金刚石、石英和/或碳化硅;和/或叉指电极的材质为金属材料,包括铜、金、铁、铝、钛、铬、钼和/或钽;和/或单晶氮化物薄膜层和/或另一单晶氮化物薄膜层的材质包括GaN、AlN或AlxGa1-xN,其中0<x<1。
为了实现上述目的,作为本发明的另一个方面,提出一种声表面波谐振器的制备方法,包括以下步骤:步骤1、在衬底层上制备叉指电极;步骤2、在叉指电极上表面、侧面及叉指电极中各电极单元之间的间隔区域制备AlN成核层,且使该AlN成核层的边缘与衬底层的边缘平齐;步骤3、在AlN成核层上表面高温生长单晶氮化物薄膜层,且使得该单晶氮化物薄膜层的上表面与水平面平行,完成声表面波谐振器的制备。
在本发明的一些实施例中,在上述步骤1中,在衬底层上制备叉指电极之前,先在衬底层的上表面制备另一单晶氮化物薄膜层,则叉指电极制备于该另一单晶氮化物薄膜层的上表面;优选地,该另一单晶氮化物薄膜层的厚度为1nm~2μm。
在本发明的一些实施例中,上述步骤2中,通过射频磁控溅射技术制备所述AlN成核层;通过射频磁控溅射技术制备AlN成核层时的温度为25℃~700℃;制备得到的AlN成核层的厚度为1nm~500nm。
在本发明的一些实施例中,上述步骤3中,采用金属有机化合物化学气相沉积技术、氢化物气相外延技术或原子层沉积技术高温生长单晶氮化物薄膜层;制备单晶氮化物薄膜层的温度为700℃~1500℃;制备得到的单晶氮化物薄膜层的厚度为10nm~2μm。
在本发明的一些实施例中,上述单晶氮化物薄膜层和/或另一单晶氮化物薄膜层的材质包括GaN、AlN和/或AlxGal-xN,其中,0<x<1;和/或衬底层的材质包括:硅、蓝宝石、金刚石、石英和/或碳化硅;和/或叉指电极的材质为金属材料,包括铜、金、铁、铝、钛、铬、钼和/或钽。
为了实现上述目的,作为本发明的又一个方面,提出一种声表面波滤波器,包括多个声表面波谐振器,其中,至少一个声表面波谐振器采用如上所述的声表面波谐振器的制备方法制备得到。
本发明提出的声表面波谐振器、滤波器及其制备方法,具有以下有益效果:
1、本发明的谐振器结构,在叉指电极与单晶氮化物薄膜层之间形成有覆盖叉指电极的AlN成核层,一方面消除了叉指电极在高温形成单晶氮化物薄膜层的过程中,表面变粗糙和极易与氨气发生反应的问题;另一方面为后续其他材料层的高温生长提供了理想的模板,因此为研制单晶氮化物声表面波谐振器及滤波器奠定了基础;
2、在衬底层之间与叉指电极之间还设置有另一单晶氮化物薄膜层,从而进一步的提高声表面波器件的功率特性;
3、采用金属有机化合物化学气相沉积技术、氢化物气相外延技术或原子层沉积技术高温制备单晶氮化物薄膜层,相较于现有的射频磁控溅射技术,能够大幅度提高声表面波谐振器及滤波器的器件性能,且由于添加有AlN成核层,相较于现有的MOCVD形成单晶氮化物薄膜的制备方法,本发明的声表面波谐振器的制备工艺简单易行,制备得到的器件性能优良,在移动通讯和高温传感应用领域具有广阔的应用前景。
附图说明
图1是现有的AlN基声表面波谐振器的剖面结构示意图;
图2(a)是现有技术中,直接在Si衬底上的金属电极上,采用MOCVD技术生长的AlN薄膜(0002)面的XRD摇摆曲线;
图2(b)是采用本发明提出的制备方法制备得到的AlN薄膜(0002)面的XRD摇摆曲线;
图3是本发明一实施例提出的声表面波谐振器的剖面结构示意图;
图4(a)~图4(b)是图3中声表面波谐振器的制备方法中,各制备阶段得到的器件结构的剖面示意图;
图5是本发明一实施例提出的另一声表面波谐振器的剖面结构示意图;
图6(a)~图6(c)是图5中声表面波谐振器的制备方法中,各制备阶段得到的器件结构的剖面示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
如果采用金属有机化合物化学气相沉积(MOCVD)技术生长的AlN薄膜作为SAW谐振器的压电材料,会大幅度提升器件的性能。然而,采用MOCVD技术在叉指电极上制备AlN单晶材料极其困难,主要原因为:第一、MOCVD生长氮化物需要高达1200℃左右的高温,在高温下叉指电极易与MOCVD生长过程中所用的氨气发生反应;第二、MOCVD生长过程中的高温H2退火,易导致叉指电极表面变粗糙,因此,采用此方法难以制备出高结晶质量的氮化物单晶薄膜。
针对这个问题,本发明提出采用低温磁控溅射AlN成核层覆盖保护叉指电极,解决金属在高温MOCVD生长过程中遇到的难题,并通过实验结果验证了该技术方案的可行性。图2(a)为直接在Si衬底上的金属电极上,采用MOCVD生长的AlN薄膜(0002)面的XRD摇摆曲线,该曲线图中未发现衍射峰,表明在金属上直接高温MOCVD生长的AlN薄膜是非晶薄膜,晶体质量很差,因此直接在金属上高温MOCVD生长AlN单晶薄膜非常困难。图2(b)为采用本发明的技术方案,即先在金属电极上低温溅射AlN成核层,然后高温MOCVD生长单晶氮化物薄膜的方法,制备出的AlN薄膜(0002)面的XRD摇摆曲线,从图中可看出,其半高宽仅为0.39°,表明采用此技术可以制备出高结晶质量的AlN单晶薄膜。
因此,本发明针对单晶氮化物基SAW谐振器制备困难的问题,提出一种声表面波谐振器的制备方法,有望通过氮化物压电薄膜材料的改善大幅度提升SAW谐振器的性能,在移动通讯和高温传感应用领域具有重要的应用前景。
具体的,本发明提出一种声表面波谐振器,自下而上包括:衬底层、叉指电极及单晶氮化物薄膜层,其还包括介于叉指电极和单晶氮化物薄膜层之间的AlN成核层;该AlN成核层覆盖于叉指电极的上表面、侧面及叉指电极中各电极单元之间的间隔区域,该AlN成核层的边缘与衬底层的边缘平齐;单晶氮化物薄膜层的上表面与水平面平行。
在本发明的一些实施例中,上述声表面波谐振器还包括:介于衬底层和叉指电极之间的另一单晶氮化物薄膜层;优选地,该另一单晶氮化物薄膜层的厚度为1nm~2μm,从而能够进一步的提高声表面波器件的功率特性。
通过连接多个上述的声表面波谐振器,可构成声表面波滤波器,以应用于射频移动通讯设备的前端。
另,本发明还提出一种声表面波谐振器的制备方法,包括以下步骤:步骤1、在衬底层上制备叉指电极;步骤2、在叉指电极上表面、侧面及叉指电极中各电极单元之间的间隔区域制备AlN成核层,且使该AlN成核层的边缘与衬底层的边缘平齐;步骤3、在AlN成核层上表面高温生长单晶氮化物薄膜层,且使得该单晶氮化物薄膜层的上表面与水平面平行,完成声表面波谐振器的制备。
在本发明的一些实施例中,在上述步骤1中,在衬底层上制备叉指电极之前,先在衬底层的上表面制备另一单晶氮化物薄膜层,则叉指电极制备于该另一单晶氮化物薄膜层的上表面;优选地,该另一单晶氮化物薄膜层的厚度为1nm~2μm。
同样的,通过上述制备方法制备得到的多个声表面波谐振器互相连接可构成声表面波滤波器,以应用于射频移动通讯设备的前端。
因此,由于在叉指电极与单晶氮化物薄膜层之间形成有覆盖叉指电极的AlN成核层,一方面消除了叉指电极在高温形成单晶氮化物薄膜层的过程中,表面变粗糙和极易与氨气发生反应的问题;另一方面为后续其他材料层的高温生长提供了理想的模板,因此为研制单晶氮化物声表面波谐振器及滤波器奠定了基础。
再者,通过在衬底层之间与叉指电极之间设置另一单晶氮化物薄膜层,能够进一步的提升声表面波器件的功率特性。
在本发明的一些实施例中,上述AlN成核层的厚度为1nm~500nm,其通过射频磁控溅射技术制备,制备过程中保持温度问室温(25℃)至700℃,从而保证磁控溅射过程中电极表面平整,不发生团聚。
在本发明的一些实施例中,上述单晶氮化物薄膜层的厚度为10nm~2μm,其与另一单晶氮化物薄膜层的材质包括GaN、AlN和/或AlxGa1-xN,其中,0<x<1;优选地,该单晶氮化物薄膜层的材质为AlN。
在本发明的一些实施例中,采用金属有机化合物化学气相沉积技术、氢化物气相外延技术或原子层沉积技术高温制备所述单晶氮化物薄膜层;由于为高温制备,因此相较于现有的射频磁控溅射技术,可改善AlN薄膜的晶体质量,能够大幅度提高声表面波谐振器及滤波器的器件性能,且由于添加有AlN成核层,相较于现有的MOCVD形成单晶氮化物薄膜的制备方法,本发明的声表面波谐振器的制备工艺简单易行,制备得到的器件性能优良。其中,采用MOCVD技术生长该单晶氮化物薄膜层时,生长环境的温度为700℃~1500℃。
在本发明的一些实施例中,衬底层的材质包括:硅、蓝宝石、金刚石、石英和/或碳化硅;和/或叉指电极的材质为金属材料,包括铜、金、铁、铝、钛、铬、钼和/或钽;需要说明的是,衬底层和叉指电极的材质并不仅限于此处列举的材料,凡是能够实现各层功能的材料均属于本发明的保护范围。
在本发明的一些实施例中,叉指电极采用磁控溅射技术或电子束蒸发技术,并结合光刻、刻蚀及剥离等工艺制备。
在本发明的一些实施例中,上述另一单晶氮化物薄膜层的制备方法与所述单晶氮化物薄膜层的制备方法类似,由于其形成于叉指电极之前,因此,无需担心高温生长会对器件性能带来不利的影响。
以下通过具体实施例,对本发明提出的声表面波谐振器、滤波器及其制备方法进行详细描述。
实施例1
如图3所示,本实施例提出一种声表面波谐振器200,自下而上包括:衬底层201、叉指电极202及单晶氮化物薄膜层204,其还包括介于叉指电极和单晶氮化物薄膜层之间的AlN成核层203;该AlN成核层203覆盖于叉指电极202的上表面、侧面及叉指电极202中各电极单元之间的间隔区域,该AlN成核层202的边缘与衬底层201的边缘平齐;单晶氮化物薄膜层204的上表面与水平面平行。
本实施例还提出一种如图3所示的声表面波谐振器200的制备方法,以下结合附图3、附图4(a)~图4(b),对该制备方法进行详细描述,具体包括以下步骤:
步骤1、在衬底层201上制备叉指电极202;
具体的,采用磁控溅射技术或电子束蒸发技术,并结合光刻、刻蚀、剥离等工艺,在衬底201上方制备金属叉指电极202,得到如图4(a)所示的器件结构;其中,衬底201可以为硅、蓝宝石、金刚石、石英和碳化硅等各种衬底,叉指电极202的材料可以为铜、金、铁、铝、钛、铬、钼、钽等各种金属材料。
步骤2、在叉指电极202上表面、侧面及叉指电极202中各电极单元之间的间隔区域制备AlN成核层203,且使AlN成核层203的边缘与衬底层201的边缘平齐;
具体的,在衬底201除叉指电极202所在区域外的其他区域、叉指电极202的上表面和侧面,通过射频磁控溅射技术制备AlN成核层203,得到如图4(b)所示的器件结构,制备得到的AlN成核层203的厚度为1nm~500nm,磁控溅射时的温度为室温(25℃)至700℃。
步骤3、在AlN成核层203上表面高温生长单晶氮化物薄膜层204,且使得该单晶氮化物薄膜层204的上表面与水平面平行,完成声表面波谐振器200的制备。
具体的,在AlN成核层203上表面,采用MOCVD技术制备高结晶质量的单晶氮化物薄膜层204,完成器件制备,得到如图3所示的声表面波谐振器;其中,MOCVD技术制备的单晶氮化物薄膜层204的材质可以为GaN、AlN或AlxGa1-xN(0<x<1)薄膜;该单晶氮化物薄膜层204的厚度为10nm~2μm,MOCVD生长单晶氮化物薄膜层204的过程中,温度为700℃~1500℃。
实施例2
如图5所示,本实施例提出一种声表面波谐振器300,其与实施例1中的声表面波谐振器的区别仅在于,在衬底层301和叉指电极302之间还设置有另一单晶氮化物薄膜层305,该另一单晶氮化物薄膜层的厚度为1nm~2μm。
同样的,本实施例还提出一种如图5所示的声表面波谐振器300的制备方法,以下结合附图5、附图6(a)~图6(c),对该制备方法进行详细描述,具体包括以下步骤:
步骤1、在衬底层301上依次制备另一单晶氮化物薄膜层305和叉指电极202;具体包括以下步骤:
步骤11、在衬底301上表面采用MOCVD技术生长高结晶质量的单晶氮化物薄膜305,得到如图6(a)所示的器件结构;其中,衬底301可以为硅、蓝宝石、金刚石、石英、和碳化硅等各种衬底;单晶氮化物薄膜305的厚度为1nm~2μm,MOCVD生长单晶氮化物薄膜305的温度为700℃~1500℃。
步骤12、在高结晶质量的单晶氮化物薄膜305上表面,采用磁控溅射技术或电子束蒸发技术,并结合光刻、刻蚀、剥离等工艺制备叉指电极302,得到如图6(b)所示的器件结构;其中叉指电极203的材质可以为铜、金、铁、铝、钛、铬、钼、钽等各种金属材料。
步骤2、在叉指电极302上表面、侧面及叉指电极302中各电极单元之间的间隔区域制备AlN成核层303,该AlN成核层303的边缘与衬底层301的边缘平齐;
具体的,在高结晶质量的单晶氮化物薄膜305上表面除叉指电极302所在区域外的其他区域,以及叉指电极302的上表面、侧面,通过射频磁控溅射技术制备AlN成核层303,得到如图6(c)所示的器件结构;其中,AlN成核层3的厚度为1nm~500nm,磁控溅射过程中温度环境为室温(25℃)至700℃。
步骤3、在AlN成核层303上表面高温生长单晶氮化物薄膜层304,且使得该单晶氮化物薄膜层304的上表面与水平面平行,完成声表面波谐振器300的制备。
具体的,在AlN成核层303上方,采用MOCVD技术制备高结晶质量的单晶氮化物薄膜层304,完成器件制备,得到如图5所示的声表面波谐振器;其中,MOCVD技术制备的单晶氮化物薄膜层304可以为GaN、AlN或AlxGal-xN(0<x<1)薄膜;该单晶氮化物薄膜304的厚度为10nm~2μm,MOCVD生长的温度范围为700℃~1500℃。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种声表面波谐振器,自下而上包括:衬底层、叉指电极及单晶氮化物薄膜层,其特征在于:
还包括介于所述叉指电极和单晶氮化物薄膜层之间的AlN成核层;该AlN成核层覆盖于所述叉指电极的上表面、侧面及叉指电极中各电极单元之间的间隔区域,该AlN成核层的边缘与所述衬底层的边缘平齐;
所述单晶氮化物薄膜层的上表面与水平面平行。
2.根据权利要求1所述的声表面波谐振器,还包括:
介于所述衬底层和叉指电极之间的另一单晶氮化物薄膜层;
优选地,该另一单晶氮化物薄膜层的厚度为1nm~2μm。
3.根据权利要求1或2所述的声表面波谐振器,其中:
所述AlN成核层的厚度为1nm~500nm;和/或
所述单晶氮化物薄膜层的厚度为10nm~2μm。
4.根据权利要求1或2所述的声表面波谐振器,其中:
所述衬底层的材质包括硅、蓝宝石、金刚石、石英和/或碳化硅;和/或
所述叉指电极的材质为金属材料,包括铜、金、铁、铝、钛、铬、钼和/或钽;和/或
所述单晶氮化物薄膜层和/或另一单晶氮化物薄膜层的材质包括GaN、AlN或AlxGa1-xN,其中0<x<1。
5.一种声表面波谐振器的制备方法,包括以下步骤:
步骤1、在衬底层上制备叉指电极;
步骤2、在叉指电极上表面、侧面及叉指电极中各电极单元之间的间隔区域制备AlN成核层,且使所述AlN成核层的边缘与所述衬底层的边缘平齐;
步骤3、在所述AlN成核层上表面高温生长单晶氮化物薄膜层,且使得该单晶氮化物薄膜层的上表面与水平面平行,完成所述声表面波谐振器的制备。
6.根据权利要求5所述的声表面波谐振器的制备方法,其中:
在所述步骤1中,在衬底层上制备叉指电极之前,先在所述衬底层的上表面制备另一单晶氮化物薄膜层,则叉指电极制备于该另一单晶氮化物薄膜层的上表面;
优选地,该另一单晶氮化物薄膜层的厚度为1nm~2μm。
7.根据权利要求5或6中任一项所述的声表面波谐振器的制备方法,其中:
步骤2中,通过射频磁控溅射技术制备所述AlN成核层;
通过射频磁控溅射技术制备所述AlN成核层时的温度为25℃~700℃;
制备得到的所述AlN成核层的厚度为1nm~500nm。
8.根据权利要求5或6中任一项所述的声表面波谐振器的制备方法,其中:
步骤3中,采用金属有机化合物化学气相沉积技术、氢化物气相外延技术或原子层沉积技术高温生长所述单晶氮化物薄膜层;
制备所述单晶氮化物薄膜层的温度为700℃~1500℃;
制备得到的所述单晶氮化物薄膜层的厚度为10nm~2μm。
9.根据权利要求5或6所述的声表面波谐振器的制备方法,其中:
所述单晶氮化物薄膜层和/或另一单晶氮化物薄膜层的材质包括GaN、AlN和/或AlxGa1- xN,其中,0<x<1;和/或
所述衬底层的材质包括:硅、蓝宝石、金刚石、石英和/或碳化硅;和/或
所述叉指电极的材质为金属材料,包括铜、金、铁、铝、钛、铬、钼和/或钽。
10.一种声表面波滤波器,包括多个声表面波谐振器,其中,至少一个所述声表面波谐振器采用如权利要求5至9中任一项所述的声表面波谐振器的制备方法制备得到。
CN201710893349.6A 2017-09-27 2017-09-27 声表面波谐振器、滤波器及其制备方法 Pending CN107634734A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710893349.6A CN107634734A (zh) 2017-09-27 2017-09-27 声表面波谐振器、滤波器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710893349.6A CN107634734A (zh) 2017-09-27 2017-09-27 声表面波谐振器、滤波器及其制备方法

Publications (1)

Publication Number Publication Date
CN107634734A true CN107634734A (zh) 2018-01-26

Family

ID=61104200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710893349.6A Pending CN107634734A (zh) 2017-09-27 2017-09-27 声表面波谐振器、滤波器及其制备方法

Country Status (1)

Country Link
CN (1) CN107634734A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217841A (zh) * 2018-11-27 2019-01-15 杭州左蓝微电子技术有限公司 一种基于声表面波和空腔型薄膜体声波组合谐振器
CN111355459A (zh) * 2020-03-26 2020-06-30 中国科学院半导体研究所 基于电化学腐蚀的mems谐振器频率修调方法
CN111934644A (zh) * 2020-07-31 2020-11-13 杭州见闻录科技有限公司 叉指电极结构及其制造方法和具有该结构的声表面波器件
CN112038217A (zh) * 2020-09-11 2020-12-04 广东广纳芯科技有限公司 AlN单晶薄膜生长方法及具有该薄膜的声表面波谐振器
CN112853318A (zh) * 2021-01-08 2021-05-28 复旦大学 一种利用ALD生长籽晶层的高结晶AlN薄膜制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257940A (zh) * 1999-12-24 2000-06-28 中国科学院上海冶金研究所 一种在高声速材料衬底上生长氮化铝压电薄膜的方法
JP2004032276A (ja) * 2002-06-25 2004-01-29 Toyo Commun Equip Co Ltd Sawデバイスとその周波数調整方法
WO2013125371A1 (ja) * 2012-02-20 2013-08-29 株式会社村田製作所 圧電バルク弾性波素子の製造方法及び圧電バルク弾性波素子
CN104980117A (zh) * 2015-06-15 2015-10-14 电子科技大学 一种耐高温的柔性声表面波器件及其制造方法
CN106341095A (zh) * 2016-08-31 2017-01-18 中国科学院半导体研究所 金属上单晶氮化物薄膜制备方法及体声波谐振器
CN107083539A (zh) * 2017-04-13 2017-08-22 北京大学 一种AlN外延薄膜制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257940A (zh) * 1999-12-24 2000-06-28 中国科学院上海冶金研究所 一种在高声速材料衬底上生长氮化铝压电薄膜的方法
JP2004032276A (ja) * 2002-06-25 2004-01-29 Toyo Commun Equip Co Ltd Sawデバイスとその周波数調整方法
WO2013125371A1 (ja) * 2012-02-20 2013-08-29 株式会社村田製作所 圧電バルク弾性波素子の製造方法及び圧電バルク弾性波素子
CN104980117A (zh) * 2015-06-15 2015-10-14 电子科技大学 一种耐高温的柔性声表面波器件及其制造方法
CN106341095A (zh) * 2016-08-31 2017-01-18 中国科学院半导体研究所 金属上单晶氮化物薄膜制备方法及体声波谐振器
CN107083539A (zh) * 2017-04-13 2017-08-22 北京大学 一种AlN外延薄膜制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈鹏,张万里,彭斌,李川,舒琳,王瑜: "高阶兰姆波MEMS声表面波谐振器仿真研究", 《压电与声光》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217841A (zh) * 2018-11-27 2019-01-15 杭州左蓝微电子技术有限公司 一种基于声表面波和空腔型薄膜体声波组合谐振器
CN109217841B (zh) * 2018-11-27 2024-03-01 杭州左蓝微电子技术有限公司 一种基于声表面波和空腔型薄膜体声波组合谐振器
CN111355459A (zh) * 2020-03-26 2020-06-30 中国科学院半导体研究所 基于电化学腐蚀的mems谐振器频率修调方法
CN111355459B (zh) * 2020-03-26 2023-06-20 中国科学院半导体研究所 基于电化学腐蚀的mems谐振器频率修调方法
CN111934644A (zh) * 2020-07-31 2020-11-13 杭州见闻录科技有限公司 叉指电极结构及其制造方法和具有该结构的声表面波器件
CN112038217A (zh) * 2020-09-11 2020-12-04 广东广纳芯科技有限公司 AlN单晶薄膜生长方法及具有该薄膜的声表面波谐振器
CN112038217B (zh) * 2020-09-11 2021-07-16 广东广纳芯科技有限公司 AlN单晶薄膜生长方法及具有该薄膜的声表面波谐振器
CN112853318A (zh) * 2021-01-08 2021-05-28 复旦大学 一种利用ALD生长籽晶层的高结晶AlN薄膜制备方法

Similar Documents

Publication Publication Date Title
CN107634734A (zh) 声表面波谐振器、滤波器及其制备方法
CN109309483B (zh) 一种支撑型薄膜体声波谐振器的制备方法
CN109560785B (zh) 兰姆波谐振器及其制备方法
US11949400B2 (en) Multiple layer system, method of manufacture and saw device formed on the multiple layer system
CN1094524C (zh) 一种在高声速材料衬底上生长氮化铝压电薄膜的方法
CN111262543A (zh) 一种钪掺杂氮化铝兰姆波谐振器与制备方法
CN110784188B (zh) 谐振器及其制备方法
Yi et al. High-quality film bulk acoustic resonators fabricated on AlN films grown by a new two-step method
CN113285014A (zh) 单晶掺杂薄膜、声波谐振器用压电薄膜及其制备方法
CN111599915A (zh) 一种基于种子层结构的高性能氮化铝钪的制备方法及其产品
CN111654258B (zh) 薄膜体声波谐振器制作方法、薄膜体声波谐振器及滤波器
CN106341095B (zh) 金属上单晶氮化物薄膜制备方法及体声波谐振器
CN109560784B (zh) 兰姆波谐振器及其制备方法
CN107508571A (zh) 一种压电谐振器的制备方法和压电谐振器
CN114855280A (zh) 一种在硅上制备高质量无裂纹氮化铝薄膜的方法及其应用
CN108111142B (zh) 一种基于碳化硅衬底/氧化锌或掺杂氧化锌薄膜的声表面波器件及其制备方法
CN212163290U (zh) 一种钪掺杂氮化铝兰姆波谐振器
US20220385267A1 (en) Surface acoustic wave device with high electromechanical coupling coefficient based on double-layer electrodes and preparation method thereof
CN107425821B (zh) 一种用于声波器件的低应力状态单晶AlN及其制备与应用
CN111540710B (zh) 一种高导热氮化镓高功率hemt器件的制备方法
CN110504937B (zh) 一种薄膜体声波谐振器结构及其制备方法
WO2022053038A1 (zh) AlN单晶薄膜生长方法及具有该薄膜的声表面波谐振器
CN207166465U (zh) 一种压电谐振器
CN111640857A (zh) 氧化镓在压电材料上的应用及压电薄膜、压电器件
KR102135522B1 (ko) 압전 공진기의 제조방법 및 압전 공진기

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180126

WD01 Invention patent application deemed withdrawn after publication