CN107615447B - 具有陷阱富集区域的氮化镓设备 - Google Patents

具有陷阱富集区域的氮化镓设备 Download PDF

Info

Publication number
CN107615447B
CN107615447B CN201680031229.9A CN201680031229A CN107615447B CN 107615447 B CN107615447 B CN 107615447B CN 201680031229 A CN201680031229 A CN 201680031229A CN 107615447 B CN107615447 B CN 107615447B
Authority
CN
China
Prior art keywords
silicon substrate
electronic device
layer
gan
trap region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680031229.9A
Other languages
English (en)
Other versions
CN107615447A (zh
Inventor
S·德立瓦拉
J·菲奥里扎
陈东贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of CN107615447A publication Critical patent/CN107615447A/zh
Application granted granted Critical
Publication of CN107615447B publication Critical patent/CN107615447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种方法,将高电阻率硅基板和氮化镓层之间的高导电率区域冷熔,以形成将电荷载体基本上固定在该区域中的陷阱富集区域。这样的过程应该基本上减轻该区域对至少部分由氮化镓层形成的电路的寄生影响。

Description

具有陷阱富集区域的氮化镓设备
优先权
本PCT申请要求2015年5月29日提交的美国临时申请No.62/168,473的优先权,其全部内容通过引用并入本文。
技术领域
本发明一般涉及氮化镓电子装置,更具体地说,本发明涉及形成具有减轻的寄生效应的氮化镓电子装置。
背景技术
由在高电阻率硅基板上外延生长的氮化镓层形成的电子装置在氮化镓/硅界面上自然形成高导电性层。当氮化镓或氮化铝层外延生长时,高温施加到硅上。结果,外延生长的层可以扩散到硅中,从而掺杂硅,导致硅的电阻率降低。例如,如图1所示,在硅基板上生长AlGaN超晶格或缓变缓冲层的过程中,Al和Ga可以作为形成掺杂Si区域的p型掺杂物。1电阻率的降低是由两种材料之间的边界处出现的自由电荷引起的。本领域的技术人员经常将该高导电率层称为“反转层”。充当导体的反型层与氮化镓层的电路不希望地电磁耦合,有效地在系统中形成功率损耗和噪声的重要来源。
Figure DA00014862355150856
寄生传导层由称为R缓冲的电阻表示,并且R缓冲的值取决于Si基板的深度和掺杂浓度。另外,在GaN、缓冲和Si层之间可以看到电容耦合。
因此这种电子装置的射频性能通常由反型层的性质决定。具体而言,反转层可以通过电容耦合到氮化镓层中的电路来在某些RF频率处有效地短路。
发明内容
依照本发明的一个实施方案,描述了一种在非常薄的层中破坏边界处的硅的晶格结构而不影响任何其他位置处的晶格的方法。众所周知,晶格的无序化会产生陷阱,阻止电荷自由移动并破坏反转层。但是这通常要求晶格非常接近熔化温度,这会完全改变所有其他层的性质。本文提供了对高电阻率硅基板和氮化镓层之间的高导电性边界区域进行冷熔以形成陷阱富集区域的方法的描述,所述陷阱富集区域基本上不固定该区域中的电荷载体,该区域由于晶格结构中的键断裂而被隔离。这样的过程应该基本上减轻该区域对至少部分由氮化镓层形成的电路的寄生影响。或者,GaN层可以更广泛地为III-N层,诸如GaN、AlN和InN。
为此,一些实施方案包括电子装置,具有硅基板和形成电路器件的GaN层。基板和GaN层一起形成界面。装置还具有从所述界面延伸的陷阱区域。陷阱区域被配置成在界面处和界面附近基本上固定电荷载体。
装置还可具有GaN层和硅基板之间的缓冲层以促进晶格匹配。该缓冲层可使用超过1000摄氏度的高温外延生长。缓冲层可以由氮化铝(AlN)形成。其他缓冲层也可以在硅基板上生长,并且外延生长过程可以导致形成反转层。例如,铝、镓和氮的不同组合可以被用来形成缓冲层。氮化铝可以扩散和掺杂硅的薄层,从而降低该层中硅的电阻率(形成反转层)并增加导电性。形成缓冲层的其他方式可以被包括在本发明的实施例中,包括形成叠层缓冲层,例如多层AlN和GaN的超晶格叠层。
另外,陷阱区域可延伸到反转层以外的硅基板中。而且,在本发明的某些实施方案中,硅基板可以由高电阻率硅形成。
在其他实施方案中,通过下列步骤形成电子装置的方法:在硅基板上形成缓冲,在缓冲和硅基板上(外延)生长GaN层,和在GaN和所述硅基板之间形成陷阱区域。陷阱区域延伸到所述硅基板中。
该方法优选通过使用激光冷熔所述硅基板的一部分形成陷阱区域。例如,该方法可以使用具有不大于约20皮秒的脉冲宽度的短激光脉冲。这样的激光脉冲可以在任何波长产生,但是为了说明的目的,我们选择了GaN层是透明的波长,但是下面的硅基板是强烈吸收的。因此,波长必须大于约400纳米。在380纳米以下,GaN变得强烈吸收,并且激光必须将其大部分能量沉积在硅-GaN界面而不是GaN中。对于激光在硅中具有强吸收也是理想的,因此接近500nm的激光波长是优选的。另外,以类似于上述实施方案的方式,硅基板可以包括高电阻率硅晶片。
附图说明
本领域的技术人员应该从下面的“说明性实施例的描述”中更充分地理解本发明的各种实施例的优点,这些实施例参考下面概述的附图进行讨论。
图1示出其中形成反转层而创建寄生电容耦合的示例性GaN装置;
图2A示意性示出具有应用飞秒激光器的反转层的GaN装置的剖视图;
图2B示意性示出具有应用飞秒激光器的反转层和缓冲层的GaN装置的剖视图;
图3是描述在本发明的一个实施方案中用于创建陷阱区域以增加硅层的电阻率的步骤的流程图;
图4是描述可以通过将激光重复地施加到硅基板的顶表面的不同区域来形成陷阱区的流程图;图5和6示意性示出说明根据本发明的各种实施方案形成陷阱区的一种方法的图;
图5是示出在吸收深度与电子密度之间的关系的图;
图6是示出在反射率和电子密度之间的关系的图;和
图7是显示测试结果的图,其中当暴露于适当功率级的飞秒激光器时硅的电阻率增加。
具体实施方式
在示意性实施方案中,氮化镓(“GaN”)电子装置形成陷阱区域以大幅度捕获在氮化镓层/缓冲层及其下面的硅基板(“GaN/Si界面”)的界面处形成的电荷载体。该陷阱区域可以延伸到硅基板中,基本上将电荷载体固定在其所包围的区域中。说明性实施例的细节在下面讨论。
GaN装置的RF性能通常由在GaN/Si界面处形成的反转层决定。如上所述,反转层通常具有自由电荷载体,由于其对器件的寄生影响,可以降低器件的信噪比和/或器件的功率效率。反转层可以形成电容器的一部分,其中反转层作为第一个板,由缓冲层与GaN层分开,作为靠近缓冲层的第二个板。鉴于电容性电抗是频率的功能,射频和更高信号的性能可以通过电容耦合来减小。如果形成富陷阱层/区域,则如果反转层被破坏/消除或者基本减轻,则RF性能可以显着提高。这可以通过添加定义陷阱丰富区域/区域的高度重组中心来完成。这些重组中心是这样的,即少数载流子被捕获,然后再与被捕获的多数载流子(即电子)重新结合。
因此,硅基板上的GaN装置可以扩展到60GHz或更高的功率和RF电子器件。一些实施例也适用于传统的RF SOI晶片制造以避免多晶硅沉积的步骤。
图2A示出了具有形成在硅基板118上的GaN层105的GaN装置100的示意性剖面图。具有较薄的反转层/区域110(即,在反转层被处理之前,如下所述)的GaN装置,示例性实施例在硅界面上的GaN上用一个或多个短激光脉冲120(例如,脉宽<20皮秒)“冷”熔化薄反转区域,从而形成基本惰性的陷阱区域(也被称为“陷阱富集区域”)130。其中,该陷阱区域可以封装反转区域,或者仅覆盖其顶面(从图中的GaN层的角度)。
图2A还示意性地示出了针对该区域的来自绿色飞秒激光器120的波长为约500nm的光束。更具体地,可以通过在400nm以上的波长处透明的GaN材料照射薄的硅界面层来完成该过程。硅的晶格温度因此上升<1K,然而,晶格变得无序,并且通过将价带电子泵送到导带的高水平增加复合速率。这样可以防止反转层的形成,从而使基板继续作为高阻基板。
整个过程可以在半导体制造设备接收用于处理的GaN/Si晶片之前进行。换句话说,该工艺可以简单地形成具有高电阻率硅基板、GaN层、两层之间的缓冲层的晶片(在图2B中未示出,图2B中的115,例如为了补偿应力、材料孤岛、以及两层之间的其他问题,例如晶格失配)、陷阱区域以及其他被认为是给定应用所必需的层。半导体制造设施可以根据需要形成电路。
成核或缓冲层可以以本领域普通技术人员已知的许多不同方式形成。例如,AlN可以在硅基板上外延生长。在其他实施例中,使用多个缓冲层。例如,可以在硅基板上生长具有超晶格的GaN/AlN。用于生长缓冲液的其它缓冲液和技术在本领域中是众所周知的,诸如在Nakamura的““GaN Growth using GaN Buffer Layer”,Journal of Applied Physics,第30卷,第2部分,第10A号(Japanese Journal of Applied Physics1991);Hagemann等人的“Growth of GaN epilayers on Si(111)substrates using multiple bufferlayers”,Mat.Res Soc.Symp.Proc.Vol.693(Materials Research Society 2002),其全部内容在此引入作为参考。
图3是描述在本发明的一个实施例中用于创建陷阱区域以增加硅层的电阻率的步骤的流程图。首先提供硅晶片。使用本领域普通技术人员已知的技术,在硅层310的顶表面上外延生长缓冲层。该工艺需要将高温施加到缓冲层,这会导致电子扩散到形成反转层的硅的上表面中(“掺杂区/层”)。在缓冲层之上,外延生长GaN层320。为了减轻在硅层上和内部形成的反转层,在GaN层和硅基板之间形成陷阱区域。陷阱区域可以延伸到硅基板的上表面之外的硅基板中。陷阱区是通过GaN和缓冲层施加适当频率和功率水平的激光而形成的。GaN和缓冲层看起来对于激光是透明的,因此激光的能量直到硅基板才聚焦。如所讨论的那样,激光执行冷熔,分解硅的晶格结构,使得任何高能粒子被俘获在该区域内,从而增加了硅的电阻。
图4是说明可以通过将激光反复施加到硅基板的顶表面的不同区域来形成陷阱区域的流程图。如图3所示,在硅基板的第一表面上形成缓冲层410。在缓冲层和硅基板上生长GaN层,从而形成反转层420。然后将激光脉冲施加到硅基板的第一表面的区域上的反转层430。重复该过程,如440所示,直到沿着缓冲硅边界形成的所有反转层已经改变为陷阱区域。
以下描述说明性实施例使用的“冷熔”的基本物理。然而,应该注意的是,这样的实施例仅用于示例性目的,因此,本领域技术人员可以使用其他技术。
如所指出的,说明性实施例通过有效地“熔化”硅而没有晶格加热来形成陷阱区域。发生这种情况的原因是材料中的光吸收是通过将电子从低能态-价带跃迁到高能态导带来实现的。对于一个分子来说,晶体只是一个巨大的分子,促进到更高的能量状态往往是促进反键轨道,这通常会导致单个分子的原子增加它们之间的平衡距离,如果它们不游离。如果价带中的所有电子突然升高到导带中的高点,则每个硅原子突然自由地改变其平衡晶格位置。这些电子在约1-2皮秒内弛豫到价带的底部,并且处于不同平衡位置的倾向消失。因此,说明性实施例可以通过简单地泵送大部分价带电子而将原子从其平衡晶格位置移动。请注意,位置的变化主要是由于激光激发时原子中已经存在的动能。
在Debye温度以上的晶格振动的典型的振动动能是:
Figure BDA0001486235510000061
这样在室温下可以达到750米/秒。本领域技术人员知道这比材料中的声速小。因此,在1皮秒内,原子可能有更多时间自由移动,只是在激光泵浦之后-原子可以移动多达750微米或
Figure BDA0001486235510000062
的距离。请注意,硅的晶格常数是
Figure BDA0001486235510000063
因此,本领域的技术人员可以基于Lindemann的熔化标准有效地“熔化”硅,该熔融标准规定当原子从晶格位置移位约0.2-0.4的晶格位置时,原子从其晶格位置移位。
请注意,与加热晶格所需的能量相比,泵入电子的能量非常小,这是因为晶格具有非常大的比热。通过这个理论背景,现在可以估计实验的激光积分通量。
硅具有密度n=5*1022atoms/cc。
说明性实施例使用绿色530nm飞秒激光器。绿色波长的吸收深度约为0.9微米。因此,为了每个硅至少抽出一个电子到导带-并且有4个价带电子/Si-一个熟练的需要:
Figure BDA0001486235510000071
说明性实施例利用了只吸收厚度为δ/10的硅中的顶部薄层的事实,因此这样的实施例可以以恒定吸收近似指数衰减。当激光被吸收时,自由电子密度上升,硅的表面开始看起来像金属的光。这将减少吸收深度并增加自由载流子的吸收。自由电子从Drude理论的导电性是
Figure BDA0001486235510000072
根据上述等式,本领域技术人员可以将预期的吸收深度和反射率绘制为自由载流子密度的函数。这由图5和图6的曲线表示。图5是显示吸收深度和电子密度之间关系的图。图6是显示反射率和电子密度之间关系的图。从图5和图6的两个曲线中,约1020/cc的吸收深度小于0.5微米处的体吸收深度,激光不能深入到基板中。同时,电子等离子体变得高度反射,变成不良吸收体。可以模拟复杂的时域动力学,以理解来自给定脉冲宽度的激光脉冲的激发态电子的动态行为和实际数量。此外,一些自由电子的加速可以通过Auger过程等激发其他电子,从而激发晶格动力学。然而,格子的充分混乱应该实现各种目标。
因此,实际的临界积分通量可能比上面计算的F*小得多。事实上,一些红外泵浦的研究表明,临界积分通量约为mJ/cm2
对于晶格无序足以防止Si界面反转,实际积分通量可能在1-100mJ/cm2的范围内。当然,其他实施例可能具有不同的实际积分通量。以每100个原子或一些其他分布破坏一个缺陷的格子顺序可能就足够了。这也从Si中电子/空穴的平均自由程开始。
例如,假设Fd代表完成工作所需的实际积分通量。因此,具有重复率R的总功率P0的激光将被聚焦到光斑尺寸
Figure BDA0001486235510000081
因此,本领域技术人员可以估计以高容量处理晶片的曝光率、点尺寸和成本。
图7是确认当向硅基板供给适量的供给电力时形成陷阱区域的图表。如所示,当激光器的施加功率在大约13和17mW之间时,与对照相比,硅基板的薄层电阻增加50欧姆/平方米和225欧姆/平方微米之间。在实验中,将100微米厚的硅基板的上半部分(50微米)暴露于513纳米飞秒激光。底部50微米被用作对照测量。硅基板的薄层电阻的增加是硅内晶格键冷融的结果。
实际上,应该重申说明性实施例可以使用其他技术来形成陷阱区域。因此,其他实施例可以使用其他波长、激光脉冲速度、仪器等。此外,不是使用后处理方法来产生陷阱区域(即,GaN基板是在处理之前形成的),这种以预处理方法(例如,在添加GaN层之前)形成陷阱区域的过程。
尽管以上讨论公开了本发明的各种示例性实施例,但是显而易见的是,本领域技术人员可以进行各种修改,以实现本发明的一些优点而不背离本发明的真实范围。

Claims (19)

1.一种电子装置,具有有着减小的寄生效应的反转层,所述电子装置包括:
硅基板;
在硅基板之上的GaN层,所述GaN层形成电路器件;
在所述GaN层与所述硅基板之间的界面;以及
从所述界面延伸并延伸到所述硅基板中的半导体陷阱区域,陷阱区域包括陷阱,所述陷阱分别包括在硅基板的半导体陷阱区域的晶格结构中的一个或多个断裂的键,并且所述陷阱被配置为将电荷载体基本上固定在所述陷阱区域中。
2.根据权利要求1所述的电子装置,还包括:
所述GaN层和所述硅基板之间的缓冲层,其中所述界面在所述缓冲层和所述硅基板之间。
3.根据权利要求1所述的电子装置,其中所述硅基板包含高电阻率硅。
4.根据权利要求2所述的电子装置,其中所述缓冲层具有允许GaN层外延生长的热膨胀系数。
5.根据权利要求2所述的电子装置,其中所述缓冲层由AlN形成。
6.根据权利要求2所述的电子装置,其中所述缓冲层包括多个层。
7.根据权利要求2所述的电子装置,其中所述缓冲层是超晶格。
8.根据权利要求7所述的电子装置,其中所述超晶格是ALGaN/GaN。
9.一种形成电子装置的方法,所述电子装置具有反转层中的减小的寄生效应,所述方法包括:
在硅基板上形成缓冲;
在所述缓冲和所述硅基板上外延生长GaN层;和
通过使用激光冷熔所述硅基板的一部分而在GaN和所述硅基板之间形成半导体陷阱区域,所述半导体陷阱区域从GaN层和硅基板之间的界面延伸到所述硅基板中。
10.根据权利要求9所述的方法,其中形成所述半导体陷阱区域包括:
破坏所述半导体陷阱区域的晶格结构中的一个或多个键以形成陷阱,所述陷阱被配置为将电荷载体基本上固定在陷阱区域中。
11.根据权利要求10所述的方法,其中形成包括:
使用具有不大于20皮秒的脉冲宽度的短激光脉冲。
12.根据权利要求11所述的方法,其中所述激光脉冲包括大于400纳米的波长。
13.根据权利要求9所述的方法,其中所述硅基板包括高电阻率硅晶片。
14.根据权利要求9所述的方法,其中形成延伸到所述硅基板中的半导体陷阱区域包括使用提供在1和100mJ/cm2之间的积分通量的激光。
15.一种电子装置,具有有着减小的寄生效应的反转层,所述电子装置包括:
硅基板;
在所述硅基板之上的GaN层,所述GaN层形成电路器件;
在所述GaN层和所述硅基板之间的界面;和
构件,用于使用分别包括在半导体陷阱区域的晶格结构中的一个或多个断裂的键的陷阱以及在至少所述界面上将电荷载体基本上固定并减轻反转层。
16.根据权利要求15所述的电子装置,还包括:
所述GaN层和所述硅基板之间的缓冲层,其中所述界面在所述缓冲层和所述硅基板之间。
17.根据权利要求15所述的电子装置,其中将电荷载体基本上固定的构件延伸到所述硅基板中。
18.根据权利要求15所述的电子装置,其中所述硅基板包含高电阻率硅。
19.根据权利要求16所述的电子装置,其中所述缓冲层具有允许GaN层外延生长的热膨胀系数。
CN201680031229.9A 2015-05-29 2016-05-26 具有陷阱富集区域的氮化镓设备 Active CN107615447B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562168473P 2015-05-29 2015-05-29
US62/168,473 2015-05-29
PCT/US2016/034240 WO2016196160A1 (en) 2015-05-29 2016-05-26 Gallium nitride apparatus with a trap rich region

Publications (2)

Publication Number Publication Date
CN107615447A CN107615447A (zh) 2018-01-19
CN107615447B true CN107615447B (zh) 2021-01-19

Family

ID=57398963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680031229.9A Active CN107615447B (zh) 2015-05-29 2016-05-26 具有陷阱富集区域的氮化镓设备

Country Status (4)

Country Link
US (1) US9923060B2 (zh)
CN (1) CN107615447B (zh)
DE (1) DE112016002435T5 (zh)
WO (1) WO2016196160A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3731260A4 (en) * 2017-12-19 2021-12-22 Sumco Corporation GROUP III SEMICONDUCTOR NITRIDE SUBSTRATE PRODUCTION PROCESS
EP3576132A1 (en) 2018-05-28 2019-12-04 IMEC vzw A iii-n semiconductor structure and a method for forming a iii-n semiconductor structure
JP2022050886A (ja) * 2020-09-18 2022-03-31 信越半導体株式会社 窒化物半導体ウェーハの製造方法
JP7400789B2 (ja) * 2021-10-01 2023-12-19 信越半導体株式会社 窒化物半導体ウェーハの製造方法、及び窒化物半導体ウェーハ
EP4287239A1 (en) 2022-06-02 2023-12-06 Imec VZW A low loss semiconductor substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856873A (zh) * 2003-09-26 2006-11-01 卢万天主教大学 制造具有降低的欧姆损耗的多层半导体结构的方法
CN103765592A (zh) * 2011-07-18 2014-04-30 埃皮根股份有限公司 用于生长iii-v外延层的方法
CN105993072A (zh) * 2013-11-26 2016-10-05 奥克美蒂克公共有限公司 用于射频集成无源器件的具有降低的射频损耗的高电阻硅衬底

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261931B1 (en) 1997-06-20 2001-07-17 The Regents Of The University Of California High quality, semi-insulating gallium nitride and method and system for forming same
US6113685A (en) 1998-09-14 2000-09-05 Hewlett-Packard Company Method for relieving stress in GaN devices
US7247889B2 (en) * 2004-12-03 2007-07-24 Nitronex Corporation III-nitride material structures including silicon substrates
US20080173895A1 (en) 2007-01-24 2008-07-24 Sharp Laboratories Of America, Inc. Gallium nitride on silicon with a thermal expansion transition buffer layer
US7598108B2 (en) 2007-07-06 2009-10-06 Sharp Laboratories Of America, Inc. Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers
WO2011024367A1 (ja) 2009-08-27 2011-03-03 パナソニック株式会社 窒化物半導体装置
US9396941B2 (en) 2010-09-17 2016-07-19 The United States Of America, As Represented By The Secretary Of The Navy Method for vertical and lateral control of III-N polarity
US8536021B2 (en) * 2010-12-24 2013-09-17 Io Semiconductor, Inc. Trap rich layer formation techniques for semiconductor devices
US8629531B2 (en) * 2011-02-18 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method to reduce wafer warp for gallium nitride on silicon wafer
EP2538445B1 (en) * 2011-06-22 2016-10-05 Imec Manufacturing method of a III-nitride device and associated III-nitride device
CN103646961B (zh) * 2013-11-19 2017-02-22 中国电子科技集团公司第五十五研究所 含高阻寄生导电层的硅基iii族氮化物薄膜及生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856873A (zh) * 2003-09-26 2006-11-01 卢万天主教大学 制造具有降低的欧姆损耗的多层半导体结构的方法
CN103765592A (zh) * 2011-07-18 2014-04-30 埃皮根股份有限公司 用于生长iii-v外延层的方法
CN105993072A (zh) * 2013-11-26 2016-10-05 奥克美蒂克公共有限公司 用于射频集成无源器件的具有降低的射频损耗的高电阻硅衬底

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Identification of RF harmonic distortion on Si substrates and its reduction using a trap-rich layer";Daniel C. Kerr;《IEEE》;20081231;全文 *
"Improving GaN on Si Power Amplifiers through reduction of parasitic conduction layer";Lyndon Pattison;《IEEE》;20141229;第92页第2段至95页最后一段 *
"Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon";H. S. Gamble;《IEEE MICROWAVE AND GUIDED WAVE LETTERS》;19991231;全文 *

Also Published As

Publication number Publication date
CN107615447A (zh) 2018-01-19
DE112016002435T5 (de) 2018-02-22
US20160351666A1 (en) 2016-12-01
US9923060B2 (en) 2018-03-20
WO2016196160A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
CN107615447B (zh) 具有陷阱富集区域的氮化镓设备
Muhammed et al. High-efficiency InGaN/GaN quantum well-based vertical light-emitting diodes fabricated on β-Ga2O3 substrate
US10529613B2 (en) Electronic power devices integrated with an engineered substrate
Sang Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices
TWI707975B (zh) 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
JP5567553B2 (ja) 窒化ガリウム材料加工及びその関連するデバイス構造体
JP5552923B2 (ja) 半導体装置およびその製造方法
Lu et al. Semimetal/semiconductor nanocomposites for thermoelectrics
CN107347256B (zh) 化合物半导体装置结构及其制造方法
US8148246B2 (en) Method for separating semiconductor layer from substrate
JP2008533732A (ja) ナノ構造pn接合を含む発光ダイオードの製造方法及び当該方法によって得られるダイオード
JP7163587B2 (ja) 炭化珪素エピタキシャル基板の製造方法及び半導体装置の製造方法
Kumar et al. Tailoring Surface and Electrical Properties of Ni/4H‐nSiC Schottky Barrier Diodes via Selective Swift Heavy Ion Irradiation
Baker et al. Highly resistive annealed low-temperature-grown InGaAs with sub-500fs carrier lifetimes
US20190140110A1 (en) HIGH-VOLTAGE ALUMINUM NITRIDE (AlN) SCHOTTKY-BARRIER DIODES
Medvedev et al. Thermal stability of DRL in n‐GaN
US8178951B2 (en) Compound semiconductor substrate and control for electrical property thereof
Adhikary et al. An approach to suppress the blue-shift of photoluminescence peaks in coupled multilayer InAs/GaAs quantum dots by high temperature post-growth annealing
JPWO2005036626A1 (ja) 接合の形成方法およびこれを用いて形成された被処理物
Chernyak et al. Minority electron transport anisotropy in p-type Al/sub x/Ga/sub 1-x/N/GaN superlattices
Saxena et al. Low threshold for optical damage in AlGaN epilayers and heterostructures
Arivazhagan et al. Structural, surface potential and optical studies of AlGaN based double heterostructures irradiated by 120 MeV Si9+ swift heavy ions
Nguyen et al. Deep level traps in semi‐polar n‐GaN grown on patterned sapphire substrate by metalorganic vapor phase epitaxy
KR101055763B1 (ko) 이온주입층을 사용하여 기판에서 질화물 반도체층을분리하는 방법
Breitschädel et al. Effect of Ar ion beam channeling on AlGaN/GaN heterostructures during the ion beam etching process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant