CN107614427A - 近红外发光的半导体单层碳纳米管 - Google Patents

近红外发光的半导体单层碳纳米管 Download PDF

Info

Publication number
CN107614427A
CN107614427A CN201680006878.3A CN201680006878A CN107614427A CN 107614427 A CN107614427 A CN 107614427A CN 201680006878 A CN201680006878 A CN 201680006878A CN 107614427 A CN107614427 A CN 107614427A
Authority
CN
China
Prior art keywords
semiconductor monolayer
swcnt
monolayer cnt
infrared luminous
luminous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680006878.3A
Other languages
English (en)
Other versions
CN107614427B (zh
Inventor
饭泉阳子
冈崎俊也
榊田创
金载浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of CN107614427A publication Critical patent/CN107614427A/zh
Application granted granted Critical
Publication of CN107614427B publication Critical patent/CN107614427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • A61K49/0095Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6491Measuring fluorescence and transmission; Correcting inner filter effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/748Modified with atoms or molecules bonded to the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明的课题在于,提供发光能量发生了约300meV低能量化的半导体单层碳纳米管及其制造方法,通过采用在大气中对半导体单层碳纳米管直接照射紫外光的方法,在大气中产生臭氧而使克量的氧原子导入至半导体单层碳纳米管中,能够获得发光能量发生了约300meV低能量化的半导体单层碳纳米管。

Description

近红外发光的半导体单层碳纳米管
技术领域
本发明涉及近红外发光的半导体单层碳纳米管及其制造方法,特别是涉及发光波长发生了长波长化的半导体单层碳纳米管及其制造方法。
背景技术
碳纳米管(以下,也称为CNT)为具有如下结构的碳结构体:碳原子在平面上配置成六边形而构成的碳片(即,由石墨形成的片)闭合成圆筒状而得到的结构。该CNT有多层的碳纳米管以及单层的碳纳米管,但已知:单层CNT(以下,也称为SWCNT)的电子特性依赖于其卷绕方式(直径、螺旋度),会显示出金属的性质或半导体的性质。
半导体SWCNT会在生物体透过性良好的近红外区域(800~2000nm)进行光吸收和发光,因此期待作为用于检测细胞、生物体功能的荧光探针极其有用。其中,1200~1400nm的波长区域为生物体透过性最好的区域。
通过将氧原子、官能团导入至该半导体SWCNT中,可以使发光波长发生变化。例如,通过将添加有臭氧的水、与将SWCNT用表面活性剂分散而成的水溶液混合,一边照射光一边使其进行化学反应,由此,将纳米管壁中的一部分碳替换成氧原子(非专利文献1、2)。在如此操作而导入有氧原子时,大部分的氧原子以醚键的形式键合于SWCNT壁,SWCNT的发光能量与原本的发光能量相比减小约150meV。对于这种化学修饰,也有增加SWCNT的发光量子产率的优点。
除此以外,使用有机合成的方法,向半导体SWCNT中以共价键的方式导入官能团,由此,可以使发光能量减少约160~260meV(非专利文献3、4、5)。例如,在使己酸键合时,SWCNT的发光能量向低能量偏移了260meV,认为该发光基于三酮生成而产生(非专利文献5)。
现有技术文献
非专利文献
非专利文献1:Ghosh et al.,Science,330,1656-1659(2010).
非专利文献2:Miyauchi et al.,Nat.Photonics,7,715-719(2013).
非专利文献3:Piao et al.,Nat.Chem.,5,840-845(2013).
非专利文献4:Zhang et al.,JPCL,4,826-830(2013).
非专利文献5:Brozena et al.,ACS Nano,8,4239-4247(2014).
非专利文献6:X.Ma et al.,ACS Nano,8,10782-10789(2014).
专利文献
专利文献1:日本特开2004-210608号公报
发明内容
发明要解决的问题
如前所述,虽然已知通过对半导体SWCNT导入氧或官能团,从而使发光能量发生低能量化,并使发光波长发生长波长化,但是对于非专利文献1~5中报告的发光波长的长波长化来说,对于目前正在集中研究的SWCNT之一的具有手性指数(6,5)的SWCNT,其发光波长短于被视为作为近红外荧光探针最优选的约1300~1400nm,在约1140nm(约1.088eV)处具有峰的SWCNT为主要产物。
本发明是鉴于上述情况而完成的,其目的在于,实现与至今为止的情况相比较大的发光能量偏移并使发光波长发生长波长化,特别是其目的在于,获得在作为组织或生物体用的透过性近红外荧光探针优选的、具有生物体透过性的波长处具有该发光波长的峰的半导体SWCNT。
用于解决问题的方案
本发明人等为了实现上述目的而反复进行了深入研究,结果发现:代替如非专利文献1、2那样的对含有臭氧的SWCNT的分散液照射紫外线的湿式方法,通过采用在大气中对SWCNT直接照射紫外光的方法,从而在大气中其产生臭氧而对SWCNT进行氧化处理,由此能够在短时间内简便地将氧原子导入至克量的SWCNT中,其发光波长的峰由980nm(1.265eV)变化为1280±13nm(=0.9686±0.01eV)、即,所得SWCNT的发光能量向低能量偏移了至今为止最大的296±10meV。
本发明是基于这些见解而完成的,根据本发明,可以提供以下发明。
[1]一种近红外发光的半导体单层碳纳米管的制造方法,其特征在于,通过在大气中对半导体单层碳纳米管直接照射紫外线,产生臭氧而对半导体单层碳纳米管进行氧化处理。
[2]根据[1]所述的近红外发光的半导体单层碳纳米管的制造方法,其特征在于,对在基板上形成为薄膜状的半导体单层碳纳米管照射前述紫外线。
[3]根据[1]或[2]所述的近红外发光的半导体单层碳纳米管的制造方法,其特征在于,在密闭的空间进行前述氧化处理。
[4]一种近红外发光的半导体单层碳纳米管,其特征在于,其为通过[1]~[3]中任一项的制造方法而制造的近红外发光的半导体单层碳纳米管,发光能量发生了向低能量偏移。
[5]根据[4]所述的近红外发光的半导体单层碳纳米管,其特征在于,发光能量向低能量偏移了296±10meV。
[6]根据[4]或[5]所述的近红外发光的半导体单层碳纳米管,其特征在于,发光波长的峰处于1280±13nm(=0.9686±0.01eV)。
[7]根据[4]~[6]中任一项所述的近红外发光的半导体单层碳纳米管,其中,在半导体单层碳纳米管中导入有氧原子。
[8]根据[7]所述的近红外发光的半导体单层碳纳米管,其中,前述氧原子主要以环氧化物的形式导入。
发明的效果
根据本发明,可以获得以往方法中无法实现的发光能量发生了296±10meV低能量化的半导体SWCNT。另外,若将本发明适用于具有手性指数(6,5)的SWCNT,则其发光波长的峰由约980nm(=1.265eV)变化至进一步具有生物体透过性的1280±13nm(=0.9686±0.01eV),因此,可以获得在作为细胞、生物体用的近红外荧光探针优选的波长带具有发光波长的峰的物质。
附图说明
图1为示出针对以通过本发明的方法与氧键合的、具有手性指数(6,5)的SWCNT为中心的试样及其原始试样的二维发光图像的图。
图2为示出以具有手性指数(6,5)的SWCNT为中心的试样的约980nm和约1280nm发光强度的氧化处理时间依赖性的图。
图3为示出针对以通过非专利文献1、2中示出的方法与氧键合的、具有手性指数(6,5)的SWCNT为中心的试样的二维发光图像的图。
具体实施方式
本发明是通过将氧原子导入至半导体SWCNT中而制造发光能量发生了向低能量偏移的近红外发光的半导体SWCNT的方法,其特征在于,通过在大气中对半导体SWCNT直接照射紫外线,产生臭氧而将半导体SWCNT进行氧化处理。而且,通过本发明的方法而制造的近红外发光的半导体SWCNT能够使发光能量向低能量偏移296±10meV,特别是,若适用于具有手性指数(6,5)的SWCNT,则其发光波长的峰由约980nm变化至1280±13nm。
通常,在大气中照射紫外光的方法为用于基材表面的附着物的分解去除、杀菌处理等的方法,其原理可以视为如下:大气中的氧气吸收波长184.9nm的紫外线而产生臭氧(O3),产生的臭氧进一步吸收波长253.7nmm的紫外线而产生原子状活性氧(O)。
照射紫外线的方法也可以用于SWCNT,例如,专利文献1中,对SWCNT照射特定单波长的光而形成激发状态,用氧气将处于激发状态的SWCNT氧化,由此可以选择性燃烧特定结构的CNT并使其消失,从而选择性地获得具有与该CNT不同结构的CNT。
本发明的方法会将氧导入至SWCNT中,而不像以往那样使SWCNT消失,而且,能够实现至今为止的湿式方法中无法实现的296±10meV的发光能量偏移,并且,若以相同方法对前述具有手性指数(6,5)的SWCNT进行氧导入,则其发光波长的峰由约980nm(=1.265eV)变化至约1280nm(=0.9686eV),成为在作为近红外荧光探针优选的进一步具有生物体透过性的波长带具有发光波长的峰的物质。
如已有记载那样,针对因对半导体SWCNT导入氧或官能团而导致的发光能量向低能量偏移,至今为止进行了各种研究,特别是在上述非专利文献6中报告了氧掺杂的SWCNT的电子状态的计算,其中,计算得到,进行环氧化物化时,使SWCNT的发光能量向低能量位移310meV。
如果根据该非专利文献6的记载,在非专利文献1、2等以往基于湿式的方法中,大部分的氧与SWCNT以醚键的形式键合,因此,向低能量偏移超过290meV是不可能的,但是根据本发明的方法,导入的氧大部分与SWCNT形成环氧化物,由此可以推定能够使SWCNT的发光能量向低能量偏移296±10meV。
本发明中,对于半导体SWCNT的合成方法、通过该合成方法获得的半导体SWCNT的直径没有特别的限制,可以通过公知的化学气相沉淀法、电弧放电法、激光蒸发法等方法进行合成,但优选使用在催化剂的存在下通过化学气相沉淀法合成的直径为0.6~1nm左右的半导体SWCNT。
作为本发明中的臭氧产生方法,没有特别的限制,优选在密闭的空间内进行,例如优选使用UV臭氧清洗设备等的、通过在大气中照射紫外光而产生臭氧的装置。
另外,紫外光的照射条件根据使用的装置而不同,如后述实施例2那样,需要在SWCNT不会因照射而遭到破坏的条件下进行。
另外,为了在大气中对半导体SWCNT直接照射紫外线,优选预先在基材上将半导体SWCNT形成为膜状,特别是,为了对要导入氧的半导体SWCNT均匀地进行化学反应,优选预先制成厚度1μm左右的薄膜状。
实施例
以下,基于实施例对本发明进行说明,但本发明并不限定于该实施例。
[实施例:通过紫外线照射产生臭氧而进行了氧化处理的半导体SWCNT试样]
本实施例中,对于原始试样,使用以通过CoMoCAT法而合成的具有手性指数(6,5)的SWCNT为中心的试样。
将该SWCNT 1.0mg在直径47mm的膜滤器上展开,利用UV臭氧清洗设备(PC-450,Meiwafosis Co.,Ltd.)(光源:汞灯,波长184.9,253.7nm等;电源:100V,0.5A)进行氧化处理0~600秒。
然后,在十二烷基苯磺酸钠盐(SDBS)0.1mg和重水10mL中进行混合,通过进行10分钟超声波处理(VIBRA-CELL VCX-500,Sonics and Materials Inc.)使氧化SWCNT分散。将该分散液进行1小时超离心处理(Himac CS100GXII,Hitachi Koki)(转子:S52ST,转速:35000rpm)后,取出存在于上清液中的氧化SWCNT。
图1为由所得氧化SWCNT-SDBS重水溶液和氧化处理前的SWCNT-SDBS重水溶液获得的二维发光图像(Fluorolog FL3-2TRIAX/iHR320,HORIBA)。图中,纵轴为激发波长,横轴为检测波长。
如图的上部所示,在氧化处理前的试样中,主要观察到手性指数(6,5)的SWCNT的源自带间跃迁的激发波长约为570nm、发光波长约为980nm的发光峰。另一方面,如图的下部所示,处理180秒的样品中,激发波长未发生变化,在发光波长约为1280nm处观察到向长波长偏移的发光峰,该发光波长的偏移是由氧原子导入至SWCNT中而导致的。
[实施例2]
本实施例中,研究了以前述具有手性指数(6,5)的SWCNT为中心的试样在980nm和1280nm处的发光强度的氧化处理时间依赖性。
图2为示出发光强度的氧化处理时间依赖性的图,纵轴为发光强度,横轴为照射时间。
如图2所示,源自氧化SWCNT的1280nm发光(-●-)随着伴随带间跃迁的980nm发光(-▲-)的减少而增加,在180秒时达到极大。而且,其后随着反应时间的增大而强度减少。推测该发光强度减少是由于因过度的氧化反应而使SWCNT的结构遭到破坏。
[比较例:通过以往方法进行了氧化处理的半导体SWCNT试样]
图3为由通过非专利文献1、2中示出的以往方法进行了氧化处理的SWCNT试样而得到的二维发光图像。
具体而言,将自臭氧产生器(SO-03UN-OX05,Hamanetsu)取出的氧气/臭氧混合气体向3mL的重水中通入约1分钟,进行鼓泡直至源自臭氧的波长260nm的吸收峰的吸光度变成大致1.0为止。将该含臭氧重水2mL和SWCNT在1重量%SDBS重水溶液中进行分散,将通过超离心处理而获得的上清溶液400μL、重水1.6mL进行混合,将波长254nm的紫外光利用透照仪(CSF-20AC,COSMO BIO co.,ltd.)(强度:6400μW/cm2)照射1分钟,获得氧化SWCNT溶液。
如图3所示,在通过以往方法制备的氧化SWCNT溶液中,通过氧化处理,主要观察到约1140nm(约1.088eV)的发光,推测出氧与SWCNT壁以醚键的方式键合。
另外,该方法中,即使变更混合的臭氧水的量、光照射的时间、波长,也无法确认到如实施例1那样的、推测源自使SWCNT与氧发生环氧化物化的1280nm的发光的峰的增大。

Claims (8)

1.一种近红外发光的半导体单层碳纳米管的制造方法,其特征在于,通过在大气中对半导体单层碳纳米管直接照射紫外线,产生臭氧而对半导体单层碳纳米管进行氧化处理。
2.根据权利要求1所述的近红外发光的半导体单层碳纳米管的制造方法,其特征在于,对在基板上形成为薄膜状的半导体单层碳纳米管照射所述紫外线。
3.根据权利要求1或2所述的近红外发光的半导体单层碳纳米管的制造方法,其特征在于,在密闭的空间进行所述氧化处理。
4.一种近红外发光的半导体单层碳纳米管,其特征在于,其为通过权利要求1~3中任一项所述的制造方法而制造的近红外发光的半导体单层碳纳米管,发光能量发生了向低能量偏移。
5.根据权利要求4所述的近红外发光的半导体单层碳纳米管,其特征在于,发光能量向低能量偏移了296±10meV。
6.根据权利要求4或5所述的近红外发光的半导体单层碳纳米管,其特征在于,发光波长的峰处于1280±13nm。
7.根据权利要求4~6中任一项所述的近红外发光的半导体单层碳纳米管,其中,在半导体单层碳纳米管中导入有氧原子。
8.根据权利要求7所述的近红外发光的半导体单层碳纳米管,其中,所述氧原子主要以环氧化物的形式导入。
CN201680006878.3A 2015-01-23 2016-01-21 近红外发光的半导体单层碳纳米管 Active CN107614427B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-011582 2015-01-23
JP2015011582 2015-01-23
PCT/JP2016/051660 WO2016117633A1 (ja) 2015-01-23 2016-01-21 近赤外発光する半導体単層カーボンナノチューブ

Publications (2)

Publication Number Publication Date
CN107614427A true CN107614427A (zh) 2018-01-19
CN107614427B CN107614427B (zh) 2020-06-23

Family

ID=56417165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680006878.3A Active CN107614427B (zh) 2015-01-23 2016-01-21 近红外发光的半导体单层碳纳米管

Country Status (5)

Country Link
US (1) US10752835B2 (zh)
JP (1) JP6548230B2 (zh)
KR (1) KR102050147B1 (zh)
CN (1) CN107614427B (zh)
WO (1) WO2016117633A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728795A (zh) * 2019-11-15 2022-07-08 花王株式会社 半导体型单层碳纳米管分散液的制造方法
CN114728794A (zh) * 2019-11-15 2022-07-08 花王株式会社 半导体型单层碳纳米管分散液的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432846A (zh) * 2017-11-17 2020-07-17 株式会社岛津制作所 生物成像用半导体swcnt分散液及其制造方法
US20200384127A1 (en) * 2017-11-17 2020-12-10 Shimadzu Corporation Semiconductor swcnt slurry for bioimaging and method for inspecting the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678522A (zh) * 2003-01-06 2005-10-05 独立行政法人科学技术振兴机构 采用光照射的碳纳米管的结构选择法
JP2008285386A (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial & Technology カーボンナノチューブの分離法
US20100189626A1 (en) * 2007-05-21 2010-07-29 National Institute Of Advanced Industrial Science High efficient carbon nanotube separation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678522A (zh) * 2003-01-06 2005-10-05 独立行政法人科学技术振兴机构 采用光照射的碳纳米管的结构选择法
JP2008285386A (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial & Technology カーボンナノチューブの分離法
US20100189626A1 (en) * 2007-05-21 2010-07-29 National Institute Of Advanced Industrial Science High efficient carbon nanotube separation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAUNAB GHOSH ET AL.: "Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent Single-Walled Band Gaps in Fluorescent Single-Walled", 《SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728795A (zh) * 2019-11-15 2022-07-08 花王株式会社 半导体型单层碳纳米管分散液的制造方法
CN114728794A (zh) * 2019-11-15 2022-07-08 花王株式会社 半导体型单层碳纳米管分散液的制造方法
US12006218B2 (en) 2019-11-15 2024-06-11 Kao Corporation Method for producing semiconducting single-walled carbon nanotube dispersion
US12030778B2 (en) 2019-11-15 2024-07-09 Kao Corporation Method for producing semiconducting single-walled carbon nanotube dispersion

Also Published As

Publication number Publication date
CN107614427B (zh) 2020-06-23
JP6548230B2 (ja) 2019-07-24
US20170335185A1 (en) 2017-11-23
KR20170107020A (ko) 2017-09-22
WO2016117633A1 (ja) 2016-07-28
JPWO2016117633A1 (ja) 2017-12-07
KR102050147B1 (ko) 2019-11-28
US10752835B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
Baig et al. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges
CN107614427A (zh) 近红外发光的半导体单层碳纳米管
Zhu et al. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis
EP2711075B1 (en) Plasmonic assisted systems and methods for interior energy-activation from an exterior source.
Dongil et al. Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments
Atchudan et al. Eco-friendly synthesis of tunable fluorescent carbon nanodots from Malus floribunda for sensors and multicolor bioimaging
Yang et al. Functionalization of Carbon Nanoparticles and Defunctionalization Toward Structural and Mechanistic Elucidation of Carbon “Quantum” Dots
Song et al. Recent advances in graphitic carbon nitride-based chemiluminescence, cataluminescence and electrochemiluminescence
Wang et al. Luminescent graphene quantum dots: as emerging fluorescent materials for biological application
Felip-León et al. A spectroscopic study to assess the photogeneration of singlet oxygen by graphene oxide
Batabyal et al. Carbon Quantum Dots for Sustainable Energy and Optoelectronics
Kailasa et al. Carbon Dots in Analytical Chemistry: Detection and Imaging
Gurova et al. Synthesis and modification of carbon nanohorns structure for hyperthermic application
Maru et al. Fe@ gC 3 N 4: an effective photocatalyst for Baeyer–Villiger oxidation under visible light condition
Zhou et al. Efficient chlorine atom functionalization at nanodiamond surfaces by electron beam irradiation
WO2003106583A1 (ja) 一重項酸素発生光増感剤及びそれを用いた一重項酸素発生方法
Saadh et al. Advances in synthesis and characterization of GQDs for enhanced photocatalytic degradation of contaminants: A comprehensive review
Fedorova et al. Development of Method for Destruction of 4-Cyanophenol Using Photolysis and Activated Oxidative Processes
Krysak et al. Gas-phase surface functionalization of multi-walled carbon nanotubes with vacuum UV photo-oxidation
Lúcio et al. Graphene-based nanosystems: versatile nanotools for theranostics and bioremediation
Ma et al. Reduce and concentrate graphene quantum dot size via scissors: vacancy, pentagon-heptagon and interstitial defects in graphite by gamma rays
JP7100856B2 (ja) 生体イメージング用半導体swcnt分散液及びその製造方法
Toma et al. ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts 2022, 12, 952
JP2010222184A (ja) 水分解装置及び水分解方法
Sharma et al. Biomass-based functionalized carbon dots: A promising shield with antimicrobial activities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant