CN107574330B - 金刚石颗粒增强熔融合金热界面材料及其制备方法 - Google Patents

金刚石颗粒增强熔融合金热界面材料及其制备方法 Download PDF

Info

Publication number
CN107574330B
CN107574330B CN201710760090.8A CN201710760090A CN107574330B CN 107574330 B CN107574330 B CN 107574330B CN 201710760090 A CN201710760090 A CN 201710760090A CN 107574330 B CN107574330 B CN 107574330B
Authority
CN
China
Prior art keywords
diamond particles
molten alloy
thermal interfacial
interfacial material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710760090.8A
Other languages
English (en)
Other versions
CN107574330A (zh
Inventor
张平
姜雄
冼耀琪
曾建华
蔡苗
杨道国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201710760090.8A priority Critical patent/CN107574330B/zh
Publication of CN107574330A publication Critical patent/CN107574330A/zh
Application granted granted Critical
Publication of CN107574330B publication Critical patent/CN107574330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本发明公开了一种金刚石颗粒增强熔融合金热界面材料及其制备方法,本发明的金刚石增强熔融合金高导热材料是由以下质量份的原料:熔融合金40~100份,金刚石颗粒30~80份,金属钨10~20份,稀释剂10~20份组成;依次将金刚石颗粒进行表面处理,在其表面镀覆钨层,再加入液体金属中得到金刚石颗粒增强熔融合金热界面材料。采用本发明的技术方案一方面提高金刚石颗粒增强熔融合金热界面材料的界面结合强度,另一方面有利于金刚石颗粒更好的分散在液体金属中,提高其导热性能,操作简单,导热率高,热稳定性高,可用于电器、电子封装材料散热等领域。

Description

金刚石颗粒增强熔融合金热界面材料及其制备方法
技术领域
本发明涉及高分子复合材料技术领域,具体涉及一种金刚石颗粒增强熔融合金热界面材料及其制备方法。
背景技术
随着电子产品的性能日益提高,微电子技术高速发展,芯片的运算速度越来越快,封装密度也越来越大,电子元器件散热问题已成为电子信息产业发展面临的技术瓶颈之一。IGBT(绝缘栅双极性晶体管) 已经成为许多设备中的核心部件,在很多领域都有着重要的影响。现在器件都在向大功率发展,IGBT 模块也应运而生,成为市场上占主导地位的产品。传统的 IGBT 模块是通过钎焊的方法制造即使焊膏或预成型钎料薄膜,通过回流焊工艺,熔化并固化成钎料合金,来连接功率模块中的芯片和基板。这种方法制造的模块存在寿命短、散热差的缺点,并且由于钎料熔点的较低,模块中芯片的结点温度被限制在 150℃以下。
熔融合金作为一种新型的的互连材料,具有非常优越的导电和导热性能,而且常温下呈液态,能有效的填补电子设备中发热体和散热体之间的微小间隙,提高散热效益。正是因为它有着这样的优点,近年来已经被广泛地应用在电子封装领域中。虽然相比其他大部分的导热硅脂,熔融合金的导热性能更加优越,但是其材料成本较高,润湿性能较差,流动性也较大容易在粘接过程中出现溢出现象。
发明内容
针对现有技术的不足,本发明所解决的技术问题是提供一种成本较低、流动性适中,同时具有良好的粘接性能的金属热界面材料。
为解决上述技术问题,本发明提出的技术方案是一种金刚石颗粒增强熔融合金热界面材料,由以下质量份的原料组成:熔融合金40~100份,金刚石颗粒30~80份,金属钨10~20份,稀释剂10~20份。
本发明还提供了一种金刚石颗粒增强熔融合金热界面材料的制备方法,采用如下步骤制备:
(1)制备过氧钨酸溶胶-凝胶,将纯度99.9%的金属钨颗粒缓慢溶解于30%过氧化氢溶液中,连续搅拌,通过浸泡水浴保持在5-15℃。当反应结束时,溶液变成牛奶状。将铂片浸入溶液中以减少过量的过氧化氢,接着加入15ml乙醇和4ml冰醋酸,最后溶液在55~70℃下回流10~12h,直到得到稳定的过氧钨酸溶胶-凝胶,通过加入10~20质量份稀释剂来降低所述过氧钨酸溶胶-凝胶的浓度;
(2)制备表面沉积纳米尺度钨层的金刚石颗粒,将30~80质量份粒径80~200μm金刚石颗粒放入蒸馏水中超声波振荡1h清除表面上的杂质,然后用50~70%硝酸处理,再用蒸馏水洗涤并干燥,最后将处理过的金刚石颗粒加入所述过氧钨酸溶胶-凝胶中,搅拌10min,然后过滤并在60℃下干燥6h,在氢气的体积含量为20%的H2-Ar气体中,在700-950℃下进行热处理30min,得到表面沉积纳米尺度钨层的金刚石颗粒;
(3)制备熔点60~100℃的40~100质量份熔融合金,在隔绝空气条件下,将48~58%质量百分比金属镓加热至熔化;往熔化的镓中慢慢加入28~35%质量百分比金属铟,同时边加热边缓慢搅拌;待铟全部溶解于镓中,再添加3~5%质量百分比金属铋,边加热边搅拌,直至铋全部溶解;再加入1.8~3%质量百分比铁、镁和5~8%质量百分比锡,加热并缓慢搅拌,直至合金成熔融状态得到熔融合金;所述熔融合金在300~330°C恒温条件下缓慢搅拌1h,确保金属充分熔合;
(4)制备金刚石颗粒增强熔融合金热界面材料,将所述熔融合金加热至950℃,然后按熔融合金与表面沉积纳米尺度钨层的金刚石颗粒按体积比3~5:1进行混合,边加热边搅拌,直至合金熔融成膏状,自然冷却,得到金刚石颗粒增强熔融合金热界面材料。
步骤(1)中所述金属钨颗粒的质量为4~8g;
步骤(1)中所述过氧化氢的体积为15-30ml;
步骤(1)中所述的稀释剂为丙酮或乙醇;
步骤(2)中所述金刚石颗粒的平均粒径为150~200μm;
步骤(3)中所述熔融合金的质量分数的组分:48~56%镓,28~35%铟,3~5%铋,5~8%锡,1.8~3%的铁、镁。
本发明相对于现有技术的有益效果:
1.通过金刚石改性制备导热性能良好的金刚石颗粒增强熔融合金,其工艺流程简单,易于操作,设备简单,产率高,适合大批量生产;
2.通过过氧钨酸溶胶-凝处理的金刚石颗粒,大大提高了金刚石颗粒与熔融合金之间的界面结合力,改善了熔融合金的流动性;
3.金刚石颗粒与液态合金之间的有效结合,增强了熔融合金的导热性能,提高了其硬度,促进了熔融合金热界面材料在电力电子封装领域的应用。
附图说明
图1为本发明金刚石颗粒增强熔融合金的制备工艺流程图。
具体实施方式
下面通过附图和实施例对本发明的内容作进一步的阐述,这些实施例仅用来说明本发明,但不是对本发明的限定。
图1示出了一种金刚石颗粒增强熔融合金热界面材料的制备方法,采用如下步骤制备:
(1)制备过氧钨酸溶胶-凝胶,将纯度99.9%的金属钨颗粒缓慢溶解于30%过氧化氢溶液中,连续搅拌,通过浸泡水浴保持在5-15℃。当反应结束时,溶液变成牛奶状。将铂片浸入溶液中以减少过量的过氧化氢,接着加入15ml乙醇和4ml冰醋酸,最后溶液在55~70℃下回流10~12h,直到得到稳定的过氧钨酸溶胶-凝胶,通过加入10~20质量份稀释剂来降低所述过氧钨酸溶胶-凝胶的浓度;
(2)制备表面沉积纳米尺度钨层的金刚石颗粒,将30~80质量份粒径80~200μm金刚石颗粒放入蒸馏水中超声波振荡1h清除表面上的杂质,然后用50~70%硝酸处理,再用蒸馏水洗涤并干燥,最后将处理过的金刚石颗粒加入所述过氧钨酸溶胶-凝胶中,搅拌10min,然后过滤并在60℃下干燥6h,在20%的H2-Ar气体中,在700-950℃下进行热处理30min,得到表面沉积纳米尺度钨层的金刚石颗粒;
(3)制备熔点60~100℃的40~100质量份熔融合金,在隔绝空气条件下,将48~58%质量百分比金属镓加热至熔化;往熔化的镓中慢慢加入28~35%质量百分比金属铟,同时边加热边缓慢搅拌;待铟全部溶解于镓中,再添加3~5%质量百分比金属铋,边加热边搅拌,直至铋全部溶解;再加入1.8~3%质量百分比铁、镁和5~8%质量百分比锡,加热并缓慢搅拌,直至合金成熔融状态得到熔融合金;所述熔融合金在300~330°C恒温条件下缓慢搅拌1h,确保金属充分熔合;
(4)制备金刚石颗粒增强熔融合金热界面材料,将所述熔融合金加热至950℃,然后按熔融合金与表面沉积纳米尺度钨层的金刚石颗粒按体积比3~5:1进行混合,边加热边搅拌,直至合金熔融成膏状,自然冷却,得到金刚石颗粒增强熔融合金热界面材料。
步骤(1)中所述金属钨颗粒的质量为4~8g;
步骤(1)中所述过氧化氢的体积为15-30ml;
步骤(1)中所述的稀释剂为丙酮或乙醇;
步骤(2)中所述金刚石颗粒的平均粒径为150~200μm;
步骤(3)中所述熔融合金的质量分数的组分:48~56%镓,28~35%铟,3~5%铋,5~8%锡,1.8~3%的铁、镁。
实施例1:
采用以下步骤实现本发明:
(1)将4g纯度99.9%的金属钨颗粒缓慢溶解于30%过氧化氢溶液中,连续搅拌,通过浸泡水浴保持在15℃。当反应结束时,溶液变成牛奶状。将铂片浸入溶液中以减少过量的过氧化氢,接着加入15ml乙醇和4ml冰醋酸,最后溶液在70℃下回流12h,直到得到稳定的过氧钨酸溶胶-凝胶,通过加入10份稀释剂来降低所述过氧钨酸溶胶-凝胶的浓度;
(2)将40质量份粒径100μm金刚石颗粒首先放入蒸馏水中超声波振荡1h清除表面上的杂质,然后用50%硝酸处理,再用蒸馏水洗涤并干燥,最后将处理过的金刚石颗粒加入所述过氧钨酸溶胶-凝胶中,搅拌10min,然后过滤并在60℃下干燥6h,在20%的H2-Ar气体中,在800℃下进行热处理30min,得到表面沉积纳米尺度钨层的金刚石颗粒;
(3)制备熔点60℃的50质量份熔融合金,在隔绝空气条件下,将58%质量百分比金属镓加热至熔化;往熔化的镓中慢慢加入30%质量百分比金属铟,同时边加热边缓慢搅拌;待铟全部溶解于镓中,再添加3%质量百分比金属铋,边加热边搅拌,直至铋全部溶解;再加入3%质量百分比铁、镁和6%质量百分比锡,加热并缓慢搅拌,直至合金成熔融状态得到熔融合金;熔融合金在300°C恒温条件下缓慢搅拌1h,确保金属充分熔合;
(4)将所述熔融合金加热至950℃,然后按体积比(熔融合金:金刚石颗粒=3:1)慢慢加入所述表面沉积纳米尺度钨层的金刚石颗粒,边加热边搅拌,直至合金熔融成膏状,自然冷却,得到高导热,高硬度金刚石颗粒增强熔融合金材料。
实施例2:
采用以下步骤实现本发明:
(1)将6g纯度99.9%的金属钨颗粒缓慢溶解于30%过氧化氢溶液中,连续搅拌,通过浸泡水浴保持在15℃。当反应结束时,溶液变成牛奶状。将铂片浸入溶液中以减少过量的过氧化氢,接着加入15ml乙醇和4ml冰醋酸,最后溶液在60℃下回流10h,直到得到稳定的过氧钨酸溶胶-凝胶,通过加入15质量份稀释剂来降低所述过氧钨酸溶胶-凝胶的浓度;
(2)将50质量份粒径150μm金刚石颗粒首先放入蒸馏水中超声波振荡1h清除表面上的杂质,然后用60%硝酸处理,再用蒸馏水洗涤并干燥,最后将处理过的金刚石颗粒加入所述过氧钨酸溶胶-凝胶中,搅拌10min,然后过滤并在60℃下干燥6h,在20%的H2-Ar气体中,在700℃下进行热处理30min,得到表面沉积纳米尺度钨层的金刚石颗粒;
(3)制备熔点80℃的40质量份熔融合金,在隔绝空气条件下,将55%质量百分比金属镓加热至熔化;往熔化的镓中慢慢加入34%质量百分比金属铟,同时边加热边缓慢搅拌;待铟全部溶解于镓中,再添加2.5%质量百分比金属铋,边加热边搅拌,直至铋全部溶解;再加入2.5%质量百分比铁、镁和6%质量百分比锡,加热并缓慢搅拌,直至合金成熔融状态得到熔融合金;熔融合金在320°C恒温条件下缓慢搅拌1h,确保金属充分熔合;
(4)将所述熔融合金加热至950℃,然后按体积比(熔融合金:金刚石颗粒=4:1)慢慢加入所述表面沉积纳米尺度钨层的金刚石颗粒,边加热边搅拌,直至合金熔融成膏状,自然冷却,得到高导热,高硬度金刚石颗粒增强熔融合金材料。
实施例3:
采用以下步骤实现本发明:
(1)将8g纯度99.9%的金属钨颗粒缓慢溶解于30%过氧化氢溶液中,连续搅拌,通过浸泡水浴保持在15℃。当反应结束时,溶液变成牛奶状。将铂片浸入溶液中以减少过量的过氧化氢,接着加入15ml乙醇和4ml冰醋酸,最后溶液在50℃下回流10h,直到得到稳定的过氧钨酸溶胶-凝胶,通过加入20质量份稀释剂来降低所述过氧钨酸溶胶-凝胶的浓度;
(2)将60质量份粒径200μm金刚石颗粒首先放入蒸馏水中超声波振荡1h清除表面上的杂质,然后用70%硝酸处理,再用蒸馏水洗涤并干燥,最后将处理过的金刚石颗粒加入所述过氧钨酸溶胶-凝胶中,搅拌10min,然后过滤并在60℃下干燥6h,在20%的H2-Ar气体中,在900℃下进行热处理30min,得到表面沉积纳米尺度钨层的金刚石颗粒;
(3)制备熔点100℃的60质量份熔融合金,在隔绝空气条件下,将55%质量百分比金属镓加热至熔化;往熔化的镓中慢慢加入30%质量百分比金属铟,同时边加热边缓慢搅拌;待铟全部溶解于镓中,再添加5%质量百分比金属铋,边加热边搅拌,直至铋全部溶解;再加入2.5%质量百分比铁、镁和7.5%质量百分比锡,加热并缓慢搅拌,直至合金成熔融状态得到熔融合金;熔融合金在330°C恒温条件下缓慢搅拌1h,确保金属充分熔合;
(4)将所述熔融合金加热至950℃,然后按体积比(熔融合金:金刚石颗粒=5:1)慢慢加入所述表面沉积纳米尺度钨层的金刚石颗粒,边加热边搅拌,直至合金熔融成膏状,自然冷却,得到高导热,高硬度金刚石颗粒增强熔融合金材料。
本发明相对于现有技术的有益效果如下:
1.通过金刚石改性制备导热性能良好的金刚石颗粒增强熔融合金,其工艺流程简单,易于操作,设备简单,产率高,适合大批量生产;
2.通过过氧钨酸溶胶-凝处理的金刚石颗粒,大大提高了金刚石颗粒与熔融合金之间的界面结合力,改善了熔融合金的流动性。
3.金刚石颗粒与液态合金之间的有效结合,增强了熔融合金的导热性能,提高了其硬度,促进了熔融合金热界面材料在电力电子封装领域的应用。
以上结合附图对本发明的实施方式做出了详细说明,但本发明不局限于所描述的实施方式。对于本领域技术人员而言,在不脱离本发明的原理和精神的情况下,对这些实施方式进行各种变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (10)

1.一种金刚石颗粒增强熔融合金热界面材料的制备方法,其特征在于:采用如下步骤制备:
(1)制备过氧钨酸溶胶-凝胶,将纯度99.9%的金属钨颗粒缓慢溶解于30%过氧化氢溶液中,连续搅拌,通过浸泡水浴保持在5-15℃;当反应结束时,溶液变成牛奶状;将铂片浸入溶液中以减少过量的过氧化氢,接着加入15ml乙醇和4ml冰醋酸,最后溶液在55~70℃下回流10~12h,直到得到稳定的过氧钨酸溶胶-凝胶,通过加入10~20质量份稀释剂来降低所述过氧钨酸溶胶-凝胶的浓度;
(2)制备表面沉积纳米尺度钨层的金刚石颗粒,将30~80质量份粒径80~200μm金刚石颗粒放入蒸馏水中超声波振荡1h清除表面上的杂质,然后用50~70%硝酸处理,再用蒸馏水洗涤并干燥,最后将处理过的金刚石颗粒加入所述过氧钨酸溶胶-凝胶中,搅拌10min,然后过滤并在60℃下干燥6h,在20%的H2-Ar气体中,在700-950℃下进行热处理30min,得到表面沉积纳米尺度钨层的金刚石颗粒;
(3)制备熔点60~100℃的40~100质量份熔融合金,在隔绝空气条件下,将48~58%质量百分比金属镓加热至熔化;往熔化的镓中慢慢加入28~35%质量百分比金属铟,同时边加热边缓慢搅拌;待铟全部溶解于镓中,再添加3~5%质量百分比金属铋,边加热边搅拌,直至铋全部溶解;再加入1.8~3%质量百分比铁、镁和5~8%质量百分比锡,加热并缓慢搅拌,直至合金成熔融状态得到熔融合金;所述熔融合金在300~330°C恒温条件下缓慢搅拌1h,确保金属充分熔合;
(4)制备金刚石颗粒增强熔融合金热界面材料,将所述熔融合金加热至950℃,然后按熔融合金与表面沉积纳米尺度钨层的金刚石颗粒按体积比3~5:1进行混合,边加热边搅拌,直至合金熔融成膏状,自然冷却,得到金刚石颗粒增强熔融合金热界面材料。
2.根据权利要求1所述的金刚石颗粒增强熔融合金热界面材料的制备方法,其特征在于:步骤(1)中所述金属钨颗粒的质量为4~8g。
3.根据权利要求1所述的金刚石颗粒增强熔融合金热界面材料的制备方法,其特征在于:步骤(1)中所述过氧化氢的体积为15~30ml。
4.根据权利要求1所述的金刚石颗粒增强熔融合金热界面材料的制备方法,其特征在于:步骤(1)中所述的稀释剂为丙酮或乙醇。
5.根据权利要求1所述的金刚石颗粒增强熔融合金热界面材料的制备方法,其特征在于:步骤(2)中所述金刚石颗粒的平均粒径为150~200μm。
6.根据权利要求1至5任一项所述的金刚石颗粒增强熔融合金热界面材料的制备方法,其特征在于:步骤(3)中所述熔融合金的质量分数的组分:48~56%镓,28~35%铟,3~5%铋,5~8%锡,1.8~3%的铁、镁。
7.一种根据权利要求1所述的金刚石颗粒增强熔融合金热界面材料的制备方法制成的金刚石颗粒增强熔融合金热界面材料,其特征在于:由以下质量份的原料组成:熔融合金40~100份,金刚石颗粒30~80份,金属钨10~20份,稀释剂10~20份。
8.根据权利要求7所述的金刚石颗粒增强熔融合金热界面材料,其特征在于:所述熔融合金的质量分数的组分:48~56%镓,28~35%铟,3~5%铋,5~8%锡,1.8~3%的铁、镁。
9.根据权利要求7所述的金刚石颗粒增强熔融合金热界面材料,其特征在于:所述金刚石颗粒的平均粒径为150~200μm。
10.根据权利要求7至9任一顶所述的金刚石颗粒增强熔融合金热界面材料,其特征在于:所述的稀释剂为丙酮或乙醇。
CN201710760090.8A 2017-08-30 2017-08-30 金刚石颗粒增强熔融合金热界面材料及其制备方法 Active CN107574330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710760090.8A CN107574330B (zh) 2017-08-30 2017-08-30 金刚石颗粒增强熔融合金热界面材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710760090.8A CN107574330B (zh) 2017-08-30 2017-08-30 金刚石颗粒增强熔融合金热界面材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107574330A CN107574330A (zh) 2018-01-12
CN107574330B true CN107574330B (zh) 2019-06-11

Family

ID=61029989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710760090.8A Active CN107574330B (zh) 2017-08-30 2017-08-30 金刚石颗粒增强熔融合金热界面材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107574330B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110752051B (zh) * 2019-10-28 2021-10-08 深圳第三代半导体研究院 一种铟覆金刚石掺杂纳米银烧结膏的制备方法及烧结方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338181A (zh) * 2007-07-04 2009-01-07 中国科学院金属研究所 一种金刚石颗粒掺杂的热界面材料及其制备方法
CN101418210A (zh) * 2007-10-26 2009-04-29 中国科学院理化技术研究所 一种具有高传热性能的混有颗粒的金属液体的制备方法
CN103131396A (zh) * 2011-12-02 2013-06-05 中国科学院理化技术研究所 一种热界面材料及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926955B2 (en) * 2002-02-08 2005-08-09 Intel Corporation Phase change material containing fusible particles as thermally conductive filler
JP2009097078A (ja) * 2007-09-25 2009-05-07 Canon Anelva Corp ターゲット構造とターゲット保持装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338181A (zh) * 2007-07-04 2009-01-07 中国科学院金属研究所 一种金刚石颗粒掺杂的热界面材料及其制备方法
CN101418210A (zh) * 2007-10-26 2009-04-29 中国科学院理化技术研究所 一种具有高传热性能的混有颗粒的金属液体的制备方法
CN103131396A (zh) * 2011-12-02 2013-06-05 中国科学院理化技术研究所 一种热界面材料及其制造方法
CN103131396B (zh) * 2011-12-02 2016-01-27 中国科学院理化技术研究所 一种热界面材料及其制造方法

Also Published As

Publication number Publication date
CN107574330A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
CN108526751B (zh) 一种可用于无压烧结的微纳米混合焊膏及其制备方法
JP7145855B2 (ja) マイクロ/ナノ粒子強化型複合はんだ及びその調製方法
CN104759725B (zh) 一种使用微纳米级金属颗粒填充Sn基焊料实现电子组件高温封装的方法
CN105127609B (zh) 铜/银核壳纳米颗粒低温烧结复合焊膏及其制备方法
CN103894694B (zh) 一种复合型绿色低熔玻璃钎料连接碳化硅增强铝基复合材料的方法
CN103474408B (zh) 一种表面有镀金层的金银合金键合丝及其制备方法
CN106312361A (zh) 陶瓷基板与覆铜箔片低温连接的焊膏及其生产工艺
CN105171270B (zh) 钎焊异组分W‑Cu合金的钎料及制备方法和钎焊方法
CN103740995A (zh) 一种镓基液态合金材料及其制备方法
CN107350663A (zh) 液态金属增强基纳米银焊膏热界面材料及其制备方法
CN109979639A (zh) 一种纳米芯片封装用混合型导电银浆
CN107486553B (zh) 铝膏及其应用
CN107574330B (zh) 金刚石颗粒增强熔融合金热界面材料及其制备方法
CN102108458A (zh) 一种金刚石/铜高导热复合材料及其制备方法
CN101170152A (zh) Led大功率管晶片散热方法
CN108588456B (zh) 一种Cu-Sn金属间化合物骨架相变材料及其制备方法
CN107369665B (zh) 一种石墨烯键合铜丝的制备方法
JP6136878B2 (ja) Bi基はんだ合金とその製造方法、並びにそれを用いた電子部品のボンディング方法および電子部品実装基板
CN112898929A (zh) 一种即时固化的液态金属复合热界面材料及制备方法
CN102534347B (zh) 一种锡铅锌锑合金,及其用途和制备方法
Zhai et al. Research on the mechanical and performance effects of flux on solder layer interface voids
CN109055800A (zh) 一种键合金线及其制备方法
CN110343351A (zh) 一种自修复高分子导热材料及其制备方法
CN106381432B (zh) 一种高导热金刚石/多金属复合材料制备方法
Zhai et al. Effect of the welding process on the microstructure and mechanical properties of Au/Sn–3.0 Ag–0.5 Cu/Cu solder joints

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant