CN107565576A - A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated - Google Patents

A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated Download PDF

Info

Publication number
CN107565576A
CN107565576A CN201710857272.7A CN201710857272A CN107565576A CN 107565576 A CN107565576 A CN 107565576A CN 201710857272 A CN201710857272 A CN 201710857272A CN 107565576 A CN107565576 A CN 107565576A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710857272.7A
Other languages
Chinese (zh)
Other versions
CN107565576B (en
Inventor
廖剑波
何培颖
刘凯靖
赵卿云
曾本鹏
程稈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Fujian Electric Power Co Ltd
Fuzhou Power Supply Co of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Fujian Electric Power Co Ltd
Fuzhou Power Supply Co of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Fujian Electric Power Co Ltd, Fuzhou Power Supply Co of State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710857272.7A priority Critical patent/CN107565576B/en
Publication of CN107565576A publication Critical patent/CN107565576A/en
Application granted granted Critical
Publication of CN107565576B publication Critical patent/CN107565576B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated.Using a kind of two benches reactive Voltage Optimum strategy of global optimization local directed complete set:It is first optimal for target with network loss and voltage deviation comprehensive satisfaction, the operating scheme of the regulating time yardstick longer element such as optimization load ratio bridging switch, capacitor bank, contact and block switch;Again with the minimum target of voltage pulsation index, implement DG and the optimal reactive power dispatch of energy storage.Application enhancements harmonic search algorithm carrys out solving-optimizing model.Finally, by sample calculation analysis, the reasonability and superiority of put forward reactive Voltage Optimum method are demonstrated.

Description

A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated
Technical field
The present invention relates to a kind of active distribution network reactive Voltage Optimum method, particularly a kind of more active management means phases The active distribution network reactive Voltage Optimum method of coordination.
Background technology
Lack of energy makes regenerative resource distributed generation technology obtain sending out energetically with aggravation the problems such as environmental pollution Exhibition, but the high permeability of distributed power source (distributed generation, DG) is grid-connected that distribution network operation will be caused A series of profound influences.To adapt to DG scale access, compatibility and the consumption energy of green electric power supply of the power distribution network to DG are improved Power, further lift the optimization operation level of power distribution network, active distribution network (active distribution network, ADN) Technology is answered border and given birth to.The interrupted wae that the green DG such as blower fan (wind turbine, WT), photovoltaic (photovoltaic, PV) contributes It is dynamic to Cybersecurity Operation (especially whether qualified voltage level is) to cause to have a strong impact on how to mitigate batch-type DG to power distribution network Influence, the reactive voltage distribution of raising green energy resource utilization rate, optimization network of safe operation are the core that ADN technologies should solve One of heart problem.At present existing numerous scholars expand explorations to the reactive Voltage Optimum problem of power distribution network, and accumulation is necessarily Achievement in research.Such as:(1) capacitor group switching and DG Reactive Power Dispatchs are considered in power distribution network a few days ago idle work optimization, for electricity Container group switching, first implement the overall static optimization of period decoupling, recycle fuzzy clustering to carry out sequential segmentation to ideal scheme With merging, the idle work optimization that rational capacitor group switching scheme implements DG is finally based on.(2) with the total running wastage of power distribution network most Small be target, have studied the static reactive optimization in a certain run time section face, and it is main that meter and OLTC, capacitor bank, DG are idle etc. Dynamic management means, but do not account for adjustment count constraint and influence of the DG output interval fluctuations to system voltage of key element. (3) uncertainty of honourable car is considered, probabilistic loadflow is solved using point estimations, with the minimum mesh of node voltage mean bias Mark, have studied the reactive Voltage Optimum problem of power distribution network, it is fallen into a trap and the regulation of traditional reactive voltage equipment, DG Reactive Power Dispatchs and Electromobile charging management.(4) a variety of idle electricity such as OLTC, capacitor bank, SVC, pressure regulator have been considered The optimal control of equipment is pressed, have studied the static reactive voltage optimization of active power distribution network, does not count and the sequential of the network operation is special Property.
The content of the invention
It is an object of the invention to overcome the deficiencies in the prior art part, and provide a kind of using global complex optimum-office Optimize and revise the active distribution network reactive Voltage Optimum method that more active management means of two-stage policy are mutually coordinated in portion.
A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated, (1) establishes active distribution The voltage pulsation evaluation index of net:
For individual node, the voltage pulsation index of different periods is in the cycle of operation:
Wherein:KVF,iIt is stronger for the voltage pulsation index of node i, the fluctuation of the bigger expression node voltage of desired value;T For the cycle of operation it is total when hop count;Vt,iFor the magnitude of voltage of t period node is;For the average voltage level of node i,
The voltage pulsation index of system can be summed using node index to build:
Wherein:KVFIt is stronger for the voltage pulsation index of system, the voltage pulsation of the bigger expression system of desired value;Nnode For nodes;
(2) mathematical modeling of reactive Voltage Optimum is established:Whole optimization process is divided into two benches, first stage by the present invention The global complex optimum of reactive voltage is carried out, is up to target with network loss and voltage deviation comprehensive satisfaction, optimization OLTC, electric capacity Device group, the day operation scheme of network switching;Optimum results based on the first stage, second stage is with system voltage fluctuation index Minimum target, Optimized Operation DG power factors and the idle output of energy storage, implement the local optimum adjustment of reactive voltage in the period,
1) global complex optimum mathematical modeling:
The decision variable of reactive voltage overall situation complex optimum is the OLTC gears of day part in the cycle of operation, capacitor bank throwing Enter a group number, contact and block switch folding position, global synthesis is considered with the network loss and voltage deviation of all the period of time cycle of operation The quality of prioritization scheme, shown in object function such as formula (4),
Wherein:F is network loss and voltage deviation comprehensive satisfaction, and value degree of being satisfied with more greatly is higher, operating scheme is more excellent; α1、α2The respectively weight factor of network loss satisfaction and voltage deviation satisfaction, is taken as 0.5;F1,tIt is satisfied with for the network loss of t periods Degree (depends on the actual network loss P of t period systemsloss,t), value degree of being satisfied with more greatly is higher, operating scheme network loss is smaller, its Circular is shown in formula (5);F2,t(the maximum node voltage deviation of t periods is depended on for the voltage deviation satisfaction of t periods ΔVt), value degree of being satisfied with more greatly is higher, operating scheme voltage deviation is smaller, and its circular is shown in formula (6).
Wherein:Pmax,tFor the maximum allowable network loss of t periods, i.e. network loss before reactive Voltage Optimum;Pmin,tFor the t periods Preferable network loss, i.e., network loss when all load or burden without work all only transmit active by local compensation, circuit;ΔVmaxFor maximum allowable electricity Deviation is pressed, the present invention takes 0.05;ΔVminFor desired voltage deviation, 0.01 can be taken as;VNFor rated voltage,
The present invention considers system operation constraint, OLTC and capacitor bank control about in reactive voltage overall situation complex optimum The constraints of beam, network structure regulation constraint etc., it is specific as follows:
Vi,min≤Vi≤Vi,max (9)
Sj≤Sj,max (10)
nOLTC,i,min≤nOLTC,t,i≤nOLTC,i,max (11)
0≤nC,t,i≤nC,i,max (13)
γt,i∈{0,1} (15)
Ot∈Oradi (17)
Wherein:Pgrid,t、Qgrid,tThe active and reactive power that respectively t periods ADN interacts with higher level's power network;Pload,t、 Qload,tRespectively t periods ADN active and reactive load value;Ploss,t、Qloss,tRespectively t periods ADN active and reactive damage Consumption;PDG,t,i、QDG,t,iRespectively i-th DG of t periods active and reactive output;PESS,t,i、QESS,t,iFor i-th energy storage of t periods Active and reactive output;NDG、NESSDG, the quantity of energy storage in respectively ADN;ViFor the voltage magnitude of node i, Vi,max、Vi,min Respectively its bound (1.05,0.95 times that take rated voltage);SjFor branch road j apparent energy, Sj,maxFor its upper limit; nOLTC,t,iFor i-th OLTC of t periods tap gear, nOLTC ,i ,max、nOLTC,i,minFor its bound;ΔOLTC,t,iFor the t periods I-th OLTC regulated variable, the expression of value 1 has carried out gear regulation, 0 expression is not adjusted;MOLTCIt is maximum fair for OLTC day Perhaps number is adjusted;nC,t,iFor i-th capacitor bank input group number of t periods, nC,i,maxFor its upper limit;ΔC,t,iFor t periods i-th The performance variable of capacitor bank, the expression of value 1 has carried out switching operation, 0 expression does not operate;MCIt is maximum fair for the day of capacitor bank Perhaps switching operation number;γt,iRepresent that switch closure, 0 represent that switch is opened for the location variable of i-th of switch of t periods, 1; ΔS,t,iFor the action variable of i-th of switch of t periods, value 1 represents that switch motion, 0 represent that the position of the switch is constant;MSTo be single The day maximum allowable action frequency of switch;OtFor the network structure of t period power distribution networks, by γt,iDetermine;OradiFor the spoke of power distribution network Penetrate shape network structure set;
2) local optimum adjustment mathematical modeling
After the day operation scheme of regulating time yardstick longer element determines, then the DG to day part in the cycle of operation and storage It idle can contribute and optimize, make full use of DG and the two-way Reactive-power control ability of energy storage in ADN, carry out the voltage wave of attenuation systems Dynamic property, realize that the local optimum in the reactive voltage period adjusts, the decision variable of local optimum adjustment is day part DG operation Power factor and the idle output of energy storage, its target minimize for the voltage pulsation index of system:
It is also contemplated that DG and energy storage Reactive-power control related constraint in the local optimum adjustment of reactive voltage:
QESS,i,min≤QESS,t,i≤QESS,i,max (19)
Wherein:QESS,i,max、QESS,i,minFor the idle output bound of i-th energy storage;SPCS,iFor the inversion of i-th energy storage Device capacity;For i-th DG of t periods operation power factor,Allow for it The bound of regulation;
(3) mathematical modeling is solved using improved harmonic search algorithm
Improved harmonic search algorithm, generates multiple new harmony in each iteration optimizing, and the new harmony of a portion is adopted Generated with former method, keep the good calculating performances of HS, ensure ability of searching optimum;The new harmony of another part is based on former method After generation, according to the thought of particle cluster algorithm, it will continue to scan for the direction of current optimal harmony position, realize new The renewal amendment of study and new harmony of the harmony to current optimal harmony, after new harmony generation, to optimal harmony position The mode that direction is updated amendment is:
Wherein:The renewal speed of component is tieed up for new harmony jth;C is Studying factors;rand4Uniformly to divide on (0,1) The random number of cloth;Component is tieed up for the jth of optimal harmony,
Solve concretely comprising the following steps for mathematical modeling:
1. input optimization operation problem solves all required parameter, including:Network topology structure, line parameter circuit value, load Active active plan of prediction data, energy-storage battery etc. with scene;
It is up to target with network loss and voltage deviation comprehensive satisfaction 2. based on harmonic search algorithm is improved, solves idle The global complex optimization problem of voltage, draw the daily optimal operation scheme of OLTC, capacitor bank and network structure;
3. on the basis of global optimization scheme is obtained, application enhancements harmonic search algorithm is idle to solve day part again The local optimum adjustment problem of voltage, the decrease of promotion system voltage pulsation, draws DG and the idle daily optimal operation of energy storage Scheme.
The harmony coding strategy of the present invention is to adjustment OLTC, capacitor bank, the period of network structure and these elements The running status adjusted is encoded, and the specific coding of OLTC and capacitor bank is shown in that formula (23), network structure are shown in formula (24).
Wherein:tOLTC,m,iFor the when segment number of i-th OLTC, the m times regulation;NOLTCFor the total number of units of OLTC;nOLTC,m,iFor The gear of the m times regulation of i platforms OLTC;tC,m,iThe when segment number of i-th capacitor bank, the m times switching;NCFor capacitor bank head station Number;nC,m, iFor the input group number of i-th capacitor bank, the m times switching;tTOPO,mFor the when segment number of the m times network structure regulation; MTOPOFor the day maximum allowable adjustment number of network structure;Bm,iFor the open loop branch of i-th of loop in the m times network structure regulation Number on road;NloopFor total loop number of network.
The adjustment of reactive voltage local optimum and sound encoder it is relatively simple, the DG of day part need to only be run power factor and Energy storage is idle, and output is encoded one by one.
In summary, present invention advantage following compared with prior art:
(1) meter and the OLTC regulations of active distribution network, capacitor group switching, flexible network topologies adjust, DG and energy storage A variety of active management means such as Reactive Power Dispatch.
(2) a kind of two stage reactive Voltage Optimum strategy is used, the operation characteristic of different controlled members had both been considered, has cared for And a variety of active management means is mutually coordinated;And can enough simplifies the complexity of optimal problem, reduces dimension, in favor of asking Solution.
(3) voltage pulsation of network can be mitigated, make whole network voltage distribution more gentle, so as to be indirectly in a few days can not Intermittence of expected DG contributing fluctuates reserved margin of safety, mitigates the pressure of in a few days management and running.
Brief description of the drawings
Fig. 1 is the improvement harmonic search algorithm flow chart of the present invention.
Fig. 2 is the present invention based on the model solution strategic process figure for improving harmonic search algorithm.
Fig. 3 is active distribution network test example figure.
Fig. 4 is the honourable lotus prediction curve figure of each feeder line.
Fig. 5 is the active power output daily planning figure of energy storage.
Fig. 6 is Miniature wind electric field and its idle daily optimal operation conceptual scheme of energy storage.
Fig. 7 is small-sized photovoltaic power station and its idle daily optimal operation conceptual scheme of energy storage.
The voltage level of each node of Fig. 8 power distribution network day parts compares schematic diagram before optimization.
Fig. 9 is schematic diagram after conventional method optimization.
Figure 10 is schematic diagram after present invention optimization
Embodiment
The present invention is described in more detail with reference to embodiment.
Embodiment 1
A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated, it is characterised in that specific Step is:(1) the voltage pulsation evaluation index of active distribution network is established:
For individual node, the voltage pulsation index of different periods is in the cycle of operation:
Wherein:KVF,iIt is stronger for the voltage pulsation index of node i, the fluctuation of the bigger expression node voltage of desired value;T For the cycle of operation it is total when hop count;Vt,iFor the magnitude of voltage of t period node is;For the average voltage level of node i,
The voltage pulsation index of system can be summed using node index to build:
Wherein:KVFIt is stronger for the voltage pulsation index of system, the voltage pulsation of the bigger expression system of desired value;Nnode For nodes;
(2) mathematical modeling of reactive Voltage Optimum is established:Whole optimization process is divided into two benches, first stage by the present invention The global complex optimum of reactive voltage is carried out, is up to target with network loss and voltage deviation comprehensive satisfaction, optimization OLTC, electric capacity Device group, the day operation scheme of network switching;Optimum results based on the first stage, second stage is with system voltage fluctuation index Minimum target, Optimized Operation DG power factors and the idle output of energy storage, implement the local optimum adjustment of reactive voltage in the period,
1) global complex optimum mathematical modeling:
The decision variable of reactive voltage overall situation complex optimum is the OLTC gears of day part in the cycle of operation, capacitor bank throwing Enter a group number, contact and block switch folding position, global synthesis is considered with the network loss and voltage deviation of all the period of time cycle of operation The quality of prioritization scheme, shown in object function such as formula (4),
Wherein:F is network loss and voltage deviation comprehensive satisfaction, and value degree of being satisfied with more greatly is higher, operating scheme is more excellent; α1、α2The respectively weight factor of network loss satisfaction and voltage deviation satisfaction, is taken as 0.5;F1,tIt is satisfied with for the network loss of t periods Degree (depends on the actual network loss P of t period systemsloss,t), value degree of being satisfied with more greatly is higher, operating scheme network loss is smaller, its Circular is shown in formula (5);F2,t(the maximum node voltage deviation of t periods is depended on for the voltage deviation satisfaction of t periods ΔVt), value degree of being satisfied with more greatly is higher, operating scheme voltage deviation is smaller, and its circular is shown in formula (6).
Wherein:Pmax,tFor the maximum allowable network loss of t periods, i.e. network loss before reactive Voltage Optimum;Pmin,tFor the t periods Preferable network loss, i.e., network loss when all load or burden without work all only transmit active by local compensation, circuit;ΔVmaxFor maximum allowable electricity Deviation is pressed, the present invention takes 0.05;ΔVminFor desired voltage deviation, 0.01 can be taken as;VNFor rated voltage,
The present invention considers system operation constraint, OLTC and capacitor bank control about in reactive voltage overall situation complex optimum The constraints of beam, network structure regulation constraint etc., it is specific as follows:
Vi,min≤Vi≤Vi,max (9)
Sj≤Sj,max (10)
nOLTC,i,min≤nOLTC,t,i≤nOLTC,i,max (11)
0≤nC,t,i≤nC,i,max(13)
γt,i∈{0,1} (15)
Ot∈Oradi (17)
Wherein:Pgrid,t、Qgrid,tThe active and reactive power that respectively t periods ADN interacts with higher level's power network;Pload,t、 Qload,tRespectively t periods ADN active and reactive load value;Ploss,t、Qloss,tRespectively t periods ADN active and reactive damage Consumption;PDG,t,i、QDG,t,iRespectively i-th DG of t periods active and reactive output;PESS,t,i、QESS,t,iFor i-th energy storage of t periods Active and reactive output;NDG、NESSDG, the quantity of energy storage in respectively ADN;ViFor the voltage magnitude of node i, Vi,max、Vi,min Respectively its bound (1.05,0.95 times that take rated voltage);SjFor branch road j apparent energy, Sj,maxFor its upper limit; nOLTC,t,iFor i-th OLTC of t periods tap gear, nOLTC,i,max、nOLTC,i,minFor its bound;ΔOLTC,t,iFor the t periods I-th OLTC regulated variable, the expression of value 1 has carried out gear regulation, 0 expression is not adjusted;MOLTCIt is maximum fair for OLTC day Perhaps number is adjusted;nC,t,iFor i-th capacitor bank input group number of t periods, nC,i,maxFor its upper limit;ΔC,t,iFor t periods i-th The performance variable of capacitor bank, the expression of value 1 has carried out switching operation, 0 expression does not operate;MCIt is maximum fair for the day of capacitor bank Perhaps switching operation number;γt,iRepresent that switch closure, 0 represent that switch is opened for the location variable of i-th of switch of t periods, 1; ΔS,t,iFor the action variable of i-th of switch of t periods, value 1 represents that switch motion, 0 represent that the position of the switch is constant;MSTo be single The day maximum allowable action frequency of switch;OtFor the network structure of t period power distribution networks, by γt,iDetermine;OradiFor the spoke of power distribution network Penetrate shape network structure set;
2) local optimum adjustment mathematical modeling
After the day operation scheme of regulating time yardstick longer element determines, then the DG to day part in the cycle of operation and storage It idle can contribute and optimize, make full use of DG and the two-way Reactive-power control ability of energy storage in ADN, carry out the voltage wave of attenuation systems Dynamic property, realize that the local optimum in the reactive voltage period adjusts, the decision variable of local optimum adjustment is day part DG operation Power factor and the idle output of energy storage, its target minimize for the voltage pulsation index of system:
It is also contemplated that DG and energy storage Reactive-power control related constraint in the local optimum adjustment of reactive voltage:
QESS,i,min≤QESS,t,i≤QESS,i,max (19)
Wherein:QESS,i,max、QESS,i,minFor the idle output bound of i-th energy storage;SPCS,iFor the inversion of i-th energy storage Device capacity;For i-th DG of t periods operation power factor,Allow the upper of regulation for it Lower limit;
(3) mathematical modeling is solved using improved harmonic search algorithm
Improved harmonic search algorithm, generates multiple new harmony in each iteration optimizing, and the new harmony of a portion is adopted Generated with former method, keep the good calculating performances of HS, ensure ability of searching optimum;The new harmony of another part is based on former method After generation, according to the thought of particle cluster algorithm, it will continue to scan for the direction of current optimal harmony position, realize new The renewal amendment of study and new harmony of the harmony to current optimal harmony, after new harmony generation, to optimal harmony position The mode that direction is updated amendment is:
Wherein:The renewal speed of component is tieed up for new harmony jth;C is Studying factors;rand4To be uniformly distributed on (0,1) Random number;Component is tieed up for the jth of optimal harmony,
Solve concretely comprising the following steps for mathematical modeling:
1. input optimization operation problem solves all required parameter, including:Network topology structure, line parameter circuit value, load Active active plan of prediction data, energy-storage battery etc. with scene;
It is up to target with network loss and voltage deviation comprehensive satisfaction 2. based on harmonic search algorithm is improved, solves idle The global complex optimization problem of voltage, draw the daily optimal operation scheme of OLTC, capacitor bank and network structure;
3. on the basis of global optimization scheme is obtained, application enhancements harmonic search algorithm is idle to solve day part again The local optimum adjustment problem of voltage, the decrease of promotion system voltage pulsation, draws DG and the idle daily optimal operation of energy storage Scheme.
Concrete example illustrates the optimization method of the present invention below:
The present invention constructs active distribution network test example as shown in Figure 3, and idle electricity is proposed based on the network verification Press the validity of optimization method.Totally 17 grades of the load ratio bridging switch of main transformer, no-load voltage ratio adjustable range ± 8 × 1.25%.Low pressure Bus B2, B3 be equiped with respectively 10 groups of reactive-load compensation shunt capacitor, 5 groups, per pool-size 400kvar., can for feeder line 2,3 Realize that Single-ring network reconstructs by Operation switch S5-S11;Other switches in network are mainly used in Fault Isolation and overhaul of the equipments Deng without scheduling controlling.Load ratio bridging switch, capacitor bank, adjustment number is allowed to be 4 times the day of network structure.Each Route road is cable, and every kilometer of impedance 0.15+j0.12 Ω, the distance of adjacent node is 2km, maximum carrying capacity 509A.Feedback Line 1,3 loads are based on resident load, and the load of feeder line 2 is based on industrial load.
The total permeability of scene of network is about 50%, and wherein feeder line 1 is based on wind-powered electricity generation, and feeder line 2 mixes for scene, feeder line 3 It is photovoltaic.Miniature wind electric field is grid-connected in node 16, rated capacity 1.2MW;Remaining blower fan is that distributing accesses, specified appearance Amount is 0.3MW.Small-sized photovoltaic power station is grid-connected in 28 nodes, rated capacity 1.2MW;Remaining photovoltaic is distributing access, Rated capacity is 0.3MW.Implement optimization control to the operation power factor of Miniature wind electric field and small-sized photovoltaic power station in control centre System, remaining DG are not dispatched.The grid-connected node of Miniature wind electric field and small-sized photovoltaic power station equipped with batteries as energy storage device, The capacity of energy accumulation current converter is 0.5MW.
Each feeder load is with the active prediction result of scene as shown in figure 4, the active daily planning of energy storage is as shown in Figure 5 (in figure It is active be more than zero expression electric discharge, less than zero for charging).
Reactive Voltage Optimum basic result
Global complex optimum (regulation of OLTC gears, capacitor group switching, the network structure spirit of active distribution network reactive voltage Adjustment living) 1 is the results are shown in Table, scheme is as Figure 6-Figure 7 for local optimum adjustment (DG and the idle generating optimization of energy storage).
Table 1OLTC, capacitor bank and network structure daily optimal operation scheme
OLTC gear regulation and the switching operation of capacitor bank are determined by workload demand, assisted with the horizontal phase of feeder voltage Adjust.In terms of network structure, in period 8-16, the load of feeder line 2 is heavier, and the load of feeder line 3 is relatively light, closes interconnection switch S11, beats Opened and segmented switch S7, the end load of feeder line 2 can be transferred to feeder line 3;Conversely, in the period 21~24, the load of feeder line 3 is heavier, The load of feeder line 2 is relatively light, then closes interconnection switch S11, opens block switch S10, the end load of feeder line 3 is transferred into feedback Line 2;Remaining period network keeps original topology.Flexibly topology adjustment is advantageous to balanced feeder line load, reduces network loss and improves electricity Press quality.
Fig. 7 with Fig. 8 it is idle contribute be more than zero for send it is idle, less than zero be absorb it is idle.DG active power outputs it is larger, The voltage level higher period, DG using leading power factor operation, absorb it is idle, so as to avoid Over High-Limit Voltage;It is active in DG Contributing, smaller or load is heavier, the voltage level relatively low period, DG power factors hysteresis, send it is idle, to promote voltage level Improve.Energy-storage battery can P-Q four quadrant runnings, possess certain Reactive-power control ability in inverter range of capacity:In wind The light DG active power outputs larger period, unnecessary idle of energy storage absorption system, it is too high to suppress voltage level;Feeder line heavy duty or DG without Work(regulating power weaker period, energy storage then send idle, provide reactive power support for system, it is ensured that voltage level is qualified.
More scene comparison analyses
The superiority of reactive Voltage Optimum method, reactive Voltage Optimum of this section to three kinds of scenes are put forward for further checking Effect compares analysis (being shown in Table 2).Traditional reactive Voltage Optimum refers to only meter and OLTC and the reactive voltage of capacitor bank Optimization method, reactive Voltage Optimum of the invention have then considered the regulation of OLTC gears, capacitor group switching, network topology spirit The active management means such as adjustment, energy storage and DG Reactive Power Dispatchs living.Network loss in table 2 for all the period of time day full branch road active loss it With the voltage deviation sum that, voltage deviation is all the period of time day full node.
The reactive Voltage Optimum Contrast on effect of the different scenes of table 2
Analytical table 2 is understood, compares traditional reactive Voltage Optimum, and the present invention puies forward scheme obtained by reactive Voltage Optimum method Network loss is lower, voltage deviation is smaller, comprehensive satisfaction higher (improving 83.82%), voltage pulsation desired value are smaller (reduces 63.62%), it is seen that to put forward reactive Voltage Optimum method can significantly reduce network loss and voltage deviation and effective control system Voltage pulsation.
Fig. 8 is the D prism map (t-i-V) of each node voltage of power distribution network day part under three kinds of scenes, and the figure can be clear Intuitively reflect the distribution situation of system voltage.Due to lacking effective pipe to traditional reactive voltage equipment and new idle resource Control, before reactive Voltage Optimum (Fig. 8 .a), network voltage is horizontal obvious relatively low, tight in peak load period at night many node voltages Lower limit is got over again.The voltage level of Fig. 8 .b and Fig. 8 .c two schemes in the reasonable scope, but is carefully compared and can be seen that:Fig. 8 .c Voltage's distribiuting it is more gentle, focus more on normal voltage nearby, voltage pulsation it is smaller.
Above-mentioned chart and comparative analysis explanation:The reactive voltage that more active management means proposed by the invention are mutually coordinated is excellent Change method can effectively drop damage, reduce voltage deviation, improve comprehensive satisfaction;On the other hand, the reactive voltage obtained by the method is excellent Change scheme on the basis of ensuring that voltage level is qualified, can mitigate the voltage pulsation of network, make whole network voltage distribution more flat It is slow, so as to indirectly reserve margin of safety for the in a few days not expected intermittent fluctuation of DG outputs, mitigate in a few days management and running Pressure.
The not described part of the present embodiment is same as the prior art.

Claims (2)

1. a kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated, it is characterised in that specific step Suddenly it is:(1) the voltage pulsation evaluation index of active distribution network is established:
For individual node, the voltage pulsation index of different periods is in the cycle of operation:
<mrow> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>F</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mover> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein:KVF,iIt is stronger for the voltage pulsation index of node i, the fluctuation of the bigger expression node voltage of desired value;T is fortune The row cycle it is total when hop count;Vt,iFor the magnitude of voltage of t period node is;For the average voltage level of node i,
The voltage pulsation index of system can be summed using node index to build:
<mrow> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>F</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>d</mi> <mi>e</mi> </mrow> </msub> </munderover> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>F</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein:KVFIt is stronger for the voltage pulsation index of system, the voltage pulsation of the bigger expression system of desired value;NnodeFor section Points;
(2) mathematical modeling of reactive Voltage Optimum is established:Whole optimization process is divided into two benches by the present invention, and the first stage is carried out The global complex optimum of reactive voltage, it is up to target with network loss and voltage deviation comprehensive satisfaction, optimization OLTC, capacitor Group, the day operation scheme of network switching;Optimum results based on the first stage, second stage with system voltage fluctuation index most Small is target, Optimized Operation DG power factors and the idle output of energy storage, implements the local optimum adjustment of reactive voltage in the period,
1) global complex optimum mathematical modeling:
The decision variable of reactive voltage overall situation complex optimum is the OLTC gears of day part, capacitor bank input group in the cycle of operation Number, contact and block switch folding position, global complex optimum is considered with the network loss and voltage deviation of all the period of time cycle of operation The quality of scheme, shown in object function such as formula (4),
<mrow> <mi>max</mi> <mi> </mi> <mi>F</mi> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>F</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>F</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein:F is network loss and voltage deviation comprehensive satisfaction, and value degree of being satisfied with more greatly is higher, operating scheme is more excellent;α1、α2 The respectively weight factor of network loss satisfaction and voltage deviation satisfaction, is taken as 0.5;F1,tFor the network loss satisfaction of t periods (depend on the actual network loss P of t period systemsloss,t), value degree of being satisfied with more greatly is higher, operating scheme network loss is smaller, and it has Body computational methods are shown in formula (5);F2,t(the maximum node voltage deviation Δ of t periods is depended on for the voltage deviation satisfaction of t periods Vt), value degree of being satisfied with more greatly is higher, operating scheme voltage deviation is smaller, and its circular is shown in formula (6).
<mrow> <msub> <mi>F</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>min</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>max</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>F</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;Delta;V</mi> <mi>min</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>&amp;Delta;V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;Delta;V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;Delta;V</mi> <mi>min</mi> </msub> </mrow> </mfrac> </mtd> <mtd> <mrow> <msub> <mi>&amp;Delta;V</mi> <mi>max</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;Delta;V</mi> <mi>min</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>&amp;Delta;V</mi> <mi>max</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;Delta;V</mi> <mi>t</mi> </msub> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <mo>|</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>N</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein:Pmax,tFor the maximum allowable network loss of t periods, i.e. network loss before reactive Voltage Optimum;Pmin,tFor the preferable net of t periods Damage, i.e., network loss when all load or burden without work all only transmit active by local compensation, circuit;ΔVmaxFor maximum permissible voltage deviation, The present invention takes 0.05;ΔVminFor desired voltage deviation, 0.01 can be taken as;VNFor rated voltage,
In the reactive voltage overall situation complex optimum present invention consider system operation constraint, OLTC and capacitor bank control constraints, The constraints of network structure regulation constraint etc., it is specific as follows:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>g</mi> <mi>r</mi> <mi>i</mi> <mi>d</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>D</mi> <mi>G</mi> </mrow> </msub> </munderover> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>G</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>S</mi> </mrow> </msub> </munderover> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>S</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>g</mi> <mi>r</mi> <mi>i</mi> <mi>d</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>D</mi> <mi>G</mi> </mrow> </msub> </munderover> <msub> <mi>Q</mi> <mrow> <mi>D</mi> <mi>G</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>S</mi> </mrow> </msub> </munderover> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>S</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Vi,min≤Vi≤Vi,max (9)
Sj≤Sj,max (10)
nOLTC,i,min≤nOLTC,t,i≤nOLTC,i,max (11)
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;Delta;</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>M</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
0≤nC,t,i≤nC,i,max (13)
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;Delta;</mi> <mrow> <mi>C</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
γt,i∈{0,1} (15)
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>&amp;Delta;</mi> <mrow> <mi>S</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>M</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
Ot∈Oradi (17)
Wherein:Pgrid,t、Qgrid,tThe active and reactive power that respectively t periods ADN interacts with higher level's power network;Pload,t、Qload,tPoint Not Wei t periods ADN active and reactive load value;Ploss,t、Qloss,tRespectively t periods ADN active and reactive loss;PDG,t,i、 QDG,t,iRespectively i-th DG of t periods active and reactive output;PESS,t,i、QESS,t,iFor active, nothing of i-th energy storage of t periods Work(is contributed;NDG、NESSDG, the quantity of energy storage in respectively ADN;ViFor the voltage magnitude of node i, Vi,max、Vi,minRespectively its Bound (1.05,0.95 times that take rated voltage);SjFor branch road j apparent energy, Sj,maxFor its upper limit;nOLTC,t,iFor t when I-th OLTC of section tap gear, nOLTC,i,max、nOLTC,i,minFor its bound;ΔOLTC,t,iFor i-th OLTC's of t periods Regulated variable, the expression of value 1 has carried out gear regulation, 0 expression is not adjusted;MOLTCFor OLTC day maximum allowable regulation number; nC,t,iFor i-th capacitor bank input group number of t periods, nC,i,maxFor its upper limit;ΔC,t,iFor the behaviour of i-th capacitor bank of t periods Make variable, the expression of value 1 has carried out switching operation, 0 expression does not operate;MCFor the day maximum allowable switching operation time of capacitor bank Number;γt,iRepresent that switch closure, 0 represent that switch is opened for the location variable of i-th of switch of t periods, 1;ΔS,t,iFor the t periods i-th The action variable of individual switch, value 1 represent that switch motion, 0 represent that the position of the switch is constant;MSIt is maximum allowable for the day of single switch Action frequency;OtFor the network structure of t period power distribution networks, by γt,iDetermine;OradiFor the radial networks structure collection of power distribution network Close;
2) local optimum adjustment mathematical modeling
After the day operation scheme of regulating time yardstick longer element determines, then to the DG of day part in the cycle of operation and energy storage without Work(is contributed and optimized, and is made full use of DG and the two-way Reactive-power control ability of energy storage in ADN, is carried out the voltage pulsation of attenuation systems Property, realize in the reactive voltage period local optimum adjustment, local optimum adjustment decision variable be day part DG operation work( Rate factor and the idle output of energy storage, its target minimize for the voltage pulsation index of system:
<mrow> <mtable> <mtr> <mtd> <mi>min</mi> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>F</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>d</mi> <mi>e</mi> </mrow> </msub> </munderover> <msub> <mi>K</mi> <mrow> <mi>V</mi> <mi>F</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
It is also contemplated that DG and energy storage Reactive-power control related constraint in the local optimum adjustment of reactive voltage:
QESS,i,min≤QESS,t,i≤QESS,i,max (19)
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>S</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>E</mi> <mi>S</mi> <mi>S</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>S</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>S</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
Wherein:QESS,i,max、QESS,i,minFor the idle output bound of i-th energy storage;SPCS,iHold for the inverter of i-th energy storage Amount;For i-th DG of t periods operation power factor,Allow to adjust for it Bound;
(3) mathematical modeling is solved using improved harmonic search algorithm
Improved harmonic search algorithm, multiple new harmony are generated in each iteration optimizing, the new harmony of a portion is using former Method generates, and keeps the good calculating performances of HS, ensures ability of searching optimum;The new harmony of another part is generated based on former method Afterwards, according to the thought of particle cluster algorithm, it will continue to scan for the direction of current optimal harmony position, realize new harmony The renewal amendment of study and new harmony to current optimal harmony, after new harmony generation, to the direction of optimal harmony position The mode for being updated amendment is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mi>j</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> <mo>=</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>rand</mi> <mn>4</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>j</mi> <mrow> <mi>b</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>j</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>j</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mi>j</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mi>j</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
Wherein:The renewal speed of component is tieed up for new harmony jth;C is Studying factors;rand4To be equally distributed on (0,1) Random number;Component is tieed up for the jth of optimal harmony,
Solve concretely comprising the following steps for mathematical modeling:
1. input optimization operation problem solves all required parameter, including:Network topology structure, line parameter circuit value, load and wind The active plan etc. of the active prediction data of light, energy-storage battery;
It is up to target with network loss and voltage deviation comprehensive satisfaction 2. based on harmonic search algorithm is improved, solves reactive voltage Global complex optimization problem, draw the daily optimal operation scheme of OLTC, capacitor bank and network structure;
3. on the basis of global optimization scheme, application enhancements harmonic search algorithm solves day part reactive voltage again Local optimum adjustment problem, the decrease of promotion system voltage pulsation, draw DG and the idle daily optimal operation scheme of energy storage.
2. the active distribution network reactive Voltage Optimum side that a kind of more active management means according to claim 1 are mutually coordinated Method, it is characterised in that OLTC and the specific coding of capacitor bank are shown in formula (23), network when improving harmonic search algorithm solving model Structure is shown in formula (24).
<mrow> <mo>&amp;lsqb;</mo> <mrow> <mtable> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> <mtable> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>O</mi> <mi>L</mi> <mi>T</mi> <mi>C</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> <mtable> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>C</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>C</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>C</mi> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> <mtable> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>C</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>C</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mo>,</mo> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>C</mi> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mo>&amp;lsqb;</mo> <mrow> <mtable> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>T</mi> <mi>O</mi> <mi>P</mi> <mi>O</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>T</mi> <mi>O</mi> <mi>P</mi> <mi>O</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow> <mi>T</mi> <mi>O</mi> <mi>P</mi> <mi>O</mi> <mo>,</mo> <msub> <mi>M</mi> <mrow> <mi>P</mi> <mi>O</mi> <mi>T</mi> <mi>O</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <msub> <mi>B</mi> <mrow> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mi>O</mi> <mi>O</mi> <mi>P</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <msub> <mi>B</mi> <mrow> <mn>2</mn> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mi>O</mi> <mi>O</mi> <mi>P</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mrow> <msub> <mi>M</mi> <mrow> <mi>T</mi> <mi>O</mi> <mi>P</mi> <mi>O</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow> <msub> <mi>M</mi> <mrow> <mi>T</mi> <mi>O</mi> <mi>P</mi> <mi>O</mi> </mrow> </msub> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <msub> <mi>B</mi> <mrow> <mi>M</mi> <msub> <mrow> <mi>T</mi> <mi>O</mi> <mi>P</mi> <mi>O</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>N</mi> <mrow> <mi>L</mi> <mi>O</mi> <mi>O</mi> <mi>P</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
Wherein:tOLTC,m,iFor the when segment number of i-th OLTC, the m times regulation;NOLTCFor the total number of units of OLTC;nOLTC,m,iFor i-th The gear of the m times regulation of OLTC;tC,m,iThe when segment number of i-th capacitor bank, the m times switching;NCFor the total number of units of capacitor bank; nC,m,iFor the input group number of i-th capacitor bank, the m times switching;tTOPO,mFor the when segment number of the m times network structure regulation; MTOPOFor the day maximum allowable adjustment number of network structure;Bm,iFor the open loop branch of i-th of loop in the m times network structure regulation Number on road;NloopFor total loop number of network.
CN201710857272.7A 2017-09-21 2017-09-21 Reactive voltage optimization method for active power distribution network coordinated by multiple active management means Active CN107565576B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710857272.7A CN107565576B (en) 2017-09-21 2017-09-21 Reactive voltage optimization method for active power distribution network coordinated by multiple active management means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710857272.7A CN107565576B (en) 2017-09-21 2017-09-21 Reactive voltage optimization method for active power distribution network coordinated by multiple active management means

Publications (2)

Publication Number Publication Date
CN107565576A true CN107565576A (en) 2018-01-09
CN107565576B CN107565576B (en) 2023-09-15

Family

ID=60982291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710857272.7A Active CN107565576B (en) 2017-09-21 2017-09-21 Reactive voltage optimization method for active power distribution network coordinated by multiple active management means

Country Status (1)

Country Link
CN (1) CN107565576B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412145A (en) * 2018-10-16 2019-03-01 国网上海市电力公司 A kind of active distribution network dynamic characteristic appraisal procedure based on synchro measure data
CN110009262A (en) * 2019-04-28 2019-07-12 国网福建省电力有限公司福州供电公司 A kind of a few days ago-in a few days two stages Optimization Scheduling of active distribution network
CN110086186A (en) * 2019-04-24 2019-08-02 国网山东省电力公司枣庄供电公司 It is a kind of meter and street lamp charging pile urban power distribution network voltage control method
CN111262248A (en) * 2018-11-30 2020-06-09 中国电力科学研究院有限公司 Random power flow analysis and calculation method and system
CN111612317A (en) * 2020-05-09 2020-09-01 国网福建省电力有限公司 Voltage out-of-limit risk assessment and prevention control method for active power distribution network
CN112838622A (en) * 2021-03-26 2021-05-25 云南电网有限责任公司电力科学研究院 Reactive voltage optimization control method and system for 10kV power supply area

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820662A (en) * 2012-08-17 2012-12-12 华北电力大学 Distributed power source contained power system multi-target reactive-power optimization method
CN102868161A (en) * 2012-10-23 2013-01-09 四川大学 Optimization method of network variable structure with distributed type power supply distribution system
CN103280821A (en) * 2013-06-25 2013-09-04 国家电网公司 Multi-period dynamic reactive power optimization method of intelligent power distribution system
WO2014110878A1 (en) * 2013-01-16 2014-07-24 国电南瑞科技股份有限公司 Auxiliary analysis method for optimization of current scheduling plan in wind-fire coordinated scheduling mode
CN103971299A (en) * 2014-05-26 2014-08-06 湖南大学 Power distribution network island division method based on harmony algorithm
WO2014173081A1 (en) * 2013-04-27 2014-10-30 国家电网公司 Optimization control method for reactive voltage of wind farm cluster
WO2014201849A1 (en) * 2013-06-18 2014-12-24 国网辽宁省电力有限公司电力科学研究院 Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station
US20160094033A1 (en) * 2013-05-27 2016-03-31 State Grid Corporation Of China Svc compensation strategy optimization method
US20160125097A1 (en) * 2014-11-05 2016-05-05 Nec Laboratories America, Inc. Optimizing power flows using harmony search with machine learning
CN105932691A (en) * 2016-05-30 2016-09-07 中国电力科学研究院 Improved complex power distribution network reactive power optimization method of harmony search algorithm
CN106410856A (en) * 2016-11-30 2017-02-15 国网山东省电力公司电力科学研究院 Multi-objective optimization scheduling method for distribution network with distributed power supply
CN106655207A (en) * 2017-03-21 2017-05-10 国网山东省电力公司枣庄供电公司 Power distribution network reactive power optimization system and method based on multi-data analysis
CN106786806A (en) * 2016-12-15 2017-05-31 国网江苏省电力公司南京供电公司 A kind of power distribution network active reactive based on Model Predictive Control coordinates regulation and control method
CN106803677A (en) * 2017-04-11 2017-06-06 四川大学 A kind of active distribution network voltage management-control method and system based on distributed power source
CN106849112A (en) * 2016-12-30 2017-06-13 国网四川省电力公司经济技术研究院 Power distribution network multi-objective reactive optimization method based on non-dominant neighborhood immune algorithm
CN107017656A (en) * 2016-12-30 2017-08-04 西安理工大学 A kind of active distribution system Optimization Scheduling for considering quality of power supply lifting

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820662A (en) * 2012-08-17 2012-12-12 华北电力大学 Distributed power source contained power system multi-target reactive-power optimization method
CN102868161A (en) * 2012-10-23 2013-01-09 四川大学 Optimization method of network variable structure with distributed type power supply distribution system
WO2014110878A1 (en) * 2013-01-16 2014-07-24 国电南瑞科技股份有限公司 Auxiliary analysis method for optimization of current scheduling plan in wind-fire coordinated scheduling mode
WO2014173081A1 (en) * 2013-04-27 2014-10-30 国家电网公司 Optimization control method for reactive voltage of wind farm cluster
US20160094033A1 (en) * 2013-05-27 2016-03-31 State Grid Corporation Of China Svc compensation strategy optimization method
WO2014201849A1 (en) * 2013-06-18 2014-12-24 国网辽宁省电力有限公司电力科学研究院 Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station
CN103280821A (en) * 2013-06-25 2013-09-04 国家电网公司 Multi-period dynamic reactive power optimization method of intelligent power distribution system
CN103971299A (en) * 2014-05-26 2014-08-06 湖南大学 Power distribution network island division method based on harmony algorithm
US20160125097A1 (en) * 2014-11-05 2016-05-05 Nec Laboratories America, Inc. Optimizing power flows using harmony search with machine learning
CN105932691A (en) * 2016-05-30 2016-09-07 中国电力科学研究院 Improved complex power distribution network reactive power optimization method of harmony search algorithm
CN106410856A (en) * 2016-11-30 2017-02-15 国网山东省电力公司电力科学研究院 Multi-objective optimization scheduling method for distribution network with distributed power supply
CN106786806A (en) * 2016-12-15 2017-05-31 国网江苏省电力公司南京供电公司 A kind of power distribution network active reactive based on Model Predictive Control coordinates regulation and control method
CN106849112A (en) * 2016-12-30 2017-06-13 国网四川省电力公司经济技术研究院 Power distribution network multi-objective reactive optimization method based on non-dominant neighborhood immune algorithm
CN107017656A (en) * 2016-12-30 2017-08-04 西安理工大学 A kind of active distribution system Optimization Scheduling for considering quality of power supply lifting
CN106655207A (en) * 2017-03-21 2017-05-10 国网山东省电力公司枣庄供电公司 Power distribution network reactive power optimization system and method based on multi-data analysis
CN106803677A (en) * 2017-04-11 2017-06-06 四川大学 A kind of active distribution network voltage management-control method and system based on distributed power source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廖剑波;李振坤;符杨;: "基于随机潮流的主动配电网运行风险评估", 现代电力, vol. 34, no. 02, pages 20 - 27 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412145A (en) * 2018-10-16 2019-03-01 国网上海市电力公司 A kind of active distribution network dynamic characteristic appraisal procedure based on synchro measure data
CN109412145B (en) * 2018-10-16 2022-03-29 国网上海市电力公司 Active power distribution network dynamic characteristic evaluation method based on synchronous measurement data
CN111262248A (en) * 2018-11-30 2020-06-09 中国电力科学研究院有限公司 Random power flow analysis and calculation method and system
CN111262248B (en) * 2018-11-30 2023-11-03 中国电力科学研究院有限公司 Random power flow analysis and calculation method and system
CN110086186A (en) * 2019-04-24 2019-08-02 国网山东省电力公司枣庄供电公司 It is a kind of meter and street lamp charging pile urban power distribution network voltage control method
CN110086186B (en) * 2019-04-24 2023-01-31 国网山东省电力公司枣庄供电公司 Urban distribution network voltage control method considering street lamp charging pile
CN110009262A (en) * 2019-04-28 2019-07-12 国网福建省电力有限公司福州供电公司 A kind of a few days ago-in a few days two stages Optimization Scheduling of active distribution network
CN110009262B (en) * 2019-04-28 2024-09-17 国网福建省电力有限公司福州供电公司 Day-ahead and day-in two-stage optimal scheduling method for active power distribution network
CN111612317A (en) * 2020-05-09 2020-09-01 国网福建省电力有限公司 Voltage out-of-limit risk assessment and prevention control method for active power distribution network
CN111612317B (en) * 2020-05-09 2022-07-05 国网福建省电力有限公司 Voltage out-of-limit risk assessment and prevention control method for active power distribution network
CN112838622A (en) * 2021-03-26 2021-05-25 云南电网有限责任公司电力科学研究院 Reactive voltage optimization control method and system for 10kV power supply area

Also Published As

Publication number Publication date
CN107565576B (en) 2023-09-15

Similar Documents

Publication Publication Date Title
CN107565576A (en) A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated
CN112350326B (en) Rail transit traction power supply system, control method and system thereof and related components
CN110009262B (en) Day-ahead and day-in two-stage optimal scheduling method for active power distribution network
CN103199542B (en) Method of optimal control of wind power plant reactive voltage
Feng et al. An effective three-stage hybrid optimization method for source-network-load power generation of cascade hydropower reservoirs serving multiple interconnected power grids
CN105071389B (en) The alternating current-direct current mixing micro-capacitance sensor optimizing operation method and device of meter and source net load interaction
CN108092324B (en) AGC control system and control method for wind power participating in peak shaving frequency modulation
CN109149651B (en) Optimal operation method of light storage system considering voltage-regulating auxiliary service income
CN107104433A (en) A kind of light-preserved system participates in the acquisition methods of power distribution network Optimal Operation Strategies
CN106058855A (en) Active power distribution network multi-target optimization scheduling method of coordinating stored energy and flexible load
CN107239847A (en) A kind of active distribution network energy-storage system dynamic programming method
CN107947175B (en) Micro-grid economic dispatching method based on distributed network control
CN107453381B (en) Electric car cluster power regulating method and system based on two stages cross-over control
CN109740786A (en) A kind of multiterminal flexible interconnection distribution network planning method and system
CN110311396A (en) A kind of alternating current-direct current mixing micro-capacitance sensor hybrid energy-storing capacity configuration optimizing method
CN105375507A (en) Power two-stage interactive optimization scheduling system of virtual power plant in haze environment
CN104835080A (en) Modeling method for micro-grid intraday scheduling plan mixed integer programming model
CN109787239B (en) Alternating iteration load flow calculation method and system of load flow model and multi-frequency alternating current series-parallel system
CN109217297A (en) Alternating current-direct current active distribution network dispatches second order Based On The Conic Model a few days ago
CN104269847A (en) Flexible looped network control system operation and power flow optimization method
CN107959307A (en) A kind of DG Optimal Configuration Methods of meter and power distribution network operation risk cost
CN107546773A (en) A kind of more micro-capacitance sensor dynamic networking methods in region based on graph theory
CN107579546A (en) Marine wind electric field optimal reactive power allocation method based on double-fed fan motor unit blower fan topological structure
CN105896575A (en) Hundred megawatt energy storage power control method and system based on self-adaptive dynamic programming
CN205212447U (en) Multiple target optimizing system who contains little electric wire netting of compound energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant