WO2014201849A1 - Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station - Google Patents

Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station Download PDF

Info

Publication number
WO2014201849A1
WO2014201849A1 PCT/CN2014/000576 CN2014000576W WO2014201849A1 WO 2014201849 A1 WO2014201849 A1 WO 2014201849A1 CN 2014000576 W CN2014000576 W CN 2014000576W WO 2014201849 A1 WO2014201849 A1 WO 2014201849A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
wind
output
active
optimization
Prior art date
Application number
PCT/CN2014/000576
Other languages
French (fr)
Chinese (zh)
Inventor
邢作霞
王文杰
杨俊友
刘劲松
李玉婷
姜立兵
崔嘉
王海鑫
Original Assignee
国网辽宁省电力有限公司电力科学研究院
沈阳工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网辽宁省电力有限公司电力科学研究院, 沈阳工业大学 filed Critical 国网辽宁省电力有限公司电力科学研究院
Publication of WO2014201849A1 publication Critical patent/WO2014201849A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to a method for optimizing and controlling the active power of a distributed wind farm equipped with a energy storage power station, and belongs to the technical field of active power control of wind farm connected to the grid.
  • the decentralized access wind power project refers to a wind power project that is located near the center of the power load and is not used for large-scale long-distance transmission of power, and the generated power is connected to the power grid and consumed locally. It can better solve some problems caused by the integration of centralized wind power generation. In this context, the state has proposed a policy to develop decentralized wind power.
  • Direct access to a low-voltage distribution network with a distributed wind farm equipped with a storage power station can reduce the loss and investment costs of the transmission network, improve the reliability of the distribution network, and ensure energy security to a large extent.
  • active power optimization and operation of decentralized wind farms equipped with energy storage power stations is to reduce grid losses and ensure grid stability.
  • the most effective means of operation By rationally configuring the active power supply (fan and energy storage power station) and reasonable control of active power loss, the frequency fluctuation of the power grid can be reduced, and the power loss of the power grid can be reduced, so that the power system can operate safely and stably.
  • a number of optimization methods have been proposed for the active control and optimization of wind farms. It is proposed that a single wind turbine can perform active power coordinated control strategy between wind turbines in high wind speed, medium wind speed and low wind speed stage to improve wind power generation margin. A rotor kinetic energy is proposed as an energy storage device. Wind farm control methods to reduce short-term power fluctuations and improve wind farm grid stability; comprehensively consider the units most closely related to output power fluctuations, and control their output to suppress fluctuations in output. These methods can achieve active optimization of the wind field.
  • the invention provides a method for optimizing and controlling the active power of a distributed wind farm equipped with an energy storage power station, and the object thereof is to solve the problem that the overall loss of the wind power generator is too large in the safety range of the grid-connected frequency fluctuation in the prior art, and the wind is directed to the wind.
  • the multi-objective function is established under different operating conditions of the field. While effectively controlling the frequency fluctuation, it can also reduce the fan pitch load and reduce the active loss of the wind farm.
  • a method for controlling active power of a distributed wind farm equipped with an energy storage power station characterized in that: the steps are as follows:
  • the first step is to measure the wind speed of the wind field, the fan speed, the active power of each unit, the active power of the substation side, the three-phase voltage, current, frequency, power factor and energy storage system of the energy storage system through the SCADA detection control and acquisition system. Power and grid point power quality data, and then send the data to the control center via a communication cable;
  • the wind power fluctuation and the unit output constraint are set as follows:
  • the formula is the upper and lower limit constraint of the unit output; (2) is to consider the wind power power fluctuation range constraint of the energy storage system. In the time window of lmin or 30min, the variation range of the combined output power of the system must not be greater than the total rated output power of the wind farm. Rate / ⁇ or ⁇ , with 3 . According to the grid guidance, the variation amplitude of the system's combined output power is the difference between the maximum value minus the minimum value;
  • the total line loss A in the wind field is obtained, which is obtained as follows: .
  • f b for the set upper and lower limits of the frequency of the wind turbine that does not participate in the frequency modulation; f a , ⁇ is the set frequency of the wind turbine Upper and lower limits; active output corresponding to points;
  • the fifth step is divided into power-limiting operation and non-electrical operation.
  • the active output of the wind farm is adjusted, and the optimization target obtained above is brought into the objective function;
  • the optimization target is the frequency fluctuation ⁇ /sum of the grid connection point.
  • P B W + (k) ⁇ P ref P r is the active output value of the given wind field, and the pitch control ⁇ is required.
  • the optimization target needs to increase the pitch aerodynamic drag coefficient.
  • the objective function is as follows :
  • Min v (9) h 2 P A f (P B (k) + j p l (k) ⁇ p re/ ) Unlimited conditions: When the wind speed is less than the rated wind speed, the maximum power tracking control is applied to the fan.
  • ⁇ / ⁇ and ⁇ are the weight coefficients for power-limited and unrestricted power, respectively.
  • the constraints are:
  • Frequency fluctuation range constraint 4 is the frequency offset limit
  • Grid power supply balance constraint
  • multi-objective active optimization is performed by using particle swarm optimization based vehicle path optimization algorithm.
  • the particle swarm optimization algorithm is used for iterative search to find the optimal solution.
  • the steps are as follows:
  • V id the position and velocity of the i-dimensional particles
  • StepS Calculate the fitness value with the updated velocity vector and position vector
  • Step9 Repeat step5 to lj step7;
  • SteplO Determine the number of iterations, and if it is satisfied, output the result; otherwise, return to Step7.
  • the invention proposes a multi-objective active power optimization method under the operating condition for the external operation characteristics of the distributed wind farm equipped with the energy storage power station, that is, the active power optimization control method of the distributed wind farm equipped with the energy storage power station: judging the wind farm Whether to operate under power-limited conditions, multi-objective optimization control based on wind speed conditions.
  • the required data is measured by the SCADA system and then sent to the control center via a communication cable.
  • Fig.1 Typical topological structure diagram of energy storage and distributed wind power distributed into the power grid
  • Figure 2 Flow chart of the wind farm active layering optimization control strategy
  • Fig. 3 is a graph showing the variation of the pitch effect with the wind speed
  • Figure 4 shows the resistance characteristic curve of the airfoil
  • FIG. 5 is a schematic diagram of the principle of maximum power tracking optimization control in FIG. 2;
  • Figure 6 is a flow chart based on the particle swarm algorithm.
  • the control object proposed by the present invention is: a wind turbine and an energy storage power station are connected to a 10 kV local substation loop, and then access to a public access point (PCC/1) through 10 kV/35 kV; Inside, there are m wind storage power stations of the same mode, which are delivered to different end-user loads after 35kV convergence; 35kV can be boosted and connected to the public large power grid.
  • PCC/1 public access point
  • 35kV can be boosted and connected to the public large power grid.
  • the basic idea of the invention lies in: Optimizing the frequency fluctuation, the pitch load and the line loss of the power grid by optimizing the regulation, reducing the active loss of the power grid, improving the voltage quality, and using the electrical equipment to operate safely and reliably.
  • the active optimization problem considered in the present invention can be defined as follows: by various adjustment means, the objective function is optimized under the condition that the frequency constraint and the operation constraint are satisfied. It can be seen from the above that the active optimization problem is actually a typical constrained combinatorial optimization problem.
  • a method for active power optimization control of a distributed wind farm equipped with a storage power station as shown in Figure 2, the steps are as follows:
  • the first step is to measure the wind speed of the wind field, the fan speed, and the machine through the SCADA detection control and acquisition system.
  • Group active power, substation side active power, unit and network side three-phase voltage, frequency, power factor, energy storage system charge and discharge power, grid point power quality data, and then send these data to the control center through the communication cable.
  • the set wind power fluctuation and the unit output constraint are:
  • is the minimum and maximum values of the unit's output.
  • P FormulaW is the combined output power at the current time; i W is the wind power at the current time k; P k is the charge and discharge power of the energy storage system.
  • the energy stored by the energy storage system at the current time is:
  • E B (0) is the initial energy of the energy storage system.
  • r(t) is the process output matrix.
  • the variation amplitude of the system's combined output power (the difference between the maximum value minus the minimum value) must not be greater than the total rated output power of the wind farm / ⁇ ; in any 30min time window, The variation of the system's combined output power must not be greater than the total rated output power of the wind farm, p ra , t£/ . , ⁇ and ⁇ are specified by the grid guidelines.
  • the collecting circuit of the wind farm is divided into a cable collecting line and an overhead line collecting line.
  • the collecting line of the wind farm is more complicated and close to a small distribution network.
  • the power is transmitted between the wind turbine and the booster station through this small distribution network, there is a line loss that cannot be ignored, and the thermal power plant can ignore these losses during operation. Active power loss calculations for both cable and overhead collector circuits.
  • the box becomes no-load loss ⁇ ., the cable line loss connected to the low-voltage side of the fan outlet ⁇ , the power loss of each line ⁇ .
  • the total line loss in the wind field is obtained through finishing.
  • is the power output coefficient; is the rated capacity of each fan; N is the total number of fans; ⁇ is the number of cable outlets of the fan; ⁇ is the fan outlet voltage; r is the resistance value of the cable unit length; L c is the cable length.
  • A is the box to change the no-load loss.
  • S is the box variable capacity
  • is the loss rate under no load
  • C is the lift coefficient
  • C rf is the drag coefficient
  • the system frequency exceeds the set limit ⁇ / ⁇ or _/; ⁇ / ⁇ / JJ inch, the wind turbine adjusts the output, responds to the system frequency change, and has:
  • ⁇ ⁇ is the active output that needs to be adjusted; it is the active output under the unloading operation state of the wind turbine; f h , is the frequency upper and lower limit of the set wind turbine that does not participate in the frequency modulation; f a , is the set wind turbine Adjust the upper and lower limits of the frequency band; the active output corresponding to the point.
  • Each quantity is a standard value, the power reference value is the active output determined by the wind speed, and the frequency reference value is the rated frequency 50 Hz.
  • the external conditions for the operation of the wind farm are divided into a limited power operation and an unrestricted electric operation. Both of these are finally adjusted for the active output of the wind farm. Bring the optimization goal obtained above into the target letter
  • the optimization target is the frequency fluctuation of the grid-connected points 4 ⁇ and ⁇ .
  • pitch control ⁇ is required.
  • the maximum power tracking control ⁇ / ⁇ uses the optimal tip speed ratio method.
  • ⁇ ⁇ is generally obtained by calculation or experiment, so the wind turbine has the highest utilization of wind energy at any wind speed.
  • Figure 5 is a block diagram of its control principle. It takes the measured values of wind speed and wind turbine speed as the input signal of the control system, and calculates the actual tip speed ratio at this time, and then compares it with the optimal tip speed ratio. The error value is sent to the controller, which controls the output of the inverter to adjust the fan speed to ensure the tip speed ratio is optimal.
  • Stepl Input fan outlet power, power country, main variable ffi parameter and actual input power, ratio of actual electric I to rated voltage, box change no-load loss rate and loss rate under rated load, vegetable pitch angle, inflow angle "Parameters” Calculate the total line loss, frequency fluctuation and & force coefficient in the wind field
  • Ste P 2 Set the dimension, the maximum number of iterations and the number of particles; ste P 3: Bring the result obtained in stepl into the formula (21) (22), and obtain the fitness value / « te , let / equal the current particle position
  • Step4 Initialize the position and the catch, calculate the position of the first individual optimal particle «, and set this p as the position pj of the global optimal particle found before the population;
  • Step5 If the value of the pre-particle fitness is less than the individual extremum, update the current individual child. ⁇ ;
  • Step6 If the pre-particle fitness value is less than the global extremum, update the global extreme value before 3 ⁇ 4
  • Step7 Update the velocity vector and position vector from equation (25) (26).
  • t is the current number of cycles; 3 ⁇ 4, is the weight coefficient of the particle; is the inertia weight; , 3 ⁇ 4 is the (0, I) inner z-distribution random number; V, I is the i-dimensional particle brain position and velocity
  • Step8 Calculate the fitness value with the updated velocity vector and position vector; Step9: Steps to step7;
  • StepiO judge the number of iterations, and if it is satisfied, output the result; otherwise, return to Step

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

A method for actively optimizing, adjusting and controlling a distributed wind power plant provided with an energy-storage power station, which relates to the constraint of the wind power grid access guide rule on the upper and lower limits of the active power output, setting a constraint condition by the maximum and minimum limit values of single power generation, and establishing the constraint condition of the active power output according to the single power generation characteristics of the wind power and energy-storage power supply. In accordance with the external conditions of the operation of the wind power plant, the operation is divided into a power rationed operation and non-power rationed operation, wherein the power rationed operation has the optimization objectives that the variable pitch control load and line loss are minimal and the frequency fluctuation is minimal; and the non-power rationed operation has the optimization objectives that the maximum wind energy capture rate and line loss are minimal and the frequency fluctuation is minimal, and uses a multi-objective layered optimization problem as an objective function. A particle swarm algorithm is used to obtain a solution, so that the wind power active power consumption which is output by the action of an energy-storage system minimizes the stable output, thereby achieving the effective joining of the energy-storage system with the existing scheduling operation mode, and achieving the best economic benefit at the same time.

Description

配有储能电站的分散式风电场有功优化调控方法  Active power optimization control method for distributed wind farms equipped with energy storage power stations
技术领域 Technical field
本发明涉及一种配有储能电站的分散式风电场有功优化调控方法,属于风 电场并网运行有功功率控制技术领域。  The invention relates to a method for optimizing and controlling the active power of a distributed wind farm equipped with a energy storage power station, and belongs to the technical field of active power control of wind farm connected to the grid.
背景技术 Background technique
随着国家对可再生能源发电的高度重视,我国风电已成为优化能源结构和推 动可持续发展的重要新兴产业。 但是随着大规模风电并网之后,电力系统的安全 性、 可靠性、 电能质量以及电网调度都会受到风力发电波动性和随机性的影响。 集中式大电网具有强耦合性, 且不能灵活可靠地跟踪变化。 而分散式接入风电 项目是指位于用电负荷中心附近, 不以大规模远距离输送电力为目的, 所产生 的电力就近接入电网, 并在当地消纳的风电项目。 它可以较好的解决集中式风 力发电并网所产生的一些问题。 在此背景下, 国家提出了发展分散式风电的政 策  As the country attaches great importance to renewable energy generation, China's wind power has become an important emerging industry that optimizes energy structure and promotes sustainable development. However, with the integration of large-scale wind power, the safety, reliability, power quality and grid scheduling of power systems are affected by the volatility and randomness of wind power generation. Centralized large power grids are strongly coupled and cannot track changes flexibly and reliably. The decentralized access wind power project refers to a wind power project that is located near the center of the power load and is not used for large-scale long-distance transmission of power, and the generated power is connected to the power grid and consumed locally. It can better solve some problems caused by the integration of centralized wind power generation. In this context, the state has proposed a policy to develop decentralized wind power.
配有储能电站的分散式风电场直接接入低压配电网可以降低输电网损耗与 投资费用, 提高配电网的供电可靠性, 很大程度上确保能源安全。 然而随着对 风电场输出电能质量、 节能降损及电网安全稳定要求日趋提高, 通过开展对配 有储能电站的分散式风电场有功优化与运行问题的研究, 是降低电网损耗和保 证电网稳定运行的最有效手段。 通过对有功电源 (风机与储能电站) 的合理配 置及有功损耗的合理调控, 可以降低电网频率波动、 减少电网有功损耗, 从而 使电力系统能够安全稳定运行。  Direct access to a low-voltage distribution network with a distributed wind farm equipped with a storage power station can reduce the loss and investment costs of the transmission network, improve the reliability of the distribution network, and ensure energy security to a large extent. However, with the increasing demand for power quality, energy saving and power grid safety and stability of wind farms, research on active power optimization and operation of decentralized wind farms equipped with energy storage power stations is to reduce grid losses and ensure grid stability. The most effective means of operation. By rationally configuring the active power supply (fan and energy storage power station) and reasonable control of active power loss, the frequency fluctuation of the power grid can be reduced, and the power loss of the power grid can be reduced, so that the power system can operate safely and stably.
针对风电场的有功控制及优化研究, 已提出了不少的优化方法。 提出单台风 电机组在高风速、 中风速和低风速阶段可进行各台风电机组之间的有功功率协 调控制策略, 提高风电场发电裕度; 提出一种将风机转子动能作为能量储存装 置的一种风电场控制方法, 以减少短时电能波动, 提高风电场并网稳定性; 综 合考虑与输出功率波动关系最为密切的机组, 并对其出力进行控制来抑制出力 的波动等。 这些方法都可以实现风场的有功优化。  A number of optimization methods have been proposed for the active control and optimization of wind farms. It is proposed that a single wind turbine can perform active power coordinated control strategy between wind turbines in high wind speed, medium wind speed and low wind speed stage to improve wind power generation margin. A rotor kinetic energy is proposed as an energy storage device. Wind farm control methods to reduce short-term power fluctuations and improve wind farm grid stability; comprehensively consider the units most closely related to output power fluctuations, and control their output to suppress fluctuations in output. These methods can achieve active optimization of the wind field.
但针对于配有储能电站的分散式有功优化问题, 现在国内外的研究很少。 且 上述优化方法没有考虑到风电机组发出的有功功率与其自身损耗之间的多维函 数关系, 因此无法在满足并网点频率波动安全范围内尽可能使风力发电机组整 体损耗达到最小。 However, there are few studies at home and abroad for the problem of decentralized active optimization with energy storage power stations. Moreover, the above optimization method does not take into account the multidimensional function relationship between the active power generated by the wind turbine and its own loss, and therefore cannot make the wind turbine complete as much as possible within the safe range of the frequency fluctuation of the grid connection point. Body loss is minimized.
发明内容 Summary of the invention
发明目的  Purpose of the invention
本发明提供一种配有储能电站的分散式风电场有功优化调控方法, 其目的 是解决以往的方式所存在的并网点频率波动安全范围内风力发电机组整体损耗 过大的问题, 其针对风场不同的运行条件建立多目标函数, 在有效控制频率波 动的同时, 还能够减少风机变桨载荷, 降低风电场有功损耗。  The invention provides a method for optimizing and controlling the active power of a distributed wind farm equipped with an energy storage power station, and the object thereof is to solve the problem that the overall loss of the wind power generator is too large in the safety range of the grid-connected frequency fluctuation in the prior art, and the wind is directed to the wind. The multi-objective function is established under different operating conditions of the field. While effectively controlling the frequency fluctuation, it can also reduce the fan pitch load and reduce the active loss of the wind farm.
技术方案  Technical solutions
一种配有储能电站的分散式风电场有功功率的控制方法, 其特征在于: 其 步骤如下:  A method for controlling active power of a distributed wind farm equipped with an energy storage power station, characterized in that: the steps are as follows:
第一步, 通过 SCADA检测控制和采集系统测出风场风速、 风机转速、 各机 组有功功率、 变电站侧有功功率、 机组及入网侧三相电压、 电流、 频率、 功率 因数、 储能系统充放电功率和并网点电能质量数据, 然后将这些数据通过通讯 线缆发送控制中心;  The first step is to measure the wind speed of the wind field, the fan speed, the active power of each unit, the active power of the substation side, the three-phase voltage, current, frequency, power factor and energy storage system of the energy storage system through the SCADA detection control and acquisition system. Power and grid point power quality data, and then send the data to the control center via a communication cable;
第二步, 设定风功率波动与机组出力约束条件为:  In the second step, the wind power fluctuation and the unit output constraint are set as follows:
Figure imgf000004_0001
Figure imgf000004_0001
式为机组出力上下限约束; (2)式为考虑储能系统的风电场功率波动 范围约束, 在 lmin或 30min的时间窗内, 系统合成输出功率的变化幅度必须不 大于风电场总额定输出功率 rate/的 ^或^, 与 3。由电网导则规定, 系统合成 输出功率的变化幅度为最大值减去最小值之差; The formula is the upper and lower limit constraint of the unit output; (2) is to consider the wind power power fluctuation range constraint of the energy storage system. In the time window of lmin or 30min, the variation range of the combined output power of the system must not be greater than the total rated output power of the wind farm. Rate / ^ or ^, with 3 . According to the grid guidance, the variation amplitude of the system's combined output power is the difference between the maximum value minus the minimum value;
第三步, 通过实时测量得到的风机出口电压 ^, 架空线路电流 /, 箱变空 载损耗率和额定负载下损耗率4、 A, 得到风场内的线路总损耗 A, 经整理得 到为: .  In the third step, through the real-time measurement of the fan outlet voltage ^, the overhead line current /, the box-to-no load loss rate and the loss rate under the rated load 4, A, the total line loss A in the wind field is obtained, which is obtained as follows: .
PL - 3 x l2 r L -\- c{ x U -f c2— -f <^3 其中 为系数, 表达式如下: c, = a 2 N P L - 3 xl 2 r L -\- c { x U -fc 2 — -f <^ 3 Where is the coefficient, the expression is as follows: c, = a 2 N
X—— xP^xr L  X—— xP^xr L
1 N, e c c (4) 1 N, ecc (4)
N x S N x S
100 (5)  100 (5)
N x a x P„ 其中: "为功率输出系数; N为风机数; 。为每台风机额定容量; I为架空 线路电流值; r为架空线单位长度电阻值; J为架空线各条线路的长度; N,为风 机出口电缆条数; 为箱变容量; 为电缆线单位长度的电阻值; z为电缆线长 四步,计算另外两个优化目标:变桨距气动阻力系数 、并网点的频率波 动 4,: N x a x P„ where: " is the power output coefficient; N is the number of fans; For each fan rated capacity; I is the overhead line current value; r is the overhead line unit length resistance value; J is the length of each line of the overhead line; N, is the fan outlet cable number; is the box variable capacity; The resistance value per unit length; z is the length of the cable line four steps, calculate the other two optimization goals: the pitch aerodynamic drag coefficient, the frequency fluctuation of the grid point 4,
(7)
Figure imgf000005_0001
(7)
Figure imgf000005_0001
为需要调整的有功出力; 为风电机组卸载运行状态下的有功出力; fb, 为设定的风电机组不参与调频的频率上、 下限值; fa, ^为设定的风电机组 调频段的上、 下限值; 为 点对应的有功出力; For the active output that needs to be adjusted; for the active output of the wind turbine unloading operation; f b , for the set upper and lower limits of the frequency of the wind turbine that does not participate in the frequency modulation; f a , ^ is the set frequency of the wind turbine Upper and lower limits; active output corresponding to points;
dP _ dP άβ da  dP _ dP άβ da
(8) dCd άβ da dCd 其中: 为桨距角、 "为入流角, 均为可测量数据; (8) dC d άβ da dC d where: is the pitch angle, "is the inflow angle, both are measurable data;
第五步, 针对风电场运行的外界条件, 分为限电运行和不限电运行, 这两 种情况最后都进行风电场有功出力调整, 将上面所求得的优化目标带入目标函 数中; 限电情况:优化目标为并网点的频率波动 Δ/和 。当 PB W + (k)≥ Pref时, Pr 为调度给定风场有功输出值, 需进行变桨控制 Δ^, 此时优化目标需增加变桨距 气动阻力系数 此时目标函数如下: The fifth step, according to the external conditions of the wind farm operation, is divided into power-limiting operation and non-electrical operation. In both cases, the active output of the wind farm is adjusted, and the optimization target obtained above is brought into the objective function; Power limitation: The optimization target is the frequency fluctuation Δ/sum of the grid connection point. When P B W + (k) ≥ P ref , P r is the active output value of the given wind field, and the pitch control Δ^ is required. At this time, the optimization target needs to increase the pitch aerodynamic drag coefficient. The objective function is as follows :
min v = (9) h2P Af (PB(k)+ jpl(k)≤pre/) 不限电情况: 当风速 ^小于额定风速 时, 对风机进行最大功率跟踪控制 Min v = (9) h 2 P A f (P B (k) + j p l (k) ≤ p re/ ) Unlimited conditions: When the wind speed is less than the rated wind speed, the maximum power tracking control is applied to the fan.
ΜΡΡΤ, 优化目标 Δ/和 ; 当风速 υ小于等于额定风速 时, 对风机进行变桨控 制, 优化目标为 C Δ /和^ ΜΡΡΤ, optimize the target Δ / sum ; when the wind speed υ is less than or equal to the rated wind speed, the pitch control of the fan, the optimization target is C Δ / and ^
l2PL + /3Δ/ {ν<υΓ, ΜΡΡΤ) l 2 P L + / 3 Δ/ {ν<υ Γ , ΜΡΡΤ)
min f = , (10)  Min f = , (10)
|/ις/+ +/3Δ/ (υ≥υΓ,Αβ) 其中: ^/^和 ^^分别为限电和不限电时的权重系数, 约束条件为: |/ ι ς / + +/ 3 Δ/ (υ≥υ Γ ,Αβ) where: ^/^ and ^^ are the weight coefficients for power-limited and unrestricted power, respectively. The constraints are:
(11) (11)
PB +∑Pt=PD + PL (12) P B +∑P t =P D + P L (12)
(11)频率波动范围约束, 4 为频率偏移限值; (12) 电网供电平衡约束,(11) Frequency fluctuation range constraint, 4 is the frequency offset limit; (12) Grid power supply balance constraint,
/ 为总负荷的需求; / demand for total load;
第六步, 运用基于粒子群的车辆路径优化算法进行多目标有功优化。  In the sixth step, multi-objective active optimization is performed by using particle swarm optimization based vehicle path optimization algorithm.
针对上述多目标优化控制问题, 采用粒子群优化算法进行迭代搜索, 求最优 解, 步骤如下:  For the above multi-objective optimization control problem, the particle swarm optimization algorithm is used for iterative search to find the optimal solution. The steps are as follows:
① : 输入风机出口电压, 功率因数, 主变压器参数与实际的输入功率, 实际 电压与额定电压的比值, 箱变空载损耗率和额定负载下损耗率, 桨距角, 入流 角等参数。 计算风场内的线路总损耗, 频率波动与阻力系数;  1: Input fan outlet voltage, power factor, main transformer parameters and actual input power, ratio of actual voltage to rated voltage, box to no-load loss rate and loss rate under rated load, pitch angle, inflow angle and other parameters. Calculate the total line loss, frequency fluctuation and drag coefficient in the wind field;
② : 设置维数、 最大迭代次数与粒子数;  2 : Set the dimension, the maximum number of iterations, and the number of particles;
③ : 将 stepl中得到的结果带入公式 (9) (10) 中, 得到适应度值 令/^等于当前粒子的位置 p, '、 , 3 : Bring the result obtained in stepl into the formula (9) (10) to obtain the fitness value. Let /^ be equal to the position of the current particle p, ', ,
④: 初始化位置与速度,计算第一个个体最优粒子的位置 并将此 ) 设为种群当前寻找到的全局最优粒子的位置 4: Initialize the position and velocity, calculate the position of the first individual optimal particle and set this ) to the position of the global optimal particle currently found by the population.
⑤ : 若当前粒子适应度值小于个体极值, 则更新当前的个体极值;^ ϊ ; 5: If the current particle fitness value is less than the individual extreme value, the current individual extreme value is updated; ^ ϊ ;
⑥ : 若当前粒子适应度值小于全局极值, 则更新当前的全局极值 ^  6 : If the current particle fitness value is less than the global extremum, update the current global extremum ^
⑦ : 由公式 (25) (26) 更新速度向量与位置向量; 7 : Update the velocity vector and position vector by equation (25) (26);
. (') -X l)) + c2r2 — ) !■ = 1,2,.·.," (25)
Figure imgf000007_0001
X c)≤ Χ,Γ i = 2,...,n (26) 式中 t为当前循环次数 ; 4、 为粒子权重系数; ω为惯性权重; νί 为(0
(') -X l) ) + c 2 r 2 — ) !■ = 1,2,.·.," (25)
Figure imgf000007_0001
X c) ≤ Χ, Γ i = 2,...,n (26) where t is the current number of cycles; 4 is the particle weight coefficient; ω is the inertia weight; ν ί is ( 0
1) 内均匀分布随机数; Vid、 为第 i维粒子的位置与速度; 1) uniformly distributed random numbers; V id , the position and velocity of the i-dimensional particles;
StepS: 用更新后的速度向量与位置向量计算适应度值; StepS: Calculate the fitness value with the updated velocity vector and position vector;
Step9: 重复 step5至 lj step7;  Step9: Repeat step5 to lj step7;
SteplO:判断迭代次数, 满足则输出结果; 否则回到 Step7。  SteplO: Determine the number of iterations, and if it is satisfied, output the result; otherwise, return to Step7.
优点及效果  Advantages and effects
本发明针对配有储能电站的分散式风电场的外部运行特点, 提出了运行情况 下的多目标有功优化方法, 即, 配有储能电站的分散式风电场有功优化调控方 法: 判断风电场是否在限电情况下运行, 根据风速情况进行多目标优化控制。  The invention proposes a multi-objective active power optimization method under the operating condition for the external operation characteristics of the distributed wind farm equipped with the energy storage power station, that is, the active power optimization control method of the distributed wind farm equipped with the energy storage power station: judging the wind farm Whether to operate under power-limited conditions, multi-objective optimization control based on wind speed conditions.
(1) 通过 SCADA系统测出所需数据, 然后将这些数据通过通讯线缆发送 控制中心。  (1) The required data is measured by the SCADA system and then sent to the control center via a communication cable.
(2) 设定风功率波动与机组出力约束条件。  (2) Set wind power fluctuations and unit output constraints.
(3) 计算箱变额定负载损耗 P„, 箱变空载损耗 。, 风机出口与箱变低压侧 连接的电缆线路损耗 , 各条线路功率损耗 。 经整理得到风场内的线路总损 耗^ - (3) Calculate the rated load loss of the box P„, the box becomes no-load loss., the cable line loss connected to the low-voltage side of the fan outlet, and the power loss of each line. The total line loss in the wind field is obtained after finishing ^ -
(4)计算另外两个优化目标: 变桨距气动阻力系数 、 并网点的频率波动(4) Calculate the other two optimization objectives: pitch aerodynamic drag coefficient, frequency fluctuation of the grid point
Λ Λ
(5)针对风电场运行的外界条件, 分为限电运行和不限电运行, 这两种情 况最后都进行风电场有功出力调整。 根据风速情况进行多目标控制, 将上面所 求得的优化目标带入目标函数中。 (5) For the external conditions of wind farm operation, it is divided into power-limited operation and non-electrical operation. In both cases, the active output of the wind farm is adjusted. Multi-target control based on wind speed conditions, will be above The obtained optimization goal is brought into the objective function.
( 6) 运用基于粒子群的车辆路径优化算法进行多目标有功优化。  (6) Multi-objective active optimization using particle swarm optimization based vehicle path optimization algorithm.
本实用新型的具体优点与积极效果如下: 1、根据风场运行条件与风速情况, 分层次建立多目标函数, 通过调节线损、 频率、 载荷等变量进行有功功率的调 控。 2、 本控制方法以风电渗透率在配电网设定的范围内为基础, 在保证功率波 动在安全运行范围内为前提, 提高了系统的稳定性。 3、 实用性强, 可用于整个 分散式风电场的多目标控制来进行有功功率的调节, 以实现整个风场的有功损 耗最小化。  The specific advantages and positive effects of the utility model are as follows: 1. According to the wind field operating conditions and the wind speed situation, a multi-objective function is established hierarchically, and the active power is controlled and controlled by adjusting variables such as line loss, frequency, and load. 2. This control method is based on the wind power penetration rate within the range set by the distribution network, and the stability of the system is improved on the premise of ensuring that the power fluctuation is within the safe operation range. 3. It has strong practicability and can be used for multi-target control of the entire distributed wind farm to adjust the active power to minimize the active loss of the entire wind field.
附图说明  DRAWINGS
图 1储能配比风电分散接入电网典型拓扑结构图;  Fig.1 Typical topological structure diagram of energy storage and distributed wind power distributed into the power grid;
图 2风场有功分层优化控制策略流程图;  Figure 2 Flow chart of the wind farm active layering optimization control strategy;
图 3变桨效果随风速变化曲线图;  Fig. 3 is a graph showing the variation of the pitch effect with the wind speed;
图 4翼型的阻力特性曲线;  Figure 4 shows the resistance characteristic curve of the airfoil;
图 5是图2中最大功率跟踪优化控制原理示意图是;  FIG. 5 is a schematic diagram of the principle of maximum power tracking optimization control in FIG. 2;
图 6基于粒子群算法的流程图。  Figure 6 is a flow chart based on the particle swarm algorithm.
具体实施方式:  detailed description:
下面结合附图对本实用新型做进一步说明。  The present invention will be further described below in conjunction with the accompanying drawings.
如附图 1 所示, 本发明提出的控制对象为: 风电机组和储能电站一起汇流 接入 10kV当地变电站回路, 然后通过 10kV/35kV接入公共接入点 (PCC/1 ); 同区域电网内, 还有 m个同样模式的风储电站, 汇流 35kV后输送至不同的终 端用户负荷; 35kV可升压后接入公共大电网。  As shown in Figure 1, the control object proposed by the present invention is: a wind turbine and an energy storage power station are connected to a 10 kV local substation loop, and then access to a public access point (PCC/1) through 10 kV/35 kV; Inside, there are m wind storage power stations of the same mode, which are delivered to different end-user loads after 35kV convergence; 35kV can be boosted and connected to the public large power grid.
本发明的基本思路在于: 通过优化调控可以优化电网的频率波动、 变桨载 荷与线路损耗,降低电网的有功损耗,并改善电压质量,使用电设备安全可靠地运 行。  The basic idea of the invention lies in: Optimizing the frequency fluctuation, the pitch load and the line loss of the power grid by optimizing the regulation, reducing the active loss of the power grid, improving the voltage quality, and using the electrical equipment to operate safely and reliably.
本发明中所考虑的有功优化问题,可作如下定义:通过各种调节手段,在满足 频率约束和运行约束的条件下,使目标函数最优。 由上可见,有功优化问题实际上 是一个典型的带约束的组合优化问题。  The active optimization problem considered in the present invention can be defined as follows: by various adjustment means, the objective function is optimized under the condition that the frequency constraint and the operation constraint are satisfied. It can be seen from the above that the active optimization problem is actually a typical constrained combinatorial optimization problem.
一种在配有储能电站的分散式风电场有功优化调控方法, 如图 2所示, 它 的步骤如下:  A method for active power optimization control of a distributed wind farm equipped with a storage power station, as shown in Figure 2, the steps are as follows:
第一步, 通过 SCADA检测控制和采集系统测出风场风速, 风机转速, 各机 组有功功率, 变电站侧有功功率, 机组及入网侧三相电压、 频率, 功率因数, 储能系统充放电功率, 并网点电能质量数据, 然后将这些数据通过通讯线缆发 送控制中心。 The first step is to measure the wind speed of the wind field, the fan speed, and the machine through the SCADA detection control and acquisition system. Group active power, substation side active power, unit and network side three-phase voltage, frequency, power factor, energy storage system charge and discharge power, grid point power quality data, and then send these data to the control center through the communication cable.
第二步, 设定设定风功率波动与机组出力约束条件为:  In the second step, the set wind power fluctuation and the unit output constraint are:
1、 机组出力上下限约束:  1. The upper and lower limits of the unit output:
p, <p<p (1) 式中^ , 分别为机组出力的最小值和最大值。  p, <p<p (1) where ^ is the minimum and maximum values of the unit's output.
2、 考虑储能系统的功率波动范围约束:  2. Consider the power fluctuation range constraints of the energy storage system:
当储能系统响应充放电功率指令值时, 可得:  When the energy storage system responds to the charge and discharge power command value, it can be obtained:
P0(k + \) = Pw(k) + PB(k) (2) P 0 (k + \) = P w (k) + P B (k) (2)
P„W为当前时刻的合成输出功率; i W为当前时刻 k的风电功率; P k、为 储能系统的充放电功率。 P„W is the combined output power at the current time; i W is the wind power at the current time k; P k is the charge and discharge power of the energy storage system.
储能系统在当前时刻储存的能量为:  The energy stored by the energy storage system at the current time is:
EB{k) = EB{Q)-^∑PBU) (3) E B {k) = E B {Q)-^∑P B U) (3)
EB(0)为储能系统的初始能量。 E B (0) is the initial energy of the energy storage system.
分别取 P。( 和 为状态变量 x A:)和 ¾ (&), Pw{k)视为外部扰动变量 r( , 为控制输入量 WW, 则平抑波动控制系统的状态空间模型如下: Take P separately. (And is the state variable x A:) and 3⁄4 (&), P w {k) is regarded as the external disturbance variable r ( , for the control input amount WW, then the state space model of the smoothing fluctuation control system is as follows:
(4) x2 (k + l) = x2 (k)一 u(k) (4) x 2 (k + l) = x 2 (k) - u(k)
(5)
Figure imgf000009_0001
(5)
Figure imgf000009_0001
式中: r(t)为过程输出矩阵。 max Y(k - ί) - min Y(k-i)≤ γρ  Where: r(t) is the process output matrix. Max Y(k - ί) - min Y(k-i)≤ γρ
(6) max Y(k-i)~ min Y(k-i)≤r30prateii (6) max Y(ki)~ min Y(ki) ≤r 30 p rateii
, 共 M个时刻, 其中 ;S: = 0,l,...,A -l。  , a total of M moments, where ;S: = 0, l, ..., A - l.
任意 lmin的时间窗内, 系统合成输出功率的变化幅度 (最大值减去最小值 之差) 必须不大于风电场总额定输出功率 /^^的 ,; 在任意 30min的时间窗内, 系统合成输出功率的变化幅度必须不大于风电场总额定输出功率 pra,t£/的 。, γ 与^由电网导则规定。 In any lmin time window, the variation amplitude of the system's combined output power (the difference between the maximum value minus the minimum value) must not be greater than the total rated output power of the wind farm / ^^; in any 30min time window, The variation of the system's combined output power must not be greater than the total rated output power of the wind farm, p ra , t£/ . , γ and ^ are specified by the grid guidelines.
第三步, 风电场的集电线路分为电缆集电线路和架空线集电线路,相对于火 电厂来说,风电场的集电线路更为复杂,接近于一个小型的配电网。 风电机与升压 站之间通过这个小型的配电网传输功率时,会产生不容忽视的线路损耗,而火电 厂在运行期间可以不考虑这些损耗。 对电缆和架空两种集电线路方案进行有功 功率损耗计算。  In the third step, the collecting circuit of the wind farm is divided into a cable collecting line and an overhead line collecting line. Compared with a thermal power plant, the collecting line of the wind farm is more complicated and close to a small distribution network. When the power is transmitted between the wind turbine and the booster station through this small distribution network, there is a line loss that cannot be ignored, and the thermal power plant can ignore these losses during operation. Active power loss calculations for both cable and overhead collector circuits.
计算箱变额定负载损耗 Ρ„,箱变空载损耗 Ρ。,风机出口与箱变低压侧连接的 电缆线路损耗 ^, 各条线路功率损耗 ^。 经整理得到风场内的线路总损耗 。  Calculate the rated load loss of the box Ρ„, the box becomes no-load loss Ρ., the cable line loss connected to the low-voltage side of the fan outlet ^, the power loss of each line ^. The total line loss in the wind field is obtained through finishing.
/L、为各条线路功率损耗:  /L, for each line power loss:
Ploss = 3x 1 x i? = 3 x 7 x r i ( 7) 其中: /为线路电流; r为单位长度电阻值; £为各条线路的长度, P loss = 3x 1 xi? = 3 x 7 xri ( 7) where: / is the line current; r is the resistance per unit length; £ is the length of each line,
为风机出口与箱变低压侧连接的电缆线路损耗:
Figure imgf000010_0001
Cable line loss for the fan outlet and the low-voltage side of the box:
Figure imgf000010_0001
其中: α为功率输出系数; 为每台风机额定容量; N为风机总数; Μ为风 机出口电缆线路数; ^为风机出口电压; r为电缆单位长度的电阻值; Lc为电 缆长度。 Where: α is the power output coefficient; is the rated capacity of each fan; N is the total number of fans; Μ is the number of cable outlets of the fan; ^ is the fan outlet voltage; r is the resistance value of the cable unit length; L c is the cable length.
A为箱变空载损耗. -
Figure imgf000010_0002
A is the box to change the no-load loss. -
Figure imgf000010_0002
其中: S为箱变容量; Α为空载下的损耗率 <  Where: S is the box variable capacity; Α is the loss rate under no load <
为箱变额定负载损耗:
Figure imgf000010_0003
Variable load loss for the box:
Figure imgf000010_0003
其中: ¾为额定负载下的损耗率( 风场内的线路总损耗为: Where: 3⁄4 is the loss rate at rated load ( The total line loss in the wind farm is:
(11) 经整理得到为: (11) After finishing, it is:
1 1  1 1
P, =3x1 xr xL + c, xi/, +c, he,■ (12)  P, =3x1 xr xL + c, xi/, +c, he, ■ (12)
1 Α β2 为系数, 表达式如下: 1 Α β 2 is a coefficient, and the expression is as follows:
Cj = αCj = α
Figure imgf000011_0001
Figure imgf000011_0001
N x S  N x S
100 (14) 100 (14)
N x a2 x „ N xa 2 x „
c, =  c, =
100 x S, (15) 第四歩,计算另外两个优化目标:变桨距气动阻力系数 、并网点的频率波 动 4 。  100 x S, (15) Fourth, calculate the other two optimization goals: pitch aerodynamic drag coefficient, frequency fluctuation of the grid point 4 .
1、 风电机组在额定风速之上运行时, 需要进行调节桨距角以减少风轮的能 量捕获, 从而调节有功功率发电能力。 变桨距过程中, 风力机叶片会承受气动 力引起的变桨距载荷, 以动量-叶素理论分析计算风电机组的气动载荷, 建立非 线性函数关系。 由空气动力引起的变桨距载荷可表示为:  1. When the wind turbine is running above the rated wind speed, it is necessary to adjust the pitch angle to reduce the energy capture of the wind turbine, thereby adjusting the active power generation capability. During the pitching process, the wind turbine blade will withstand the pitch load caused by the aerodynamic force, and the momentum-leaf theory analysis will calculate the aerodynamic load of the wind turbine to establish a non-linear function relationship. The pitch load caused by aerodynamics can be expressed as:
Μ7 = ζάΜζ = O.Spv cJ 2 + Cd 2 · 5C sin + θ) dr (16) 其中: C为升力系数; Crf为阻力系数; 为桨距角; 为合力与切向力夹角。 可以看出, 空气动力引起的变桨距载荷与节距角有关, 所以改变桨距角可以 改变风力机空气动力载荷。 然而在同一风速下, 桨距角越小, 风力机捕获的风 能越大, 同时风力机承受载荷也越大, 所以风力机载荷成为了制约机组安全稳 定运行的一个短板。 为了防止过大的变桨距载荷损害机组使用寿命, 在研究变 桨距时必须对机组载荷进行评估, 使载荷风险最小化。 其中阻力系数 可在很 大程度上代表变桨距载荷引起的有功损耗。 Μ 7 = ζάΜ ζ = O.Spv cJ 2 + C d 2 · 5C sin + θ) dr (16) where: C is the lift coefficient; C rf is the drag coefficient; is the pitch angle; is the resultant force and tangential force clamp angle. It can be seen that the aerodynamically induced pitch load is related to the pitch angle, so changing the pitch angle can change the wind turbine aerodynamic load. However, at the same wind speed, the smaller the pitch angle, the greater the wind energy captured by the wind turbine, and the greater the load on the wind turbine. Therefore, the wind turbine load becomes a short board that restricts the safe and stable operation of the unit. In order to prevent excessive pitch load from damaging the life of the unit, the unit load must be evaluated when studying the pitch to minimize the load risk. The drag coefficient can largely represent the active loss caused by the pitch load.
Cd= (17) pxvx xc dr 其中 p为空气密度; Vl为气流速度; c为半径 处叶片弦长; 为作用在叶 片上的阻力; 为叶素厚度。 为桨距角, ^与风速的关系如图 3所示; "为入流角, 的关系如图 4 dp da 所示, 可以看出在一定范围内所呈现出正弦曲线的特性, 所以将其拟定为: dC C d = (17) pxv x xc dr Where p is the air density; Vl is the airflow velocity; c is the blade chord length at the radius; is the resistance acting on the blade; is the leaf thickness. For the pitch angle, the relationship between ^ and wind speed is shown in Fig. 3; "For the inflow angle, the relationship is shown in Figure 4 dp da. It can be seen that the sinusoidal characteristic is exhibited within a certain range, so it is drawn up. For: dC
sin ( - 45°) (18) da  Sin ( - 45°) (18) da
所以 可以通过 (18) 得到 <  So you can get it by (18) <
dC,
Figure imgf000012_0001
dC,
Figure imgf000012_0001
阻力系数的关系。 The relationship between the drag coefficients.
dP _ dP άβ da  dP _ dP άβ da
(19) dCd dfi da dCd (19) dC d dfi da dC d
2、 系统频率超出设定的限值 Λ</<Λ或 _/;</</J寸, 风电机组调整出力, 响应系统频率变化, 具 为: 2. The system frequency exceeds the set limit Λ</<Λ or _/;</</ JJ inch, the wind turbine adjusts the output, responds to the system frequency change, and has:
Figure imgf000012_0002
Figure imgf000012_0002
其中 ΔΡ为需要调整的有功出力; 为风电机组卸载运行状态下的有功出 力; fh, 为设定的风电机组不参与调频的频率上、 下限值; fa, 为设定的 风电机组调频段的上、 下限值; 为 点对应的有功出力。 各量均为标么值, 功率基准值为由风速确定的有功出力, 频率基准值为额定频率 50Hz。 Where Δ Ρ is the active output that needs to be adjusted; it is the active output under the unloading operation state of the wind turbine; f h , is the frequency upper and lower limit of the set wind turbine that does not participate in the frequency modulation; f a , is the set wind turbine Adjust the upper and lower limits of the frequency band; the active output corresponding to the point. Each quantity is a standard value, the power reference value is the active output determined by the wind speed, and the frequency reference value is the rated frequency 50 Hz.
第五步, 针对风电场运行的外界条件, 分为限电运行和不限电运行, 这两 最后都进行风电场有功出力调整。 将上面所求得的优化目标带入目标函  In the fifth step, the external conditions for the operation of the wind farm are divided into a limited power operation and an unrestricted electric operation. Both of these are finally adjusted for the active output of the wind farm. Bring the optimization goal obtained above into the target letter
1、限电情况:优化目标为并网点的频率波动 4~和 ^。当 p ) + ^( ≥preis寸, 需进行变桨控制 Δ^。 为调度给定风场有功输出值。此时优化目标需增加变桨 距气动阻力系数 G。此时目标函数如下: minfx = (21)1. Power-limited situation: The optimization target is the frequency fluctuation of the grid-connected points 4~ and ^. When p) + ^( ≥p rei s inch, pitch control Δ^ is required. To dispatch the active output value of the given wind field. At this time, the optimization target needs to increase the pitch. Aerodynamic drag coefficient G. The objective function is as follows: minf x = (21)
i ( )< re/)i ( )< re/ )
Figure imgf000013_0001
Figure imgf000013_0001
2、 不限电情况: 当风速 u小于额定风速 时, 对风机进行最大功率跟踪控 制 优化目标 Δ/和 ; 当风速 u小于等于额定风速 时, 对风机进行变桨 控制, 优化目标为 CRF, Δ/和 。 2. Unlimited conditions: When the wind speed u is less than the rated wind speed, the maximum power tracking control optimization target Δ/ sum is applied to the fan ; when the wind speed u is less than or equal to the rated wind speed, the pitch control of the fan is performed, and the optimization target is C RF . Δ/ and.
l2PL + l3Af {v<vr, MPPT) l 2 P L + l 3 Af {v<v r , MPPT)
min 其中: /,ΛΛ和 /15/2,/3分别为限电和不限电时的权重系数。 Min where: /, ΛΛ and / 15 / 2 , / 3 are the weighting factors when the power is limited and the power is not limited.
最大功率跟踪控制 ΜΡ/Γ采用的是最优叶尖速比法。当风速变化时要维持风 力机的叶尖速比 始终保持在最佳值 ^处,^ ^一般是通过计算或实验获得,这 样在任何风速下风力机对风能的利用率都最大。 图 5为其控制原理框图,它将风 速和风力机转速的测量值作为控制系统的输入信号,通过计算得出此时的实际叶 尖速比 ,然后与最优叶尖速比 相比较,所得误差值送入控制器,控制器控制逆 变器的输出来调节风机转速,从而保证叶尖速比最优。  The maximum power tracking control ΜΡ/Γ uses the optimal tip speed ratio method. When the wind speed changes, keep the tip speed ratio of the wind machine at the optimum value ^, ^ ^ is generally obtained by calculation or experiment, so the wind turbine has the highest utilization of wind energy at any wind speed. Figure 5 is a block diagram of its control principle. It takes the measured values of wind speed and wind turbine speed as the input signal of the control system, and calculates the actual tip speed ratio at this time, and then compares it with the optimal tip speed ratio. The error value is sent to the controller, which controls the output of the inverter to adjust the fan speed to ensure the tip speed ratio is optimal.
根据上述目标函数(21) (22), 约束条件为:  According to the above objective function (21) (22), the constraint is:
频率波动范围约束:  Frequency fluctuation range constraints:
(23)
Figure imgf000013_0002
(twenty three)
Figure imgf000013_0002
电网供电平衡约束:  Grid power supply balance constraints:
(24) 其中 Λ为总负荷的需求( 第六歩, ¾用基于粒子群优化箅法进行多目标有功优化。 (24) where Λ is the demand for total load ( Sixth, 3⁄4 uses multi-objective active optimization based on particle swarm optimization.
针对上述多 标优化控制 1¾题, 釆用粒子鮮优化算法进行達代搜索, 求最低 解, 歩骤如  For the above-mentioned multi-standard optimization control 13⁄4 problem, use the particle fresh optimization algorithm to perform the generation search, and find the lowest solution, such as
Stepl: 输入风机出口电 , 功率國数, 主变 ffi器參数与实际 输入功率, 实 际电 I 与额定电压的比值, 箱变空载损耗率和额定负载下损耗率, 菜距角, 入 流角等参数》 计算风场内的线路总损耗, 频率波动与&力系数《  Stepl: Input fan outlet power, power country, main variable ffi parameter and actual input power, ratio of actual electric I to rated voltage, box change no-load loss rate and loss rate under rated load, vegetable pitch angle, inflow angle "Parameters" Calculate the total line loss, frequency fluctuation and & force coefficient in the wind field
steP2: 设置维数、 最大迭代次数与粒子數; steP3: 将 stepl中得到的结果带入公式(21 ) (22)中,得到适应度值 /«te, 令/ 等于当前粒子的位置 Ste P 2: Set the dimension, the maximum number of iterations and the number of particles; ste P 3: Bring the result obtained in stepl into the formula (21) (22), and obtain the fitness value /« te , let / equal the current particle position
Step4: 初始化位置与逮度,计算第一个个体最优粒子的位置 «,并将此 p 为种群 前寻找到的全局最优粒子的位置 pj、; Step4: Initialize the position and the catch, calculate the position of the first individual optimal particle «, and set this p as the position pj of the global optimal particle found before the population;
Step5: 若¾前粒子适应度值小于个体极值, 则更新当前飾个体极僮 ^.( ; ' Step5: If the value of the pre-particle fitness is less than the individual extremum, update the current individual child. ^ ;
Step6: 若 前粒子适应度值小亍全局极值,则更新 ¾前諭全局极值 Step6: If the pre-particle fitness value is less than the global extremum, update the global extreme value before 3⁄4
Step7: 由公式 (25) (26) 更新速度向量与位置向量。
Figure imgf000014_0001
) 式中 t为当前循环次数 ; ¾、 为粒子权重系数; 为惯性权重; 、 ¾为 ( 0, I ) 内均 z习分布隨机数; V,、 I 为第 i维粒子脑位置与速度; Step8: 用更新后的速度向量与位置向量计算适应度值; Step9: 茧复 stepS到 step7;
Step7: Update the velocity vector and position vector from equation (25) (26).
Figure imgf000014_0001
Where t is the current number of cycles; 3⁄4, is the weight coefficient of the particle; is the inertia weight; , 3⁄4 is the (0, I) inner z-distribution random number; V, I is the i-dimensional particle brain position and velocity Step8: Calculate the fitness value with the updated velocity vector and position vector; Step9: Steps to step7;
StepiO:判斷迭代次数, 满足则输出结果; 否则回到 Step StepiO: judge the number of iterations, and if it is satisfied, output the result; otherwise, return to Step

Claims

权利要求书  Claim
1、 一种配有储能电站的分散式风电场有功功率的控制方法, 其特征在于: 其歩骤如下: 1. A control method for active power of a distributed wind farm equipped with a storage power station, characterized in that: the steps are as follows:
第一步, 通过 SCADA检测控制和采集系统测出风场风速、 风机转速、 各机 组有功功率、 变电站侧有功功率、 机组及入网侧三相电压、 电流、 频率、 功率 因数、 储能系统充放电功率和并网点电能质量数据, 然后将这些数据通过通讯 线缆发送控制中心;  The first step is to measure the wind speed of the wind field, the fan speed, the active power of each unit, the active power of the substation side, the three-phase voltage, current, frequency, power factor and energy storage system of the energy storage system through the SCADA detection control and acquisition system. Power and grid point power quality data, and then send the data to the control center via a communication cable;
第二步, 设定风功率波动与机组出力约束条件为:  In the second step, the wind power fluctuation and the unit output constraint are set as follows:
<P≤R i,.ax (1) max Y(k-i)- win Y(k-i)≤yxprated <P≤R i,.ax (1) max Y(ki)- win Y(ki)≤y x p rated
=0,1,...59
Figure imgf000015_0001
=0,1,...59
Figure imgf000015_0001
(1)式为机组出力上下限约束; (2)式为考虑储能系统的风电场功率波动 范围约束, 在 lmin或 30min的时间窗内, 系统合成输出功率的变化幅度必须不 大于风电场总额定输出功率 的 ^或 。, 与^由电网导则规定, 系统合成 输出功率的变化幅度为最大值减去最小值之差;  (1) is the upper and lower limits of the unit's output; (2) is to consider the wind power range fluctuation range of the energy storage system. In the time window of lmin or 30min, the variation of the system's combined output power must not exceed the total wind farm. Determine the output power of ^ or. , and ^ is regulated by the grid, the variation of the output power of the system is the difference between the maximum value minus the minimum value;
第三步, 通过实时测量得到的风机出口电压 ^, 架空线路电流 /, 箱变空 载损耗率和额定负载下损耗率4、 ¾, 得到风场内的线路总损耗 , 经整理得 到为:
Figure imgf000015_0002
In the third step, the total output loss of the wind farm is obtained by real-time measurement of the fan outlet voltage ^, the overhead line current /, the box-to-no load loss rate and the loss rate under the rated load of 4, 3⁄4.
Figure imgf000015_0002
其中 Cpc2,c3为系数, 表达式如下-Where Cp c 2 , c 3 are coefficients, and the expression is as follows -
2 N „ τ 2 N „ τ
c, - a x—— xP x xL^  c, - a x - xP x xL^
1 N, e (4) 1 N, e (4)
N St NS t
C2 = C 2 =
100 (5)  100 (5)
N x 2 x ( N x 2 x (
100 x 5, (6) 其中: "为功率输出系数; N为风机数; ^为每台风机额定容量; /为架空 线路电流值; r为架空线单位长度电阻值; 为架空线各条线路的长度; 为风 机出口电缆条数; S为箱变容量; ^为电缆线单位长度的电阻值; A为电缆线长 度; 100 x 5, (6) where: "for the power output coefficient; N for the number of fans; ^ for each fan rated capacity; / for the overhead line current value; r for the overhead line unit length resistance value; for the overhead line each line Length The number of cable outlets of the machine; S is the capacity of the box; ^ is the resistance value of the length of the cable; A is the length of the cable;
第四步,计算另外两个优化目标:变桨距气动阻力系数 c、并网点的频率波 动 '
Figure imgf000016_0001
The fourth step is to calculate the other two optimization goals: pitch aerodynamic drag coefficient c, frequency fluctuation of the grid point
Figure imgf000016_0001
为需要调整的有功出力; 为风电机组卸载运行状态下的有功出力; fb , ./:为设定的风电机组不参与调频的频率上、 下限值; fa, /rf为设定的风电机组 调频段的上、 下限值; 为^点对应的有功出力; For the active output that needs to be adjusted; for the active output of the wind turbine unloading operation; f b , ./: is the frequency upper and lower limit of the set wind turbine that does not participate in the frequency modulation; f a , / rf is set The upper and lower limits of the frequency band of the wind turbine; the active output corresponding to the ^ point;
dP _ dP άβ da  dP _ dP άβ da
( 8 ) dCd άβ da dCd 其中: 为桨距角、 "为入流角, 均为可测量数据; ( 8 ) dC d άβ da dC d where: is the pitch angle, "is the inflow angle, both are measurable data;
第五步, 针对风电场运行的外界条件, 分为限电运行和不限电运行, 这两 种情况最后都进行风电场有功出力调整, 将上面所求得的优化目标带入目标函 中; 限电情况:优化目标为并网点的频率波动 Δ/和 。当 Ρβ (A) + (/c)≥ PKf时, Pnf 为调度给定风场有功输出值, 需进行变桨控制 Δ?, 此时优化目标需增加变桨距 气动阻力系数 C,,, 此时目标函数如下: The fifth step, according to the external conditions of the wind farm operation, is divided into power-limited operation and non-electrical operation. In both cases, the active output of the wind farm is adjusted at the end, and the optimization target obtained above is brought into the target letter; Power limitation: The optimization target is the frequency fluctuation Δ/sum of the grid connection point. When Ρ β (A) + (/c) ≥ P Kf , P nf is the active output value of the given wind field, and the pitch control Δ is required. At this time, the optimization target needs to increase the pitch aerodynamic drag coefficient C, and the objective function is as follows:
Figure imgf000016_0002
Figure imgf000016_0002
不限电情况: 当风速"小于额定风速 时, 对风机进行最大功率跟踪控制 Unlimited conditions: When the wind speed is less than the rated wind speed, the maximum power tracking control is applied to the fan.
MPPT ,优化目标 Δ/和 P ; 当风速 u小于等于额定风速 u,.时, 对风机进行变桨控 制, 优化目标为 Crf , Δ/和
Figure imgf000016_0003
MPPT, optimize the target Δ / and P ; when the wind speed u is less than or equal to the rated wind speed u,., the pitch control of the fan, the optimization target is C rf , Δ / and
Figure imgf000016_0003
;^^^和 ^ 分别为限电和不限电时的权重系数, 约束条件为-;^^^ and ^ are the weighting factors for power limiting and no power, respectively. The constraint is -
Δ,≤ Cll) PB+∑P,=PD + PL (12) Δ, ≤ Cll) P B +∑P,=P D + P L (12)
(11)频率波动 IS围约東, 4 为频率偏移隠值; (12) 电网供电平衡约束, 为总 荷的需求; (11) Frequency fluctuation IS is about east, 4 is the frequency offset 隠 value; (12) Grid power supply balance constraint, which is the demand of the load;
第六歩, 运 W基于粒子群的车辆路径优化算法进行多目标有功优化。  Sixth, the W-based particle path-based vehicle path optimization algorithm for multi-objective active optimization.
2、 根据权利要求 1所逑的配有储能电站的分散式凤电场有功功率 tt控制方 法, 其特征在于:  2. The distributed phoenix electric field active power tt control method equipped with an energy storage power station according to claim 1, wherein:
针对上述多 g标优化控制问题, 采用粒子群优化 ί法进行迭代搜索, 求最优 解, 歩骤如下:  In view of the above multi-g standard optimization control problem, the particle swarm optimization ί method is used for iterative search to find the optimal solution. The steps are as follows:
0): 输入风机出 Ρ电 , 功率園数, 主变压器參数与实际的输入功率, 实际 电 ί五与额定 ft压 比值, 箱变空载损耗率靡额定负载下損耗率, 桨距角, 入流 角等参数 计算风场内的线路总损耗, 频率波动与阻力系数;  0): Input fan power, power garden, main transformer parameters and actual input power, actual voltage and rated ft pressure ratio, box change no-load loss rate 靡 rated load loss rate, pitch angle, Calculate the total line loss, frequency fluctuation and drag coefficient in the wind field by parameters such as the inflow angle;
② : 设置维数、 最大迭代次数与粒子数;  2 : Set the dimension, the maximum number of iterations, and the number of particles;
③ : 将 stepl中得到的结果带入公式 (9) (10) 中, 得到适应度值  3 : Bring the result obtained in stepl into the formula (9) (10) to obtain the fitness value.
令/ 等于 前粒子的位置 pj、: · Let / equal the position of the front particle pj,:
④: 初始化位置与速度,计算第一个个体最优粒子的位置 P, ,并将此 W 设为种群当前寻找到的全局最优粒子的位置/ w4: Initialize the position and velocity, calculate the position P of the first individual optimal particle, and set this W as the position of the global optimal particle currently found by the population / w ;
⑤ : 若当前粒子适应度值小于个体极 tfi, 则更新 ¾前的个体植值 ΛΑβ ; 5: If the current particle fitness value is less than the individual pole tfi, update the individual plant value ΛΑβ before 3⁄4;
⑥ 若当前粒子适应度值小于全局极值, 则更新当前 全局极值 ¾ ; 6 If the current particle fitness value is less than the global extremum, update the current global extremum 3⁄4;
⑦ : 由公式 (25) (26) 更新速度向量与位置向量;  7 : Update the velocity vector and position vector by equation (25) (26);
ν,Γ] = l,X...,n (25) xji+t) (26)
Figure imgf000017_0001
ν,Γ ] = l,X...,n (25) xj i+t) (26)
Figure imgf000017_0001
式中. t为当前循环次数 ; < 、 ¾为粒子权重系数; 《为惯性权重; ¾、 为(0, 1) 内均匀分布随机数; Vtd、 ,为第 i维粒子的位置与速度; Where t is the current number of cycles; < , 3⁄4 is the particle weight coefficient; "is the inertia weight; 3⁄4, is a uniformly distributed random number in (0, 1); V td , , is the position and velocity of the i-dimensional particle;
StepS:用更新后的速度向量与位置向量计算适産度值;  StepS: Calculate the fitness value using the updated velocity vector and position vector;
Step9: 電 ¾ stepS到 step7;  Step9: electricity 3⁄4 stepS to step7;
SteplO:判断迭代次数, 满足则输出结果; 否则回到 Step7。 '  SteplO: Determine the number of iterations, and if it is satisfied, output the result; otherwise, return to Step7. '
PCT/CN2014/000576 2013-06-18 2014-06-13 Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station WO2014201849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310241773.4A CN103441537B (en) 2013-06-18 2013-06-18 Distributing wind power plant active optimization regulation and control method equipped with energy-accumulating power station
CN201310241773.4 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014201849A1 true WO2014201849A1 (en) 2014-12-24

Family

ID=49695219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000576 WO2014201849A1 (en) 2013-06-18 2014-06-13 Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station

Country Status (2)

Country Link
CN (1) CN103441537B (en)
WO (1) WO2014201849A1 (en)

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565576A (en) * 2017-09-21 2018-01-09 国网福建省电力有限公司 A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated
CN107645177A (en) * 2016-07-20 2018-01-30 锐电科技有限公司 A kind of wind power plant EMS of combination energy storage
CN107732955A (en) * 2017-11-27 2018-02-23 广东工业大学 A kind of wind power generation high voltage direct current transportation method and device
CN107919685A (en) * 2017-11-30 2018-04-17 甘肃省电力公司风电技术中心 A kind of wind power plant AGC instructs optimized tuning method
CN108242815A (en) * 2018-03-30 2018-07-03 华北电力科学研究院有限责任公司 Fall the wind turbine energy storage supplied for power of fan and coordinate frequency modulation system and method
CN108377004A (en) * 2018-04-23 2018-08-07 华北电力科学研究院有限责任公司 Frequency modulation method and system are coordinated in wind storage based on virtual synchronous machine
US10120357B2 (en) 2015-09-18 2018-11-06 General Electric Company Systems and methods to control a power split between energy generation and energy storage assets
CN109086527A (en) * 2018-08-03 2018-12-25 合肥工业大学 A kind of practical equivalent modeling method based on running of wind generating set state
CN109271657A (en) * 2018-07-25 2019-01-25 许继集团有限公司 A kind of wind power generating set catches wind coefficient, over the evaluation method of hair hourage
CN109522607A (en) * 2018-10-22 2019-03-26 国网江西省电力有限公司电力科学研究院 A kind of double-fed fan motor field electromechanical transient equivalent modeling method
CN109636037A (en) * 2018-12-12 2019-04-16 石家庄华电供热集团有限公司 A kind of multi-heat source ring-shaped heat-supply network hydraulic optimization dispatching method based on PSO algorithm
CN109670655A (en) * 2019-01-30 2019-04-23 华北电力大学(保定) A kind of electric system multi-objective particle swarm optimization dispatching method
CN109995076A (en) * 2018-12-12 2019-07-09 云南电网有限责任公司电力科学研究院 A kind of photovoltaic based on energy storage collects system power and stablizes output cooperative control method
CN110019173A (en) * 2018-09-12 2019-07-16 国网浙江省电力有限公司嘉兴供电公司 The energy efficiency of equipment control method of big data
CN110071496A (en) * 2019-03-29 2019-07-30 广东工业大学 A kind of configuration of direct-current grid power optimization and operation method based on wave-activated power generation
CN110071532A (en) * 2019-06-04 2019-07-30 苏州工业职业技术学院 AGC power distribution control device and method based on DSP
CN110083804A (en) * 2019-04-24 2019-08-02 华中科技大学无锡研究院 Intelligent restorative procedure based on the wind power plant SCADA data missing that condition distribution returns
CN110266026A (en) * 2019-06-26 2019-09-20 中国能源建设集团广东省电力设计研究院有限公司 A kind of energy storage constant volume method of power plant's energy storage auxiliary frequency modulation
CN110323757A (en) * 2019-07-25 2019-10-11 三峡大学 Consider economic cost and regulates and controls substation's optimal reactive power allocation method of complexity
CN110457800A (en) * 2019-07-30 2019-11-15 天津大学 Consider the trunnion axis blower wind speed power output translation method of machinery inertial
CN110535174A (en) * 2019-07-23 2019-12-03 电子科技大学 A kind of active power controller method considering wind power plant fatigue load distribution and production capacity
CN110766240A (en) * 2019-11-19 2020-02-07 南京工程学院 Layered energy storage configuration method for rapid charging station in different scenes
CN110867894A (en) * 2019-11-25 2020-03-06 上海电力大学 Dynamic frequency division wind power generation system with autonomous inertia response
CN110943481A (en) * 2019-12-04 2020-03-31 重庆大学 Unit combination method considering wind turbine generator safety domain with frequency response control
CN111178634A (en) * 2019-12-31 2020-05-19 国网经济技术研究院有限公司 Method and system for selecting power distribution network construction and transformation scheme
CN111178601A (en) * 2019-12-18 2020-05-19 中电投电力工程有限公司 Wind turbine generator power prediction method based on meteorological data post-processing
CN111400952A (en) * 2020-03-20 2020-07-10 中原工学院 Optimization design method of glass-carbon mixed low-wind-speed blade layering structure
CN111488695A (en) * 2020-04-16 2020-08-04 中国南方电网有限责任公司 Optimal probability setting calculation method for power grid line protection
CN111525599A (en) * 2020-05-12 2020-08-11 国网四川省电力公司经济技术研究院 Frequency modulation control method for speed-increasing type wind turbine generator
CN111555306A (en) * 2020-04-29 2020-08-18 云南电网有限责任公司电力科学研究院 System and method for wind turbine generator set to participate in rapid frequency modulation of regional power grid
CN111641220A (en) * 2020-05-25 2020-09-08 国家电网有限公司 Power grid side energy storage system capacity configuration method based on improved simulated annealing algorithm
CN111754035A (en) * 2020-06-17 2020-10-09 上海电气风电集团股份有限公司 Optimization method and optimization system for wind power plant layout and computer-readable storage medium
CN111969610A (en) * 2020-07-15 2020-11-20 上海能辉科技股份有限公司 Voltage and power integrated control system based on four-quadrant operating characteristics of energy storage converter
CN112398168A (en) * 2020-11-09 2021-02-23 西安热工研究院有限公司 Microgrid energy storage configuration method based on virtual damping type
CN112421673A (en) * 2019-08-22 2021-02-26 国网河南省电力公司安阳供电公司 Power distribution network loss optimization control method and system based on multi-source coordination
CN112580897A (en) * 2020-12-31 2021-03-30 西安理工大学 Multi-energy power system optimal scheduling method based on parrot algorithm
CN112928778A (en) * 2021-01-27 2021-06-08 许继集团有限公司 Power and frequency regulation control method for photovoltaic energy storage power station
CN113204912A (en) * 2021-05-20 2021-08-03 深圳供电局有限公司 Control method, control device, and storage medium for suppressing system voltage fluctuation
CN113268851A (en) * 2021-04-09 2021-08-17 中国大唐集团新能源科学技术研究院有限公司 Wind power plant system optimization system based on data of front, middle and rear stages of wind power plant
CN113364001A (en) * 2021-06-10 2021-09-07 国网河北省电力有限公司电力科学研究院 Configuration optimization method of reactive compensation equipment in power distribution network and terminal equipment
CN113471986A (en) * 2020-03-31 2021-10-01 北京金风科创风电设备有限公司 Method for adjusting active power of wind power plant, control equipment and controller of wind power plant
CN113497452A (en) * 2021-06-28 2021-10-12 深圳市禾望电气股份有限公司 Control method for wind power system, frequency modulation controller and wind power system
CN113555887A (en) * 2021-07-14 2021-10-26 北京金山云网络技术有限公司 Power grid energy control method and device, electronic equipment and storage medium
CN113591359A (en) * 2021-08-17 2021-11-02 华能华家岭风力发电有限公司 Cut-in/cut-out wind speed adjusting and optimizing method, system and equipment medium of wind turbine generator
CN113629736A (en) * 2021-08-12 2021-11-09 国网江苏省电力有限公司常州供电分公司 Intraday rolling optimization method based on power distribution network hydrogen energy storage system
CN113659639A (en) * 2021-08-13 2021-11-16 云南电网有限责任公司电力科学研究院 Wind power plant inertia response power distribution method considering rotating speed constraint
CN113659630A (en) * 2021-07-26 2021-11-16 明阳智慧能源集团股份公司 Wind power plant power optimization scheduling method and system based on fatigue damage value estimation
CN113689023A (en) * 2021-03-11 2021-11-23 中国科学院广州能源研究所 Wind/storage/hydrogen grid-connected power generation system wind curtailment and energy absorption management method
CN113759708A (en) * 2021-02-09 2021-12-07 京东城市(北京)数字科技有限公司 System optimization control method and device and electronic equipment
CN113988608A (en) * 2021-10-27 2022-01-28 特变电工新疆新能源股份有限公司 Photovoltaic power station power-limiting loss electric quantity evaluation method
CN113988897A (en) * 2021-09-14 2022-01-28 广西电网有限责任公司 Wind storage system output deviation punishment cost calculation method and device
CN114021511A (en) * 2021-11-18 2022-02-08 湖南科技大学 Optimization method for BBMC main circuit parameters under different rated frequencies
CN114039366A (en) * 2021-11-11 2022-02-11 云南电网有限责任公司电力科学研究院 Power grid secondary frequency modulation control method and device based on peacock optimization algorithm
CN114050591A (en) * 2021-11-09 2022-02-15 福州大学 Method for optimizing voltage of offshore wind power plant booster station to realize loss reduction of power transmission project
CN114069729A (en) * 2021-11-11 2022-02-18 南京邮电大学 Permanent magnet direct-drive wind power plant reactive voltage control strategy based on adaptive droop control
CN114094635A (en) * 2021-11-17 2022-02-25 广东电网有限责任公司 Black start system and method for small hydropower microgrid
CN114204599A (en) * 2021-12-14 2022-03-18 广东电网有限责任公司 Distributed energy storage stationing operation control method for inhibiting voltage fluctuation of power distribution network
CN114219125A (en) * 2021-11-12 2022-03-22 国网浙江省电力有限公司杭州供电公司 High-elasticity urban power grid multi-dimensional intelligent partitioning method
CN114243781A (en) * 2021-12-23 2022-03-25 国网湖北省电力有限公司宜昌供电公司 Regional power grid new energy consumption level analysis method based on affine interval tide
CN114336773A (en) * 2021-11-18 2022-04-12 华能新能源股份有限公司 Wind power plant power type energy storage configuration method considering power prediction
CN114400692A (en) * 2022-01-11 2022-04-26 大连理工大学 Energy storage power station non-output working condition energy consumption optimization method and system
CN114465196A (en) * 2022-02-25 2022-05-10 南京理工大学 Line superposition method suitable for wind power plant to access power distribution network
CN114498597A (en) * 2022-01-21 2022-05-13 上海电器科学研究所(集团)有限公司 Ship direct-current power grid voltage adjusting method based on event driving
CN114676902A (en) * 2022-03-19 2022-06-28 特斯联科技集团有限公司 Optimal planning method and system for park power distribution system of high-proportion renewable energy
CN114725930A (en) * 2022-04-06 2022-07-08 安徽工程大学 Self-adaptive power system scheduling method and device
CN114781755A (en) * 2022-05-24 2022-07-22 江苏理工学院 UPQC capacity optimization method of photovoltaic energy storage microgrid
CN114977205A (en) * 2022-06-09 2022-08-30 合肥工业大学 Active power distribution network voltage control method based on improved self-adaptive inertia weight
CN114992047A (en) * 2022-07-13 2022-09-02 华电电力科学研究院有限公司 Wind generating set control method and related components
CN115001037A (en) * 2022-06-06 2022-09-02 国网山东省电力公司潍坊供电公司 Multi-target multi-time scale collaborative energy storage system scheduling operation method
CN115076035A (en) * 2022-07-22 2022-09-20 上海电力大学 Thermal management method and device for IGBT (insulated Gate Bipolar transistor) module of double-fed fan and storage medium
CN115149552A (en) * 2022-08-03 2022-10-04 中国电力工程顾问集团东北电力设计院有限公司 Control method of alternating-current coupling off-grid wind power hydrogen production system
US11467616B2 (en) 2018-11-09 2022-10-11 General Electric Company System and method for controlling operation of an energy generation and storage system
CN115182844A (en) * 2022-07-25 2022-10-14 青岛理工大学 Bounded UDE torque control method for variable-speed wind generating set
CN115276112A (en) * 2022-07-15 2022-11-01 华电江苏能源有限公司句容发电分公司 Thermal power generating unit coordination system modeling method based on advantage variation particle swarm
CN115313416A (en) * 2022-07-11 2022-11-08 华中科技大学 Multi-objective optimization control method suitable for auxiliary frequency modulation system of energy storage power station
CN115330092A (en) * 2022-10-13 2022-11-11 山东东盛澜渔业有限公司 Artificial intelligence-based energy supply control method for renewable energy sources of marine ranching
CN115378042A (en) * 2022-10-25 2022-11-22 国网江西省电力有限公司电力科学研究院 Distributed flexible resource coordination control method
CN115473238A (en) * 2022-09-27 2022-12-13 天津大学 Wind power plant frequency modulation standby coordination control method considering wind speed difference
CN115492718A (en) * 2022-08-26 2022-12-20 重庆海装风电工程技术有限公司 Active power control method, system, equipment and medium for primary frequency modulation
CN115549216A (en) * 2022-08-31 2022-12-30 中国长江三峡集团有限公司 Active-reactive coordination control method and system for wind and light storage station
CN115579894A (en) * 2022-10-20 2023-01-06 国网浙江省电力有限公司电力科学研究院 Distributed power flow controller coordinated output distribution method for reducing overall loss of device
CN115659779A (en) * 2022-09-26 2023-01-31 国网江苏省电力有限公司南通供电分公司 New energy access optimization strategy for multi-direct-current feed-in receiving-end power grid
CN115828439A (en) * 2021-09-17 2023-03-21 北京金风科创风电设备有限公司 Method and device for identifying abnormal loss of wind generating set
CN115864429A (en) * 2022-08-31 2023-03-28 湖北工业大学 Multi-objective optimization AGC method for wind and fire storage cooperation under double-carbon target
CN115994468A (en) * 2022-12-28 2023-04-21 中国电力工程顾问集团中南电力设计院有限公司 Dynamic load-based cross section optimization method for offshore wind power transmission direct-buried submarine cable
CN116111616A (en) * 2023-04-13 2023-05-12 清华大学 Multi-time space scale power system frequency full-track coordination optimization control method
CN116591895A (en) * 2023-05-29 2023-08-15 国网江苏省电力有限公司电力科学研究院 Active power control method and system for wind turbine generator
CN116599087A (en) * 2023-06-12 2023-08-15 华能罗源发电有限责任公司 Frequency modulation strategy optimization method and system of energy storage system
US11742667B2 (en) 2018-05-03 2023-08-29 Vestas Wind Systems A/S Integrated hybrid power plants for off-grid systems
CN116707035A (en) * 2023-08-07 2023-09-05 江苏蔚风能源科技有限公司 Active power control method depending on low wind speed dynamic programming
CN116826854A (en) * 2023-05-09 2023-09-29 国网江苏省电力有限公司镇江供电分公司 Energy storage control method for reducing transformer loss by power grid side energy storage based on LSTM
CN117200210A (en) * 2023-09-12 2023-12-08 盛隆电气集团有限公司 Power distribution method and device based on smart grid
CN117520867A (en) * 2024-01-08 2024-02-06 山东大学 Power system short circuit calculation method and device based on wind farm equivalent modeling optimization
CN117709689A (en) * 2024-02-05 2024-03-15 浙江浙能技术研究院有限公司 Wind farm power distribution optimization method considering overall efficiency and energy impedance
CN117748628A (en) * 2024-02-21 2024-03-22 青岛理工大学 Active power optimization scheduling method for output power smoothing of wind turbine generator
CN117748626A (en) * 2024-01-05 2024-03-22 内蒙古电力(集团)有限责任公司阿拉善供电分公司 Active control method and system for terminal power distribution network
CN117791647A (en) * 2023-12-29 2024-03-29 华北电力大学 SOEC system power control method and system for wind power stabilization
CN117869207A (en) * 2023-12-01 2024-04-12 太极计算机股份有限公司 Method and device for detecting power generation performance of wind turbine generator
WO2024082826A1 (en) * 2022-10-20 2024-04-25 隆基光伏科技(上海)有限公司 Collector-line generation method and apparatus
CN118040713A (en) * 2024-01-03 2024-05-14 武汉理工大学 Network-structured energy storage multi-objective optimization method based on improved hybrid dragonfly algorithm
CN118074196A (en) * 2024-04-17 2024-05-24 张家港格居信息科技有限公司 Intelligent distribution method for energy of unstable power supply
CN118100321A (en) * 2024-04-29 2024-05-28 云南电投绿能科技有限公司 Wind power cluster control method and system based on improved hawk search algorithm
CN118117717A (en) * 2024-04-28 2024-05-31 张家港格居信息科技有限公司 Storage battery matching method based on unstable power supply
CN118572797A (en) * 2024-08-02 2024-08-30 中国电建集团西北勘测设计研究院有限公司 Capacity optimization configuration method and device for photovoltaic photo-thermal complementary power generation system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441537B (en) * 2013-06-18 2018-04-13 国家电网公司 Distributing wind power plant active optimization regulation and control method equipped with energy-accumulating power station
CN105226721B (en) * 2015-11-09 2017-07-28 温州大学 Independent micro-grid system fractional order frequency controller Optimization Design
CN106026161A (en) * 2016-05-23 2016-10-12 天津大学 Analysis and evaluation method for regional available wind energy resources
CN108242823B (en) * 2016-12-26 2020-04-28 北京金风科创风电设备有限公司 Active power distribution method and device for wind power plant
CN107482678B (en) * 2017-08-15 2019-09-06 重庆大学 A kind of double-fed fan motor field is through soft direct join net system failure traversing control method
CN108533454B (en) * 2018-04-17 2019-08-09 中南大学 The equally distributed optimal control method of wind power plant unit fatigue under active output adjusting
CN108547735B (en) * 2018-04-17 2019-08-09 中南大学 The integrated optimization control method of wind power plant active output and unit fatigue
CN110544580A (en) * 2018-10-31 2019-12-06 中国能源建设集团广东省电力设计研究院有限公司 Main transformer and boosting system of offshore wind power plant boosting station
CN109193913B (en) * 2018-11-01 2024-05-17 西安热工研究院有限公司 Energy storage battery service power standby system based on AGC frequency modulation of thermal power plant
CN109560576A (en) * 2019-01-15 2019-04-02 东南大学 A kind of distributed energy storage participates in a few days-real-time monitoring method of large-scale wind power consumption
CN110601177B (en) * 2019-08-06 2023-04-14 广东工业大学 Economic optimization method for micro-grid containing wind power and photovoltaic power generation
CN111371124B (en) * 2020-04-10 2023-09-01 湘电风能有限公司 Wind farm active power scheduling method capable of guaranteeing maximization of generated energy
CN111711216B (en) * 2020-05-12 2023-08-29 广东技术师范大学 Active optimization method suitable for smooth island switching of flexible direct-current power transmission network
CN112117783A (en) * 2020-08-06 2020-12-22 淮沪电力有限公司田集第二发电厂 Thermal power generating unit power grid low-frequency accident frequency modulation method
CN112365026B (en) * 2020-10-12 2023-10-17 中山大学 Method and device for optimizing pitch of wave energy power generation device
CN112664390B (en) * 2020-12-22 2021-08-31 中国华能集团清洁能源技术研究院有限公司 Four-level hierarchical control method for tandem type double-wind-wheel wind turbine generator
CN113361133B (en) * 2021-06-28 2022-09-23 南京南瑞继保工程技术有限公司 Energy consumption monitoring method and system for energy storage power station
CN113988435B (en) * 2021-10-30 2024-05-24 重庆理工大学 Comprehensive energy system source-load collaborative optimization method based on service provider guidance
CN114154739B (en) * 2021-12-10 2024-10-15 上海电力大学 Optimal configuration method of shared energy storage power station in multi-region comprehensive energy system
CN114928101B (en) * 2022-05-05 2024-04-19 国网江苏省电力有限公司镇江供电分公司 Active power control method for synchronous support of optical storage virtual power plant
CN116404681B (en) * 2023-06-07 2023-10-27 国能信控互联技术有限公司 Energy storage stabilizing method based on grid-connected power cross-time scale fluctuation index

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860042A (en) * 2010-05-14 2010-10-13 许继集团有限公司 Method for cooperatively controlling active power of wind farm
CN102518560A (en) * 2011-12-30 2012-06-27 北京国电思达科技有限公司 Method for regulating active power of wind power field
CN102545268A (en) * 2012-02-10 2012-07-04 清华大学 Large grid active power real-time control method in restricted wind power state
US20120321463A1 (en) * 2011-06-17 2012-12-20 Jonathan Chauvin Method of optimizing the power recovered by a wind turbine by reducing the mechanical impact on the structure
CN102856925A (en) * 2012-09-03 2013-01-02 北京科诺伟业科技有限公司 Comprehensive power distribution method for wind power plant
CN103441537A (en) * 2013-06-18 2013-12-11 国家电网公司 Method for optimizing and regulating and controlling active power of distributed wind power plant with energy storage power station

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
CN102606395B (en) * 2012-03-20 2013-07-31 东南大学 Wind farm active power optimal control method based on power prediction information
CN102780236B (en) * 2012-08-11 2014-05-21 山东大学 Active optimal control system of wind and light storage combined power generation system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860042A (en) * 2010-05-14 2010-10-13 许继集团有限公司 Method for cooperatively controlling active power of wind farm
US20120321463A1 (en) * 2011-06-17 2012-12-20 Jonathan Chauvin Method of optimizing the power recovered by a wind turbine by reducing the mechanical impact on the structure
CN102518560A (en) * 2011-12-30 2012-06-27 北京国电思达科技有限公司 Method for regulating active power of wind power field
CN102545268A (en) * 2012-02-10 2012-07-04 清华大学 Large grid active power real-time control method in restricted wind power state
CN102856925A (en) * 2012-09-03 2013-01-02 北京科诺伟业科技有限公司 Comprehensive power distribution method for wind power plant
CN103441537A (en) * 2013-06-18 2013-12-11 国家电网公司 Method for optimizing and regulating and controlling active power of distributed wind power plant with energy storage power station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN, JIN ET AL.: "Research on Active Power Losses of Wind Farm", HIGH-TECHNOLOGY & INDUSTRIALIZATION, no. 11, 30 November 2009 (2009-11-30), pages 89 *
ZHANG, WENTONG ET AL.: "Active Power Allocation Method of Wind Farm Considering Losses", SHAANXI ELECTRIC POWER, vol. 40, no. 6, 30 June 2012 (2012-06-30), pages 12 - 13 *

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10120357B2 (en) 2015-09-18 2018-11-06 General Electric Company Systems and methods to control a power split between energy generation and energy storage assets
CN107645177B (en) * 2016-07-20 2023-09-15 锐电科技有限公司 Wind power plant energy management system combining energy storage
CN107645177A (en) * 2016-07-20 2018-01-30 锐电科技有限公司 A kind of wind power plant EMS of combination energy storage
CN107565576A (en) * 2017-09-21 2018-01-09 国网福建省电力有限公司 A kind of active distribution network reactive Voltage Optimum method that more active management means are mutually coordinated
CN107565576B (en) * 2017-09-21 2023-09-15 国网福建省电力有限公司 Reactive voltage optimization method for active power distribution network coordinated by multiple active management means
CN107732955B (en) * 2017-11-27 2023-07-25 广东工业大学 Wind power generation high-voltage direct current transmission method and device
CN107732955A (en) * 2017-11-27 2018-02-23 广东工业大学 A kind of wind power generation high voltage direct current transportation method and device
CN107919685A (en) * 2017-11-30 2018-04-17 甘肃省电力公司风电技术中心 A kind of wind power plant AGC instructs optimized tuning method
CN108242815A (en) * 2018-03-30 2018-07-03 华北电力科学研究院有限责任公司 Fall the wind turbine energy storage supplied for power of fan and coordinate frequency modulation system and method
CN108242815B (en) * 2018-03-30 2024-03-08 华北电力科学研究院有限责任公司 Fan energy storage coordination frequency modulation system and method for fan power drop complement
CN108377004A (en) * 2018-04-23 2018-08-07 华北电力科学研究院有限责任公司 Frequency modulation method and system are coordinated in wind storage based on virtual synchronous machine
CN108377004B (en) * 2018-04-23 2024-03-15 华北电力科学研究院有限责任公司 Wind-storage coordination frequency modulation method and system based on virtual synchronous machine
US11742667B2 (en) 2018-05-03 2023-08-29 Vestas Wind Systems A/S Integrated hybrid power plants for off-grid systems
CN109271657B (en) * 2018-07-25 2022-12-13 许继集团有限公司 Wind capture coefficient and annual hour number estimation method of wind generating set
CN109271657A (en) * 2018-07-25 2019-01-25 许继集团有限公司 A kind of wind power generating set catches wind coefficient, over the evaluation method of hair hourage
CN109086527A (en) * 2018-08-03 2018-12-25 合肥工业大学 A kind of practical equivalent modeling method based on running of wind generating set state
CN110019173B (en) * 2018-09-12 2023-05-05 国网浙江省电力有限公司嘉兴供电公司 Equipment energy efficiency control method for big data
CN110019173A (en) * 2018-09-12 2019-07-16 国网浙江省电力有限公司嘉兴供电公司 The energy efficiency of equipment control method of big data
CN109522607A (en) * 2018-10-22 2019-03-26 国网江西省电力有限公司电力科学研究院 A kind of double-fed fan motor field electromechanical transient equivalent modeling method
US11467616B2 (en) 2018-11-09 2022-10-11 General Electric Company System and method for controlling operation of an energy generation and storage system
CN109636037A (en) * 2018-12-12 2019-04-16 石家庄华电供热集团有限公司 A kind of multi-heat source ring-shaped heat-supply network hydraulic optimization dispatching method based on PSO algorithm
CN109995076A (en) * 2018-12-12 2019-07-09 云南电网有限责任公司电力科学研究院 A kind of photovoltaic based on energy storage collects system power and stablizes output cooperative control method
CN109670655B (en) * 2019-01-30 2023-11-07 华北电力大学(保定) Multi-target particle swarm optimization scheduling method for electric power system
CN109670655A (en) * 2019-01-30 2019-04-23 华北电力大学(保定) A kind of electric system multi-objective particle swarm optimization dispatching method
CN110071496A (en) * 2019-03-29 2019-07-30 广东工业大学 A kind of configuration of direct-current grid power optimization and operation method based on wave-activated power generation
CN110083804A (en) * 2019-04-24 2019-08-02 华中科技大学无锡研究院 Intelligent restorative procedure based on the wind power plant SCADA data missing that condition distribution returns
CN110071532B (en) * 2019-06-04 2023-07-21 苏州工业职业技术学院 AGC power distribution control device and method based on DSP
CN110071532A (en) * 2019-06-04 2019-07-30 苏州工业职业技术学院 AGC power distribution control device and method based on DSP
CN110266026B (en) * 2019-06-26 2022-10-18 中国能源建设集团广东省电力设计研究院有限公司 Energy storage constant volume method for power plant energy storage auxiliary frequency modulation
CN110266026A (en) * 2019-06-26 2019-09-20 中国能源建设集团广东省电力设计研究院有限公司 A kind of energy storage constant volume method of power plant's energy storage auxiliary frequency modulation
CN110535174B (en) * 2019-07-23 2023-03-10 电子科技大学 Active power control method considering fatigue load distribution and productivity of wind power plant
CN110535174A (en) * 2019-07-23 2019-12-03 电子科技大学 A kind of active power controller method considering wind power plant fatigue load distribution and production capacity
CN110323757A (en) * 2019-07-25 2019-10-11 三峡大学 Consider economic cost and regulates and controls substation's optimal reactive power allocation method of complexity
CN110323757B (en) * 2019-07-25 2023-01-06 三峡大学 Transformer substation reactive power optimization configuration method considering economic cost and regulation and control complexity
CN110457800B (en) * 2019-07-30 2023-06-16 天津大学 Wind speed and output conversion method of horizontal axis fan considering mechanical inertia
CN110457800A (en) * 2019-07-30 2019-11-15 天津大学 Consider the trunnion axis blower wind speed power output translation method of machinery inertial
CN112421673B (en) * 2019-08-22 2024-02-06 国网河南省电力公司安阳供电公司 Multi-source coordination-based power distribution network loss optimization control method and system
CN112421673A (en) * 2019-08-22 2021-02-26 国网河南省电力公司安阳供电公司 Power distribution network loss optimization control method and system based on multi-source coordination
CN110766240B (en) * 2019-11-19 2022-11-01 南京工程学院 Layered energy storage configuration method for rapid charging station in different scenes
CN110766240A (en) * 2019-11-19 2020-02-07 南京工程学院 Layered energy storage configuration method for rapid charging station in different scenes
CN110867894A (en) * 2019-11-25 2020-03-06 上海电力大学 Dynamic frequency division wind power generation system with autonomous inertia response
CN110867894B (en) * 2019-11-25 2023-05-30 上海电力大学 Autonomous inertia response dynamic frequency division wind power generation system
CN110943481A (en) * 2019-12-04 2020-03-31 重庆大学 Unit combination method considering wind turbine generator safety domain with frequency response control
CN111178601B (en) * 2019-12-18 2024-03-26 上海能源科技发展有限公司 Wind turbine generator power prediction method based on meteorological data post-processing
CN111178601A (en) * 2019-12-18 2020-05-19 中电投电力工程有限公司 Wind turbine generator power prediction method based on meteorological data post-processing
CN111178634A (en) * 2019-12-31 2020-05-19 国网经济技术研究院有限公司 Method and system for selecting power distribution network construction and transformation scheme
CN111400952B (en) * 2020-03-20 2023-04-07 中原工学院 Optimized design method for glass-carbon mixed low-wind-speed blade layering structure
CN111400952A (en) * 2020-03-20 2020-07-10 中原工学院 Optimization design method of glass-carbon mixed low-wind-speed blade layering structure
CN113471986A (en) * 2020-03-31 2021-10-01 北京金风科创风电设备有限公司 Method for adjusting active power of wind power plant, control equipment and controller of wind power plant
CN113471986B (en) * 2020-03-31 2024-05-31 北京金风科创风电设备有限公司 Method for adjusting active power of wind power plant, control equipment and controller of wind power plant
CN111488695A (en) * 2020-04-16 2020-08-04 中国南方电网有限责任公司 Optimal probability setting calculation method for power grid line protection
CN111555306B (en) * 2020-04-29 2023-09-01 云南电网有限责任公司电力科学研究院 System and method for participating in regional power grid rapid frequency modulation of wind turbine generator system
CN111555306A (en) * 2020-04-29 2020-08-18 云南电网有限责任公司电力科学研究院 System and method for wind turbine generator set to participate in rapid frequency modulation of regional power grid
CN111525599A (en) * 2020-05-12 2020-08-11 国网四川省电力公司经济技术研究院 Frequency modulation control method for speed-increasing type wind turbine generator
CN111525599B (en) * 2020-05-12 2023-04-11 国网四川省电力公司经济技术研究院 Frequency modulation control method for speed-increasing type wind turbine generator
CN111641220A (en) * 2020-05-25 2020-09-08 国家电网有限公司 Power grid side energy storage system capacity configuration method based on improved simulated annealing algorithm
CN111754035A (en) * 2020-06-17 2020-10-09 上海电气风电集团股份有限公司 Optimization method and optimization system for wind power plant layout and computer-readable storage medium
CN111969610A (en) * 2020-07-15 2020-11-20 上海能辉科技股份有限公司 Voltage and power integrated control system based on four-quadrant operating characteristics of energy storage converter
CN112398168B (en) * 2020-11-09 2023-05-02 西安热工研究院有限公司 Micro-grid energy storage configuration method according to virtual damping type
CN112398168A (en) * 2020-11-09 2021-02-23 西安热工研究院有限公司 Microgrid energy storage configuration method based on virtual damping type
CN112580897B (en) * 2020-12-31 2023-08-22 西安理工大学 Method for optimal scheduling of multi-energy power system based on parrot algorithm
CN112580897A (en) * 2020-12-31 2021-03-30 西安理工大学 Multi-energy power system optimal scheduling method based on parrot algorithm
CN112928778B (en) * 2021-01-27 2023-11-28 许继集团有限公司 Power and frequency regulation control method for photovoltaic energy storage power station
CN112928778A (en) * 2021-01-27 2021-06-08 许继集团有限公司 Power and frequency regulation control method for photovoltaic energy storage power station
CN113759708A (en) * 2021-02-09 2021-12-07 京东城市(北京)数字科技有限公司 System optimization control method and device and electronic equipment
CN113689023A (en) * 2021-03-11 2021-11-23 中国科学院广州能源研究所 Wind/storage/hydrogen grid-connected power generation system wind curtailment and energy absorption management method
CN113689023B (en) * 2021-03-11 2023-10-13 中国科学院广州能源研究所 Wind-abandoning energy-dissipating management method for wind/storage/hydrogen grid-connected power generation system
CN113268851A (en) * 2021-04-09 2021-08-17 中国大唐集团新能源科学技术研究院有限公司 Wind power plant system optimization system based on data of front, middle and rear stages of wind power plant
CN113204912A (en) * 2021-05-20 2021-08-03 深圳供电局有限公司 Control method, control device, and storage medium for suppressing system voltage fluctuation
CN113204912B (en) * 2021-05-20 2023-07-07 深圳供电局有限公司 Control method, control apparatus, and storage medium for suppressing system voltage fluctuation
CN113364001A (en) * 2021-06-10 2021-09-07 国网河北省电力有限公司电力科学研究院 Configuration optimization method of reactive compensation equipment in power distribution network and terminal equipment
CN113497452A (en) * 2021-06-28 2021-10-12 深圳市禾望电气股份有限公司 Control method for wind power system, frequency modulation controller and wind power system
CN113555887B (en) * 2021-07-14 2024-05-14 北京金山云网络技术有限公司 Power grid energy control method and device, electronic equipment and storage medium
CN113555887A (en) * 2021-07-14 2021-10-26 北京金山云网络技术有限公司 Power grid energy control method and device, electronic equipment and storage medium
CN113659630B (en) * 2021-07-26 2024-03-19 明阳智慧能源集团股份公司 Wind power plant power optimal scheduling method and system based on fatigue damage value estimation
CN113659630A (en) * 2021-07-26 2021-11-16 明阳智慧能源集团股份公司 Wind power plant power optimization scheduling method and system based on fatigue damage value estimation
CN113629736A (en) * 2021-08-12 2021-11-09 国网江苏省电力有限公司常州供电分公司 Intraday rolling optimization method based on power distribution network hydrogen energy storage system
CN113659639A (en) * 2021-08-13 2021-11-16 云南电网有限责任公司电力科学研究院 Wind power plant inertia response power distribution method considering rotating speed constraint
CN113659639B (en) * 2021-08-13 2023-11-21 云南电网有限责任公司电力科学研究院 Wind power plant inertia response power distribution method considering rotation speed constraint
CN113591359B (en) * 2021-08-17 2023-11-17 华能华家岭风力发电有限公司 Wind turbine generator set cut-in/cut-out wind speed adjusting and optimizing method, system and equipment medium
CN113591359A (en) * 2021-08-17 2021-11-02 华能华家岭风力发电有限公司 Cut-in/cut-out wind speed adjusting and optimizing method, system and equipment medium of wind turbine generator
CN113988897A (en) * 2021-09-14 2022-01-28 广西电网有限责任公司 Wind storage system output deviation punishment cost calculation method and device
CN115828439A (en) * 2021-09-17 2023-03-21 北京金风科创风电设备有限公司 Method and device for identifying abnormal loss of wind generating set
CN115828439B (en) * 2021-09-17 2024-02-02 北京金风科创风电设备有限公司 Method and device for identifying abnormal loss of wind generating set
CN113988608A (en) * 2021-10-27 2022-01-28 特变电工新疆新能源股份有限公司 Photovoltaic power station power-limiting loss electric quantity evaluation method
CN114050591B (en) * 2021-11-09 2024-01-30 福州大学 Method for reducing loss of power transmission engineering by optimizing voltage of offshore wind farm booster station
CN114050591A (en) * 2021-11-09 2022-02-15 福州大学 Method for optimizing voltage of offshore wind power plant booster station to realize loss reduction of power transmission project
CN114069729A (en) * 2021-11-11 2022-02-18 南京邮电大学 Permanent magnet direct-drive wind power plant reactive voltage control strategy based on adaptive droop control
CN114039366A (en) * 2021-11-11 2022-02-11 云南电网有限责任公司电力科学研究院 Power grid secondary frequency modulation control method and device based on peacock optimization algorithm
CN114069729B (en) * 2021-11-11 2023-09-26 南京邮电大学 Permanent magnet direct-driven wind farm reactive voltage control strategy based on self-adaptive droop control
CN114039366B (en) * 2021-11-11 2023-11-21 云南电网有限责任公司电力科学研究院 Power grid secondary frequency modulation control method and device based on peacock optimization algorithm
CN114219125A (en) * 2021-11-12 2022-03-22 国网浙江省电力有限公司杭州供电公司 High-elasticity urban power grid multi-dimensional intelligent partitioning method
CN114094635B (en) * 2021-11-17 2023-08-25 广东电网有限责任公司 Black-start system and method for small hydropower micro-grid
CN114094635A (en) * 2021-11-17 2022-02-25 广东电网有限责任公司 Black start system and method for small hydropower microgrid
CN114336773B (en) * 2021-11-18 2024-04-23 华能新能源股份有限公司 Wind power plant power type energy storage configuration method considering power prediction
CN114336773A (en) * 2021-11-18 2022-04-12 华能新能源股份有限公司 Wind power plant power type energy storage configuration method considering power prediction
CN114021511A (en) * 2021-11-18 2022-02-08 湖南科技大学 Optimization method for BBMC main circuit parameters under different rated frequencies
CN114204599A (en) * 2021-12-14 2022-03-18 广东电网有限责任公司 Distributed energy storage stationing operation control method for inhibiting voltage fluctuation of power distribution network
CN114243781A (en) * 2021-12-23 2022-03-25 国网湖北省电力有限公司宜昌供电公司 Regional power grid new energy consumption level analysis method based on affine interval tide
CN114243781B (en) * 2021-12-23 2023-10-27 国网湖北省电力有限公司宜昌供电公司 Regional power grid new energy consumption level analysis method based on affine interval tide
CN114400692A (en) * 2022-01-11 2022-04-26 大连理工大学 Energy storage power station non-output working condition energy consumption optimization method and system
CN114498597B (en) * 2022-01-21 2024-04-26 上海电器科学研究所(集团)有限公司 Ship direct-current power grid voltage adjusting method based on event driving
CN114498597A (en) * 2022-01-21 2022-05-13 上海电器科学研究所(集团)有限公司 Ship direct-current power grid voltage adjusting method based on event driving
CN114465196A (en) * 2022-02-25 2022-05-10 南京理工大学 Line superposition method suitable for wind power plant to access power distribution network
CN114676902A (en) * 2022-03-19 2022-06-28 特斯联科技集团有限公司 Optimal planning method and system for park power distribution system of high-proportion renewable energy
CN114725930A (en) * 2022-04-06 2022-07-08 安徽工程大学 Self-adaptive power system scheduling method and device
CN114781755A (en) * 2022-05-24 2022-07-22 江苏理工学院 UPQC capacity optimization method of photovoltaic energy storage microgrid
CN115001037B (en) * 2022-06-06 2024-03-29 国网山东省电力公司潍坊供电公司 Multi-target multi-time scale collaborative energy storage system scheduling operation method
CN115001037A (en) * 2022-06-06 2022-09-02 国网山东省电力公司潍坊供电公司 Multi-target multi-time scale collaborative energy storage system scheduling operation method
CN114977205B (en) * 2022-06-09 2024-03-05 合肥工业大学 Active power distribution network voltage control method based on improved self-adaptive inertia weight
CN114977205A (en) * 2022-06-09 2022-08-30 合肥工业大学 Active power distribution network voltage control method based on improved self-adaptive inertia weight
CN115313416A (en) * 2022-07-11 2022-11-08 华中科技大学 Multi-objective optimization control method suitable for auxiliary frequency modulation system of energy storage power station
CN114992047B (en) * 2022-07-13 2024-05-28 华电电力科学研究院有限公司 Control method of wind generating set and related components
CN114992047A (en) * 2022-07-13 2022-09-02 华电电力科学研究院有限公司 Wind generating set control method and related components
CN115276112A (en) * 2022-07-15 2022-11-01 华电江苏能源有限公司句容发电分公司 Thermal power generating unit coordination system modeling method based on advantage variation particle swarm
CN115076035A (en) * 2022-07-22 2022-09-20 上海电力大学 Thermal management method and device for IGBT (insulated Gate Bipolar transistor) module of double-fed fan and storage medium
CN115182844A (en) * 2022-07-25 2022-10-14 青岛理工大学 Bounded UDE torque control method for variable-speed wind generating set
CN115149552A (en) * 2022-08-03 2022-10-04 中国电力工程顾问集团东北电力设计院有限公司 Control method of alternating-current coupling off-grid wind power hydrogen production system
CN115149552B (en) * 2022-08-03 2024-06-11 中国电力工程顾问集团东北电力设计院有限公司 Control method of alternating-current coupling off-grid wind power hydrogen production system
CN115492718A (en) * 2022-08-26 2022-12-20 重庆海装风电工程技术有限公司 Active power control method, system, equipment and medium for primary frequency modulation
CN115864429A (en) * 2022-08-31 2023-03-28 湖北工业大学 Multi-objective optimization AGC method for wind and fire storage cooperation under double-carbon target
CN115549216A (en) * 2022-08-31 2022-12-30 中国长江三峡集团有限公司 Active-reactive coordination control method and system for wind and light storage station
CN115549216B (en) * 2022-08-31 2023-12-12 中国长江三峡集团有限公司 Active-reactive coordination control method and system for wind-solar energy storage station
CN115659779A (en) * 2022-09-26 2023-01-31 国网江苏省电力有限公司南通供电分公司 New energy access optimization strategy for multi-direct-current feed-in receiving-end power grid
CN115659779B (en) * 2022-09-26 2023-06-23 国网江苏省电力有限公司南通供电分公司 New energy access optimization strategy for multi-DC feed-in receiving end power grid
CN115473238A (en) * 2022-09-27 2022-12-13 天津大学 Wind power plant frequency modulation standby coordination control method considering wind speed difference
CN115473238B (en) * 2022-09-27 2023-08-15 天津大学 Wind farm frequency modulation standby coordination control method considering wind speed difference
CN115330092A (en) * 2022-10-13 2022-11-11 山东东盛澜渔业有限公司 Artificial intelligence-based energy supply control method for renewable energy sources of marine ranching
CN115330092B (en) * 2022-10-13 2023-03-24 山东东盛澜渔业有限公司 Artificial intelligence-based energy supply control method for renewable energy sources of marine ranching
CN115579894A (en) * 2022-10-20 2023-01-06 国网浙江省电力有限公司电力科学研究院 Distributed power flow controller coordinated output distribution method for reducing overall loss of device
WO2024082826A1 (en) * 2022-10-20 2024-04-25 隆基光伏科技(上海)有限公司 Collector-line generation method and apparatus
CN115378042B (en) * 2022-10-25 2023-02-17 国网江西省电力有限公司电力科学研究院 Distributed flexible resource coordination control method
CN115378042A (en) * 2022-10-25 2022-11-22 国网江西省电力有限公司电力科学研究院 Distributed flexible resource coordination control method
CN115994468A (en) * 2022-12-28 2023-04-21 中国电力工程顾问集团中南电力设计院有限公司 Dynamic load-based cross section optimization method for offshore wind power transmission direct-buried submarine cable
CN115994468B (en) * 2022-12-28 2024-04-05 中国电力工程顾问集团中南电力设计院有限公司 Dynamic load-based cross section optimization method for offshore wind power transmission direct-buried submarine cable
CN116111616A (en) * 2023-04-13 2023-05-12 清华大学 Multi-time space scale power system frequency full-track coordination optimization control method
CN116826854A (en) * 2023-05-09 2023-09-29 国网江苏省电力有限公司镇江供电分公司 Energy storage control method for reducing transformer loss by power grid side energy storage based on LSTM
CN116591895A (en) * 2023-05-29 2023-08-15 国网江苏省电力有限公司电力科学研究院 Active power control method and system for wind turbine generator
CN116599087A (en) * 2023-06-12 2023-08-15 华能罗源发电有限责任公司 Frequency modulation strategy optimization method and system of energy storage system
CN116599087B (en) * 2023-06-12 2024-02-06 华能罗源发电有限责任公司 Frequency modulation strategy optimization method and system of energy storage system
CN116707035A (en) * 2023-08-07 2023-09-05 江苏蔚风能源科技有限公司 Active power control method depending on low wind speed dynamic programming
CN116707035B (en) * 2023-08-07 2023-09-29 江苏蔚风能源科技有限公司 Active power control method depending on low wind speed dynamic programming
CN117200210A (en) * 2023-09-12 2023-12-08 盛隆电气集团有限公司 Power distribution method and device based on smart grid
CN117869207A (en) * 2023-12-01 2024-04-12 太极计算机股份有限公司 Method and device for detecting power generation performance of wind turbine generator
CN117791647A (en) * 2023-12-29 2024-03-29 华北电力大学 SOEC system power control method and system for wind power stabilization
CN118040713A (en) * 2024-01-03 2024-05-14 武汉理工大学 Network-structured energy storage multi-objective optimization method based on improved hybrid dragonfly algorithm
CN117748626A (en) * 2024-01-05 2024-03-22 内蒙古电力(集团)有限责任公司阿拉善供电分公司 Active control method and system for terminal power distribution network
CN117520867B (en) * 2024-01-08 2024-03-29 山东大学 Power system short circuit calculation method and device based on wind farm equivalent modeling optimization
CN117520867A (en) * 2024-01-08 2024-02-06 山东大学 Power system short circuit calculation method and device based on wind farm equivalent modeling optimization
CN117709689B (en) * 2024-02-05 2024-05-28 浙江浙能技术研究院有限公司 Wind farm power distribution optimization method considering overall efficiency and energy impedance
CN117709689A (en) * 2024-02-05 2024-03-15 浙江浙能技术研究院有限公司 Wind farm power distribution optimization method considering overall efficiency and energy impedance
CN117748628A (en) * 2024-02-21 2024-03-22 青岛理工大学 Active power optimization scheduling method for output power smoothing of wind turbine generator
CN118074196A (en) * 2024-04-17 2024-05-24 张家港格居信息科技有限公司 Intelligent distribution method for energy of unstable power supply
CN118117717A (en) * 2024-04-28 2024-05-31 张家港格居信息科技有限公司 Storage battery matching method based on unstable power supply
CN118100321A (en) * 2024-04-29 2024-05-28 云南电投绿能科技有限公司 Wind power cluster control method and system based on improved hawk search algorithm
CN118572797A (en) * 2024-08-02 2024-08-30 中国电建集团西北勘测设计研究院有限公司 Capacity optimization configuration method and device for photovoltaic photo-thermal complementary power generation system

Also Published As

Publication number Publication date
CN103441537A (en) 2013-12-11
CN103441537B (en) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2014201849A1 (en) Method for actively optimizing, adjusting and controlling distributed wind power plant provided with energy-storage power station
CN102299527B (en) Wind power station reactive power control method and system
CN107317345B (en) Method for controlling frequency of isolated power grid by participation of electrolysis load
CN105162167B (en) A kind of wind-light storage microgrid frequency modulation method based on adaptive droop control
CN102354992A (en) Reactive-power control method of wind power field
CN106099965B (en) Exchange the control method for coordinating of COMPLEX MIXED energy-storage system under micro-grid connection state
WO2023087535A1 (en) Frequency modulation method, device and system based on new energy support machine and energy storage device, and new energy station
CN101860044A (en) Method for cooperatively controlling reactive voltage of wind farm
KR101687900B1 (en) A method for smoothing wind power fluctuation based on battery energy storage system for wind farm
CN108988356A (en) Electric heating microgrid interconnection tie power fluctuation based on virtual energy storage stabilizes method
CN108448644A (en) A kind of control method and system of battery energy storage system virtual synchronous generator
CN108365627A (en) A kind of wind storage isolated network power supply system control method for coordinating based on flexible coordinating factor
CN108092309B (en) control device and method for virtual synchronous machine with double energy storage
Li et al. A novel power control scheme for distributed DFIG based on cooperation of hybrid energy storage system and grid-side converter
CN103023041B (en) Active/reactive power control system of intelligent wind power station
CN107069797B (en) Distributed wind power plant grid connection method containing double-fed wind driven generator
CN115800296B (en) Voltage frequency collaborative supporting method for open sea wind power through VSC-MTDC grid-connected system
CN103414214A (en) Low-voltage ride through and reactive power control system and method for asynchronous wind turbine generator
CN107317342B (en) A kind of distributing wind power plant is idle planning and powerless control method
CN106130068A (en) A kind of wind power plant cluster reactive voltage control system based on Reactive Power Margin and method
CN116316677A (en) Energy storage type wind power plant voltage control method based on optimal control
CN109638885A (en) A kind of new energy power output control system
CN106340905B (en) A kind of gird-connected inverter power distribution method based on virtual synchronous control
Sun et al. Research on multi-energy cooperative participation of grid frequency inertia response control strategy for energy storage type doubly-fed wind turbine considering wind speed disturbance
Yu et al. Dynamic Power Control of PMSG-WTG for Low Voltage Recovery in Distribution Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813062

Country of ref document: EP

Kind code of ref document: A1