CN107561054B - 金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测 - Google Patents

金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测 Download PDF

Info

Publication number
CN107561054B
CN107561054B CN201710411480.4A CN201710411480A CN107561054B CN 107561054 B CN107561054 B CN 107561054B CN 201710411480 A CN201710411480 A CN 201710411480A CN 107561054 B CN107561054 B CN 107561054B
Authority
CN
China
Prior art keywords
silver
gold
solution
electrode
sers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710411480.4A
Other languages
English (en)
Other versions
CN107561054A (zh
Inventor
姜立萍
苏瑜
张寄南
朱俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201710411480.4A priority Critical patent/CN107561054B/zh
Publication of CN107561054A publication Critical patent/CN107561054A/zh
Application granted granted Critical
Publication of CN107561054B publication Critical patent/CN107561054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种金银双金属三维多孔SERS生物传感器,它是由功能化标记Ag@Au nanostar和Au/Ag/Au双金属三维有序多孔基底构成。用于进行SERS传感的纳米探针由Ag@Au nanostar上连接了标记抗体和拉曼信号分子构成,用于特异性识别抗原和提供信号;SERS基底由电沉积制备的多孔金基底辅助生长的三维多孔银构成,并通过离子溅射镀膜法在银层表面喷镀金膜来保护银层不受氧化且提供更好的生物相容性,制备过程简单,成本低廉,形貌有序均一,提供了一个热电子场,保证了SERS信号的稳定性和可重复性。通过在基底表面连接包被抗体来捕获抗原,构建特异性传感界面。本发明可对心肾综合征(CRS)的多种相关蛋白进行同时检测和成像。本发明公开了其制法。

Description

金银双金属三维有序大孔结构作为SERS基底用于心肾综合征 多种蛋白质同时检测
技术领域
本发明涉及金银双金属三维有序多孔SERS基底的制备方法及其用于心肾综合征多种蛋白质同时检测的定量分析方法。
背景技术
随着现代科学和技术的不断发展,人类在医学研究和医疗建设上取得了很大的进展,但是疾病仍然威胁着人类健康,其中心脏病是人类死亡发生的首要原因之一。而心脏和肾脏之间的关系越来越得到医学界的广泛关注,心力衰竭与肾功能衰竭常常合并存在并相互影响,互为因果,这两者共存的情况称为心肾综合征(Cardiorenal Syndrome,CRS)。心肾综合征的新定义由Ronco在2008年重点提出,即心肾功能在病理生理紊乱状态下,一个器官的急性或慢性功能损害,能引起另一个器官的急性或慢性功能障碍,导致身体处于危险状态。
CRS在医院或病人中具有非常高的发病率和死亡率。心脏功能不全的患者有60%的人会合并肾功能恶化;肾功能障碍经常伴有心力衰竭,在临床实践中,患慢性肾脏疾病的患者有30%患有急性失代偿性心力衰竭。心功能不全的存活率只有50%,如果再合并肾功能不全会导致死亡率增加2到3倍,甚至高过了某些肿瘤的死亡率。如能早期诊断心肾中某一器官的功能不全,及时采取有效措施防治常能延缓或避免CRS发生。因此早期预防、早期诊断、早期治疗对于CRS患者至关重要。血清生物标记物可能提供早期诊断和干预的机会。目前临床上对CRS标志物的检测通常运用单克隆抗体和多克隆抗体建立起来的免疫学检测方法。免疫学测定方法有放射免疫法(RIA),酶联免疫法(EIA),微粒子免疫法(MEIA),免疫荧光法(FIA)等。部分EIA和RIA法需将血浆样本抽提浓缩10倍以上,需要1mL以上血浆样本,并且反应时间长达5-36小时,不适于常规操作;且RIA法有放射性污染问题,有一定局限性。
与传统的检测方法相比,表面增强拉曼光谱技术(Surface Enhanced RamanSpectroscopy,SERS)由于其显著的增强因子及光谱带宽窄的特点,使其具备高灵敏度和高特异性的优势,并且能用于多种生物标志物的同时检测。并且由于拉曼标记物不会发生猝灭,因此可以增加标记物的量来提高灵敏度。目前SERS在生物医学方面已有了很多的应用:对各种物质的直接检测,对细胞生理指标的研究,基因的探测和诊断,免疫分析等等。SERS凭借高灵敏度和高通量的优势,引起了各个领域的关注和研究。但是,由于SERS发生在纳米结构的表面,表面形貌的不可控使SERS信号不稳定,可重复性差,因此制备均匀有序的基底材料是一直以来研究的热点。SERS一般发生在贵金属纳米材料表面,为了获得稳定的信号,近几年发展了一系列SERS基底,如自组装贵金属纳米粒子,电子束、离子束、光刻蚀得到的有序阵列等。但是这些制备方法亦或形貌不可控,亦或成本昂贵,限制了SERS在各种领域的广泛应用。基于此,本发明构建了一种基于金/银/金夹心双金属三维有序多孔结构的SERS传感器,用于心肾综合征多种相关标志物的同时检测及体外诊断。
发明内容
本发明的目的是提供一种基于金银双金属三维有序多孔的SERS基底来同时检测多种心肾综合征的生物标志物。
本发明的技术方案如下:
一种基于金银双金属三维有序多孔基底的SERS生物传感器的制备方法,所述SERS生物传感器由功能化标记的纳米探针和金银双金属三维有序多孔SERS基底构成,如图1所示,其制法包括如下步骤:
步骤1.功能化标记的纳米探针的制备
在17.4ml二次水中加入0.2mL硝酸银溶液(20mM),快速搅拌下加入0.6mL二水合柠檬酸钠溶液(30mM),快速加入0.2mL冰浴条件下新制的硼氢化钠溶液(100mM),25℃条件下反应1h,室温敞口避光陈化2小时,得到银纳米粒子溶胶;在10mlCTAB(十六烷基三甲基溴化铵)溶液(0.01M)中加入0.435mL 1%的氯金酸溶液,快速搅拌下加入0.162mL硝酸银(10mM)溶液和0.17mL抗坏血酸(0.1M)溶液,溶液变为无色后,加入上述制备的银纳米粒子溶胶0.5mL,溶液变为浅蓝色后,快速搅拌,继续反应4h,5500rpm离心10min分离后,用二次水洗2次,最后分散在5mL二次水中,得到Ag@Au nanostar溶胶,在溶胶中加入10μL 0.3mM HS-PEG-COOH(巯基聚乙烯醇羧基)水溶液和0.5mL 1mM 4-MBA乙醇溶液,25℃磁力搅拌4小时,离心洗涤两次,分散在5mL PBS缓冲液中,得到Ag@Au NS@PEG-COOH/4-MBA纳米粒子;取100μL Ag@Au NS@PEG-COOH/4-MBA,用EDC/NHS(EDC:1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;NHS:N-羟基琥珀酰亚胺)室温活化30min,加入30μL60μg mL-1的标记抗体,4℃反应12h,用PBS(磷酸缓冲盐溶液)离心-分散洗涤两次,除去没有连接上的抗体,再将探针分散在100μL PBS中,得到Ag@Au NS@4-MBA@Ab2纳米探针;
步骤2.金银三维有序多孔SERS传感基底的制备
首先利用过硫酸盐引发无皂乳液聚合的方法制备聚苯乙烯微球(PSM)用于组装有序模板;制备前,将苯乙烯用NaOH溶液(1M)洗涤三次(除去阻聚剂),称取10g苯乙烯加入140mL二次水中,在氮气保护下,70℃水浴中机械搅拌10min,接着加入过硫酸钾溶液(0.23g溶于10ml二次水中),继续搅拌反应24h,PSM的直径可通过反应时间控制,将得到的白色乳状液自然冷却到室温,得到直径为600nm的单分散聚苯乙烯微球(PSM);利用垂直沉积法在ITO电极表面沉积PSM模板,方法如下:将ITO电极分别用丙酮、无水乙醇、异丙醇超声洗涤15min,晾干备用;沉积前,再用无水乙醇将ITO电极超声洗涤10min,氮气吹干,将PS微球乳液稀释至0.2wt%,超声30min,随后将ITO电极垂直插入乳液中,在45℃下静置48h,得到PSM球紧密有序排列的ITO电极;
接着,利用电沉积法在ITO电极上沉积金/银,首先利用循环伏安法在垂直沉积了PSM的ITO电极表面沉积一层薄薄的金层,以碳酸钠-碳酸氢钠缓冲液(pH9.4)为电解液,配制1mM氯金酸溶液,使用CHI 660D电化学工作站,三电极体系:ITO电极为工作电极,饱和甘汞电极(SCE)为参比电极,铂电极为对电极,氮气保护下,电压范围为-1.1V到-0.1V,扫描速度25mV/s,扫描段数为4段,然后通过电流—时间(i-t)曲线电沉积银基底,使用CHI 660D电化学工作站,三电极体系:ITO电极为工作电极,银电极为参比电极,铂电极为对电极,以0.1M硝酸钠溶液(pH 5.5)为电解液,硝酸银的浓度为5mM,沉积电位为-0.3V,氮气氛围下工作,通过控制电荷消耗量来控制沉积银的厚度,电沉积后,将ITO电极浸泡在四氢呋喃中过夜,使PSM模板溶解,二次水洗涤两次后,室温干燥得到金/银三维多孔结构,最后,利用离子溅射沉积法在银基底表面喷镀一层金膜,金膜厚度由喷镀时间控制(10nm/100s);
将多孔基底浸入0.3mM HS-PEG-COOH溶液中室温反应4h,用二次水洗涤两次后,用EDC/NHS室温活化30min,滴加10μL 60μg mL-1的包被抗体,4℃反应12h,用PBS冲洗两遍洗去未连接上的抗体,即完成金银三维有序多孔SERS传感基底的制备;
上述的功能化标记的纳米探针和金银三维有序多孔SERS传感基底构成SERS生物传感器。
一种上述制备方法制备的SERS生物传感器。
上述的SERS生物传感器在心肾综合征多种蛋白质同时检测中的应用。
一种基于上述SERS生物传感器用于心肾综合征多种蛋白质同时检测和体外诊断的分析方法,其包括如下步骤:
步骤1.将上述组装了的SERS基底浸入1%BSA溶液中孵育1h,封闭非特异性的位点,用PBS冲洗干净,再滴加20μL抗原,37℃孵育1h,用PBS洗涤两次除去未被捕获的抗原,将孵育了抗原的ITO电极浸泡在探针PBS溶液中,37℃条件下孵育40min,用PBS洗涤两次除去没有结合上的探针,制备好的样品放置在37℃条件下干燥,用于拉曼测试;
步骤2.拉曼测试由激光共聚焦拉曼光谱仪(inVia-Reflex)完成,测试条件如下:激光波长为633nm,激光功率为1.7mW,物镜放大倍数为100×。在同一传感界面的不同位置收集光谱信号,统计平均值,同时进行拉曼成像。
本发明的用于进行SERS传感的纳米探针由Ag@Au nanostar上连接了标记抗体和拉曼信号分子构成,用于特异性识别抗原和提供信号;SERS基底由电沉积制备的多孔金基底辅助生长的三维多孔银构成,并通过离子溅射镀膜法在银层表面喷镀金膜来保护银层不受氧化且提供更好的生物相容性,制备过程简单,成本低廉,形貌有序均一,提供了一个热电子场,保证了SERS信号的稳定性和可重复性。通过在基底表面连接包被抗体来捕获抗原,构建特异性传感界面。同时,Au/Ag/Au双金属三维有序多孔基底和Ag@Au nanostar探针之间的耦合作用可进一步增强SERS信号,提高传感器的灵敏度。本发明可对心肾综合征(CRS)的多种相关蛋白进行同时检测和成像。
附图说明
图1为本发明所用SERS生物传感器的原理示意图。
图2为本发明所用金银双金属三维有序多孔基底的扫描电镜表征图,其中A为垂直沉积在ITO表面的聚苯乙烯微球模板,B为溶解聚苯乙烯模板后得到的电沉积金层,C为在电沉积B的基础上以金层为生长基底电沉积得到的银层,D为在C上表面通过离子溅射镀膜法在银层表面喷镀金膜,喷镀时间为500s。
图3为本发明所用电沉积金层的循环伏安图。
图4为本发明所用SERS基底单层4-MBA在不同银厚度的Au/Ag基底上的拉曼测试图及相应扫描电镜表征图。银层厚度由电沉积电量消耗值调控。A,B,C分别为耗电量为2×10-3,4×10-3,8×10-3C的随机25个点的拉曼光谱图。D,E,F分别对应A,B,C的基底扫描电镜图。标尺为1μm。
图5A为本发明所用三维有序多孔基底的结构示意图,其中Au(Ⅰ)为电沉积金层,Au(Ⅱ)为离子溅射镀膜法喷镀的金膜;B为单层4-MBA在不同喷镀时间的Au(Ⅱ)的拉曼测试图。
图6为本发明所用纳米探针的透射电镜表征图及其紫外可见吸收光谱图。A为内核银纳米粒子,B为银包金纳米星,C为银纳米粒子和银包金纳米星的紫外可见吸收光谱。
图7为本发明所用三维多孔有序基底的SERS效果对比图。A为单层4-MBA分子在有孔和无孔金/银/金基底上的拉曼光谱图,B为吸附了4-MBA的纳米探针在三维多孔基底上和在裸ITO表面的拉曼光谱图。
图8为本发明所用SERS基底和探针的FDTD电磁场模拟图。A为三维多孔Au/Ag有序基底在XY方向的电磁场分布,B为金纳米星与平面金耦合后在XZ方向的电磁场分布图。
图9为本发明所用拉曼测试的条件优化。A,B为激光波长的条件优化,C,D为激光功率的条件优化。
图10为本发明所用定量分析的免疫条件优化实验。A为包被抗体浓度的优化,B为抗原孵育温度优化,C为免疫反应时间优化,D为探针浓度优化。
图11为本发明所用三种信号分子拉曼光谱。
图12A为本发明所用定量分析测定心肾综合征三种蛋白质(CTN I,NT-ProBNP,NGAL)不同浓度下的拉曼光谱叠加图,B为该定量分析法测定三种蛋白质的标准曲线。
图13为本发明所测CTN I,NT-ProBNP,NGAL三种蛋白质在不同浓度下的拉曼成像标准图。
图14为本发明所测血清实际样品中的CTN I,NT-ProBNP,NGAL的含量以及对应的金标试纸法(DIFA)的诊断结果。
图15表1为本发明所测血清实际样品中CTN I,NT-ProBNP,NGAL对应的拉曼成像图。
具体实施方式
下面结合附图所示以实施例进一步说明本发明的具体内容:
实施例1.功能化标记的纳米探针的制备
在17.4ml二次水中加入0.2mL硝酸银溶液(20mM),快速搅拌下加入0.6mL二水合柠檬酸钠溶液(30mM),快速加入0.2mL冰浴条件下新制的硼氢化钠溶液(100mM),25℃条件下反应1h,室温敞口避光陈化2小时,得到银纳米粒子溶胶。在10mlCTAB溶液(0.01M)中加入0.435mL 1%的氯金酸溶液,快速搅拌情况下加入0.162mL硝酸银(10mM)溶液和0.17mL抗坏血酸(0.1M),溶液变为无色后,加入上述反应的银纳米粒子0.5mL,溶液变为浅蓝色后,快速搅拌条件下继续反应4h,5500rpm离心10min分离后,用二次水洗2次,最后分散在5mL二次水中,得到Ag@Au nanostar溶胶。在溶胶中加入10μL 0.3mM HS-PEG-COOH水溶液和0.5mL 1mM4-MBA乙醇溶液,25℃磁力搅拌4小时,离心洗涤两次,分散在5mL PBS缓冲液中,得到Ag@AuNS@PEG-COOH/4-MBA纳米粒子。取100μL Ag@Au NS@PEG-COOH/4-MBA,用EDC/NHS室温活化30min,加入30μL 60μg mL-1的标记抗体,4℃反应12h,用PBS离心-分散洗涤两次,除去没有连接上的抗体,再将探针分散在100μL PBS中,得到Ag@Au NS@4-MBA@Ab2纳米探针。表征结果见图6。
实施例2.金银三维有序多孔SERS传感基底的制备
首先利用过硫酸盐引发无皂乳液聚合的方法制备聚苯乙烯微球(PSM)用于组装有序模板。制备前,将苯乙烯用NaOH溶液(1M)洗涤三次(除去阻聚剂)。称取10g苯乙烯加入140mL二次水中,在氮气保护下,70℃水浴中机械搅拌10min,接着加入过硫酸钾溶液(0.23g溶于10ml二次水中),继续搅拌反应24h。PSM的直径可通过反应时间控制。将得到的白色乳状液自然冷却到室温,得到直径为600nm的单分散聚苯乙烯微球(PSM)。利用垂直沉积法在ITO电极表面沉积PSM模板,方法如下:将ITO电极分别用丙酮、无水乙醇、异丙醇超声洗涤15min,晾干备用。沉积前,再用无水乙醇将ITO电极超声洗涤10min,氮气吹干。将PS微球乳液稀释至0.2wt%,超声30min,随后将ITO电极垂直插入乳液中,在45℃下静置48h,得到PSM球紧密有序排列的ITO电极。
接着,利用电沉积法在ITO电极上沉积金/银。首先利用循环伏安法在垂直沉积了PSM的ITO电极表面沉积一层薄薄的金层(循环伏安曲线见图3)。以碳酸钠-碳酸氢钠缓冲液(PH 9.4)为电解液,配制1mM氯金酸溶液。使用CHI 660D电化学工作站,三电极体系:ITO电极为工作电极,饱和甘汞电极(SCE)为参比电极,铂电极为对电极。氮气保护下,电压范围为-1.1V到-0.1V,扫描速度25mV/s,扫描段数为4段。然后通过电流—时间(i-t)曲线电沉积银基底。使用CHI 660D电化学工作站,三电极体系:ITO电极为工作电极,银电极为参比电极,铂电极为对电极。以0.1M硝酸钠溶液(pH 5.5)为电解液,硝酸银的浓度为5mM,沉积电位为-0.3V,氮气氛围下工作。通过控制电荷消耗量来控制沉积银的厚度。电沉积后,将ITO电极浸泡在四氢呋喃中过夜,使PSM模板溶解,二次水洗涤两次后,室温干燥得到金/银三维多孔结构。最后,利用离子溅射沉积法在银基底表面喷镀一层金膜,金膜厚度由喷镀时间控制(10nm/100s)。
将多孔基底浸入0.3mM HS-PEG-COOH溶液中室温反应4h,用二次水洗涤两次后,用EDC/NHS室温活化30min,滴加10μL 60μg mL-1的包被抗体,4℃反应12h,用PBS冲洗两遍洗去未连接上的抗体,即完成金银三维有序多孔SERS传感基底的制备。表征结果见图2。
实施例3.SERS基底的制备优化
首先,对银层厚度进行了优化。通过调控电沉积时的电荷消耗量控制银层厚度,以电沉积得到的多孔金层为生长基底,分别沉积耗电量为2×10-3,4×10-3,8×10-3C的多孔银基底,得到不同厚度(覆盖率)的多孔银层,如图4所示。分别对其进行拉曼测试,验证SERS信号的稳定性。单层4-MBA分子在不同厚度的多孔银基底上的拉曼光谱由同一基底上随机采集的25个点得到,如图4所示,耗电量为2×10-3C的银基底未覆盖满,所得拉曼信号偏差较大;耗电量为8×10-3C的银基底过度生长得到枝状银结构,拉曼信号有所提高,但信号偏差大;耗电量为4×10-3C的银基底均分覆盖整个金基底,得到的拉曼信号最为稳定。故以耗电量为4×10-3C的银基底为所用基底。
接着,对上表面起保护作用的金膜的厚度进行了优化。该金膜由离子溅射镀膜法喷镀而成,金膜约10nm/100s。以4×10-3C银为基底,喷镀100s,300s,500s,700s,900s,1000s金膜。分别对其进行拉曼测试,优化最佳金膜厚度,如图5所示。最终选择500s为最佳金膜喷镀时间。
实施例4.免疫分析及免疫条件优化
将上述组装了的SERS基底浸入1%BSA溶液中孵育1h,封闭非特异性的位点,用PBS冲洗干净,再滴加20μL抗原,37℃孵育1h,用PBS洗涤两次除去未被捕获的抗原,将孵育了抗原的ITO电极浸泡在探针PBS溶液中,37℃条件下孵育1h,用PBS洗涤两次除去没有结合上的探针。制备好的样品放置在37℃条件下干燥,用于拉曼测试。拉曼测试由激光共聚焦拉曼光谱仪(inVia-Reflex)完成。测试条件(图9)如下:激光波长为633nm,激光功率为1.7mW,物镜放大倍数为100×。在同一传感界面的不同位置收集光谱信号,统计信号平均值,同时进行拉曼成像。对免疫条件进行了优化。将按实施例2处理的SERS基底用EDC/NHS活化后,分别滴加10μL不同浓度的包被抗体(10,20,30,40,50,60,70,80,90μg/mL-1),孵育1小时后按实施例4所述方法进行包被抗体浓度的优化。以60μg/mL-1为包被抗体浓度,改变抗原孵育温度为10,20,30,37,50,60℃,探索最佳抗原孵育温度。在37℃下孵育抗原,控制孵育时间为10,20,30,40,50,60min,探索最佳孵育时间。调控探针浓度为10,20,30,40,50,60μg/mL-1,探索最佳探针浓度。分析结果如图10所示,最佳包被抗体浓度未60μg/mL-1,最佳抗原孵育温度为37℃,最佳孵育时间为40min,最佳探针浓度为50μg/mL-1
实施例5.CTN I,NT-ProBNP,NGAL三种蛋白质的同时检测及拉曼成像。
以实施例4所述步骤和优化的实验条件对CTN I,NT-ProBNP,NGAL三种蛋白质进行同时检测。选择4-MBA,NT,DTNB为拉曼信号分子(图11为三个分子的拉曼光谱图),标记峰分别为1584cm-1,1323cm-1,1363cm-1。配制不同浓度梯度的三种蛋白质混合溶液,浓度分别为1×10-5,1×10-3,1×10-1,10,1×103ngmL-1,进行孵育,从最终的拉曼光谱叠加图(图12A)中可以看出,随着抗原浓度的增加,拉曼信号随之增加,且三种蛋白质在1fg mL-1-1μg mL-1的范围内呈现良好的线性关系,如图12B所示。同时对不同浓度的三种蛋白进行了拉曼成像,任意取视野中的一块区域进行扫点成像,浓度分别为0,1×10-5,1×10-2,1,1×103ng mL-1,如图13所示,随着蛋白质浓度的升高,成像图的明暗程度相应变亮,可以大致判断分析物的浓度,做到了可视化检测。
实施例6.实际样品的检测
按实施例5所述方法对血清实际样品进行了检测,并与金标试纸法(DIFA)的诊断结果进行了对照。
从表1可以看出,本方法的诊断结果与金标试纸的诊断结果基本一致,并且,从拉曼成像(图14)颜色的深浅可以直观地判断出蛋白浓度的大致范围。这说明本发明传感器可以用于实际样品的检测,具有应用价值。

Claims (2)

1.一种基于金银双金属三维有序多孔基底的SERS生物传感器的制备方法,所述SERS生物传感器由功能化标记的纳米探针和金银双金属三维有序多孔SERS基底构成,其特征是包括如下步骤:
步骤1.功能化标记的纳米探针的制备
在17.4ml二次水中加入0.2mL 20Mm/L的硝酸银溶液,快速搅拌下加入0.6mL 30mM二水合柠檬酸钠溶液,快速加入0.2mL冰浴条件下新制的100Mm/L的硼氢化钠溶液,25℃条件下反应1h,室温敞口避光陈化2小时,得到银纳米粒子溶胶;在10ml 0.01Mm/L的CTAB溶液中加入0.435mL 1%的氯金酸溶液,快速搅拌下加入0.162mL 10Mm/L的硝酸银溶液和0.17mL0.1M/L的抗坏血酸溶液,溶液变为无色后,加入上述制备的银纳米粒子溶胶0.5mL,溶液变为浅蓝色后,快速搅拌,继续反应4h,5500rpm离心10min分离后,用二次水洗2次,最后分散在5mL二次水中,得到Ag@Au nanostar溶胶,在溶胶中加入10μL 0.3mM/L的HS-PEG-COOH水溶液和0.5mL 1Mm/L 4-MBA乙醇溶液,25℃磁力搅拌4小时,离心洗涤两次,分散在5mL PBS缓冲液中,得到Ag@Au NS@PEG-COOH/4-MBA纳米粒子;取100μL Ag@Au NS@PEG-COOH/4-MBA粒子,用EDC/NHS室温活化30min,加入30μL浓度为60μg mL-1的标记抗体,4℃反应12h,用PBS离心-分散洗涤两次,除去没有连接上的抗体,再将探针分散在100μL PBS中,得到Ag@AuNS@4-MBA@Ab2纳米探针;
步骤2.金银三维有序多孔SERS传感基底的制备
首先利用过硫酸盐引发无皂乳液聚合的方法制备聚苯乙烯微球PSM用于组装有序模板;制备前,将苯乙烯用浓度为1M的NaOH溶液洗涤三次,称取10g苯乙烯加入140mL二次水中,在氮气保护下,70℃水浴中机械搅拌10min,接着加入0.23g过硫酸钾溶于10ml二次水的溶液,继续搅拌反应24h,PSM的直径可通过反应时间控制,将得到的白色乳状液自然冷却到室温,得到直径为600nm的单分散聚苯乙烯微球PSM;利用垂直沉积法在ITO电极表面沉积PSM模板,方法如下:将ITO电极分别用丙酮、无水乙醇、异丙醇超声洗涤15min,晾干备用;沉积前,再用无水乙醇将ITO电极超声洗涤10min,氮气吹干,将PS微球乳液稀释至0.2wt%,超声30min,随后将ITO电极垂直插入乳液中,在45℃下静置48h,得到PSM球紧密有序排列的ITO电极;
接着,利用电沉积法在ITO电极上沉积金/银,首先利用循环伏安法在垂直沉积了PSM的ITO电极表面沉积一层薄薄的金层,以PH 9.4的碳酸钠-碳酸氢钠缓冲液为电解液,配制1mM氯金酸溶液,使用CHI 660D电化学工作站,三电极体系:ITO电极为工作电极,饱和甘汞电极(SCE)为参比电极,铂电极为对电极,氮气保护下,电压范围为-1.1V到-0.1V,扫描速度25mV/s,扫描段数为4段,然后通过电流—时间(i-t)曲线电沉积银基底,使用CHI 660D电化学工作站,三电极体系:ITO电极为工作电极,银电极为参比电极,铂电极为对电极,以pH5.5的0.1M硝酸钠溶液为电解液,硝酸银的浓度为5mM,沉积电位为-0.3V,氮气氛围下工作,通过控制电荷消耗量来控制沉积银的厚度,电沉积后,将ITO电极浸泡在四氢呋喃中过夜,使PSM模板溶解,二次水洗涤两次后,室温干燥得到金/银三维多孔结构,最后,利用离子溅射沉积法在银基底表面喷镀一层金膜,金膜厚度由喷镀时间控制;
将多孔基底浸入0.3mM HS-PEG-COOH溶液中室温反应4h,用二次水洗涤两次后,用EDC/NHS室温活化30min,滴加10μL 60μg mL-1的包被抗体,4℃反应12h,用PBS冲洗两遍洗去未连接上的抗体,即完成金银三维有序多孔SERS传感基底的制备;
上述的功能化标记的纳米探针和金银三维有序多孔SERS传感基底构成SERS生物传感器。
2.一种权利要求1所述制备方法制备的SERS生物传感器。
CN201710411480.4A 2017-06-02 2017-06-02 金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测 Active CN107561054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710411480.4A CN107561054B (zh) 2017-06-02 2017-06-02 金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710411480.4A CN107561054B (zh) 2017-06-02 2017-06-02 金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测

Publications (2)

Publication Number Publication Date
CN107561054A CN107561054A (zh) 2018-01-09
CN107561054B true CN107561054B (zh) 2020-07-17

Family

ID=60972837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710411480.4A Active CN107561054B (zh) 2017-06-02 2017-06-02 金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测

Country Status (1)

Country Link
CN (1) CN107561054B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482130B (zh) 2017-08-02 2020-05-26 京东方科技集团股份有限公司 有机发光面板及其制作方法、有机发光装置
CN108359118B (zh) * 2018-01-19 2020-05-12 电子科技大学 一种聚芳醚腈-金银纳米复合薄膜的制备方法及应用
CN110873707B (zh) * 2018-08-29 2022-07-26 电子科技大学 3d表面增强型拉曼传感芯片及其制备方法
CN110470832B (zh) * 2019-07-30 2023-11-14 山东第一医科大学(山东省医学科学院) 同时检测IL-6、IL-4和TNF-α的空心双金属试纸条及其制备方法
CN110586085A (zh) * 2019-10-16 2019-12-20 沈阳理工大学 一种制备金属网格催化剂的方法
CN111896520A (zh) * 2020-07-17 2020-11-06 中国科学院大学温州研究院(温州生物材料与工程研究所) 用于呼吸道病毒检测的拉曼基底及其制备方法与应用
CN112147132B (zh) * 2020-09-23 2021-07-09 山东大学 一种光谱型的近红外电化学发光免疫传感器的制备方法
CN113533295A (zh) * 2021-06-01 2021-10-22 山东师范大学 基于ReS2的三维SERS基底及其制备方法和应用
CN113702352A (zh) * 2021-08-25 2021-11-26 山东智微检测科技有限公司 一种适用于气相糜烂性毒剂的sers检测芯片及其制备方法
CN115814112B (zh) * 2022-12-05 2024-02-02 南京师范大学 一种检测谷胱甘肽的拉曼微创探针的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149868A (en) * 1997-10-28 2000-11-21 The Penn State Research Foundation Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches
CN1659425A (zh) * 2002-06-12 2005-08-24 英特尔公司 作为活性表面增强拉曼光谱术衬底的金属涂覆纳米晶体硅
CN1922486A (zh) * 2003-12-29 2007-02-28 英特尔公司 使用多孔生物传感器和拉曼光谱法检测生物分子
CN1938430A (zh) * 2003-12-30 2007-03-28 英特尔公司 使用拉曼活性探针构建物来分析生物学样品的方法和装置
CN102812348A (zh) * 2009-12-22 2012-12-05 新加坡科技研究局 基于sers的分析物检测
CN103048307A (zh) * 2012-12-23 2013-04-17 吉林大学 一种基于天然生物超疏水结构表面的增强拉曼检测基底及其制备方法
CN105823770A (zh) * 2016-05-25 2016-08-03 武汉大学 一种无光学干扰的拉曼标记探针及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525172A (zh) * 2000-03-21 2004-09-01 上海润东生物科技有限公司 人体心肌肌钙蛋白ⅰ的快速测定的方法
CN104746049B (zh) * 2015-04-07 2017-10-03 南京大学 利用ald制备金属纳米间隙的表面增强拉曼散射基底的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149868A (en) * 1997-10-28 2000-11-21 The Penn State Research Foundation Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches
CN1659425A (zh) * 2002-06-12 2005-08-24 英特尔公司 作为活性表面增强拉曼光谱术衬底的金属涂覆纳米晶体硅
CN1922486A (zh) * 2003-12-29 2007-02-28 英特尔公司 使用多孔生物传感器和拉曼光谱法检测生物分子
CN1938430A (zh) * 2003-12-30 2007-03-28 英特尔公司 使用拉曼活性探针构建物来分析生物学样品的方法和装置
CN102812348A (zh) * 2009-12-22 2012-12-05 新加坡科技研究局 基于sers的分析物检测
CN103048307A (zh) * 2012-12-23 2013-04-17 吉林大学 一种基于天然生物超疏水结构表面的增强拉曼检测基底及其制备方法
CN105823770A (zh) * 2016-05-25 2016-08-03 武汉大学 一种无光学干扰的拉曼标记探针及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers;Liguang Xu 等;《Advanced Materials》;20150311;第27卷(第10期);第1706-1711页 *
基于三维有序大孔金电极的过氧化氢无酶传感器;宣婕 等;《分析化学》;20100430;第38卷(第4期);第513-516页 *

Also Published As

Publication number Publication date
CN107561054A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN107561054B (zh) 金银双金属三维有序大孔结构作为sers基底用于心肾综合征多种蛋白质同时检测
Jing et al. Time-resolved digital immunoassay for rapid and sensitive quantitation of procalcitonin with plasmonic imaging
Su et al. Plasmon near-field coupling of bimetallic nanostars and a hierarchical bimetallic SERS “hot field”: toward ultrasensitive simultaneous detection of multiple cardiorenal syndrome biomarkers
Wang et al. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor
Han et al. Coreactant-free and label-free eletrochemiluminescence immunosensor for copeptin based on luminescent immuno-gold nanoassemblies
Sloan-Dennison et al. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS
Qu et al. A novel electrochemical immunosensor based on colabeled silica nanoparticles for determination of total prostate specific antigen in human serum
Ge et al. Magnetic Fe3O4@ TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase
Huang et al. Sensitive polydopamine bi-functionalized SERS immunoassay for microalbuminuria detection
Hu et al. SERS-based magnetic immunoassay for simultaneous detection of cTnI and H-FABP using core–shell nanotags
Tian et al. Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay
Chu et al. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection
KR101486149B1 (ko) 경쟁 면역반응을 이용한 표면-증강 라만 산란 기반의 질병 진단용 마커 검출 방법
Wu et al. Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I
WO2009154377A2 (ko) 실시간 연속 검출장치
Hu et al. SERS-based immunoassay using core–shell nanotags and magnetic separation for rapid and sensitive detection of cTnI
CN113155930B (zh) 一种多重信号放大技术检测白血病干细胞肿瘤标志物cd123的电化学免疫传感方法
Lin et al. Aptamer-modified magnetic SERS substrate for label-based determination of cardiac troponin I
Sun et al. Multiplexed electrochemical and SERS dual-mode detection of stroke biomarkers: Rapid screening with high sensitivity
Ge et al. Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy
Vairaperumal et al. Optical nanobiosensor-based point-of-care testing for cardiovascular disease biomarkers
Pan et al. Biomimetic-mineralized bifunctional nanoflowers for enzyme-free and colorimetric immunological detection of protein biomarker
Ma et al. Detection of H-FABPA by novel SERS combined with magnetic reaction
Ren et al. Development of electrochemical impedance immunosensor for sensitive determination of myoglobin
Liu et al. Enhanced conductometric immunoassay for hepatitis B surface antigen using double-codified nanogold particles as labels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant