CN107507877A - 一种中长波红外波段ii类超晶格 - Google Patents

一种中长波红外波段ii类超晶格 Download PDF

Info

Publication number
CN107507877A
CN107507877A CN201710727465.0A CN201710727465A CN107507877A CN 107507877 A CN107507877 A CN 107507877A CN 201710727465 A CN201710727465 A CN 201710727465A CN 107507877 A CN107507877 A CN 107507877A
Authority
CN
China
Prior art keywords
layers
inas
superlattices
insb
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710727465.0A
Other languages
English (en)
Other versions
CN107507877B (zh
Inventor
陈意桥
陈超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Kun Original Photoelectric Co Ltd
Original Assignee
Suzhou Kun Original Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Kun Original Photoelectric Co Ltd filed Critical Suzhou Kun Original Photoelectric Co Ltd
Priority to CN201710727465.0A priority Critical patent/CN107507877B/zh
Publication of CN107507877A publication Critical patent/CN107507877A/zh
Application granted granted Critical
Publication of CN107507877B publication Critical patent/CN107507877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3406Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation including strain compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34366Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)AS

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明一种中长波红外波段II类超晶格,包括多个超晶格原胞重复堆叠而成,超晶格原胞包括GaSb层、第一InSb层、第一InAs层、InxGa1‑xAs层、第二InAs层、第二InSb层,InxGa1‑xAs层位于第一InAs层与第二InAs层之间、或位于并紧贴第一InAs层的上方、或位于并紧贴第二InAs层下方。本发明的超晶格结构引入了较厚的InSb层以有效地拓展截止波长、提高量子效率,并增加了InxGa1‑xAs插入层来平衡应力、减小器件暗电流,适用于制备中红外、远红外波段的光电器件。

Description

一种中长波红外波段II类超晶格
技术领域
本发明涉及半导体领域,具体是一种中长波红外波段II类超晶格,它可被应用于中红外、远红外波段的光电器件。
背景技术
基于III-V族化合物半导体InAs/GaSb(砷化铟/锑化镓)体系的II类超晶格材料是第三代红外焦平面探测器、中长波红外发光器件的优选材料,近年来美国、日本、德国等国都在广泛研究该II类超晶格体系的相关技术。InAs/GaSb异质超晶格体系是由经过精细设计的多个薄层材料周期性重复沉积而成,沉积的薄层材料包括InAs、锑化铟(InSb)、砷化镓(GaAs)和GaSb等二元化合物,或In、Ga、As、Sb之中三种或四种元素形成的三元/四元化合物,不限于上述顺序的多组薄层以一定的周期性重复堆叠,即形成超晶格。由于InAs的导带底位于GaSb的价带顶之下,故形成II类超晶格结构。在这种十分特殊的能带排列结构中,电子主要限制在InAs层中,而空穴主要限制在GaSb层中,电子空穴的空间分离导致超晶格的有效禁带宽度为电子微带至重空穴微带之间的能量差,并且这种所谓的有效禁带宽度可以通过某些方式来调控,例如改变上述超晶格结构中某一薄层的厚度或组分。
InAs/GaSb异质结之间存在0.6%的晶格适配,当超晶格沉积周期数较大时会积累较大的应力,导致薄膜缺陷增多,沉积质量下降,这会大幅降低器件性能。然而,(1)InAs和GaSb之间的界面原子构成,主要有类GaAs和类InSb两种形式,其中类InSb界面可以平衡InAs/GaSb界面的应力,有助于生长出高质量的InAs/GaSb超晶格;(2)由于InAs/GaSb超晶格的有效禁带宽度与截止波长主要取决于InAs层的厚度,而超晶格对应的波段进入长波红外区时,InAs的厚度会导致更为严重的失配应力,而增大上述InSb界面插入层的厚度,也能有效地调整超晶格的截止波长,并且这种方法相比于改变InAs或GaSb层的厚度要更为高效一些,然而InSb界面层的厚度超过4个原子层后,会对InAs/GaSb超晶格的生长质量产生不利影响;(3)InAs和GaSb异质结合,无共同原子,因此其界面出会存在较严重的相互扩散。因此,应用于中、远红外波段光电器件的II类超晶格需要引入特殊的设计以保障其材料生长质量。
发明内容
本发明的目的是提供一种结构稳定的中长波红外波段II类超晶格。
本发明通过如下技术方案实现上述目的:
一种中长波红外波段II类超晶格,包括多个超晶格原胞重复堆叠而成,所述超晶格原胞包括自下而上依次设置的GaSb层、第一InSb层、第一InAs层、第二InAs层和第二InSb层,所述超晶格原胞还包括InxGa1-xAs层,所述InxGa1-xAs层位于所述第一InAs层与所述第二InAs层之间、或位于并紧贴所述第一InAs层的上方、或所述第二InAs层下方。
进一步的,所述GaSb层的厚度为1-20nm,所述第一InSb层和第二InSb层的厚度均为0-4nm,所述第一InAs层和第二InAs层的厚度范围均为0-21nm,所述InxGa1-xAs层的厚度为0-3nm。
进一步的,所述InxGa1-xAs层中组分x为0.0-0.5。
进一步的,所述第一InSb层和所述第二InSb层的厚度相同。
进一步的,所述第一InAs层和所述第二InAs层的厚度之和为1-21nm。
与现有技术相比,本发明中长波红外波段II类超晶格的有益效果是:1.较厚的InSb层的引入增加了超晶格结构中电子和空穴波函数的交叠,有利于提高量子效率;2.较厚的InSb层的引入,使得不采用很厚的InAs层也能实现超晶格结构截止波长的延伸,避免InAs的厚度过大导致难以平衡的失配应力;3.在超晶格结构中引入InxGa1-xAs插入层,平衡了较厚的InSb层带来的应力,削弱了较厚的InSb插入层对超晶格外延质量的不利影响,而且5个以内原子层厚度的InxGa1-xAs薄层插入超晶格原胞后,不会对超晶格材料的截止波长产生显著影响;4.在超晶格结构中引入InxGa1-xAs插入层,InxGa1-xAs以其较大的禁带宽度而在II类超晶格中起到了电子和空穴势垒的作用,有助于减小器件的暗电流和侧壁漏电。
附图说明
图1是本发明的超晶格结构示意图。
图2是本发明的超晶格原胞的结构示意图。
图3是本发明的应用结构示意图。
具体实施方式
请参阅图1至图3,一种中长波红外波段II类超晶格,包括多个超晶格原胞5重复堆叠而成,超晶格原胞5包括自下而上依次设置的GaSb层1、第一InSb层2a、第一InAs层3a、InxGa1-xAs层4、第二InAs层3b和第二InSb层2b。其中,GaSb层1的厚度为1-20nm;第一InSb层2a和第二InSb层2b的厚度均为0-4nm,且第一InSb层2a和第二InSb层2b的厚度相同;第一InAs层3a和第二InAs层3b的厚度范围均为0-21nm,第一InAs层3a和第二InAs层3b的厚度可以相同也可各异,第一InAs层3a和第二InAs层3b的厚度之和为1-21nm;InxGa1-xAs层4,组分x为0.0-0.5;InxGa1-xAs层4的厚度为0-3nm。
在其他实施例中,在超晶格原胞第一InAs层3a和第二InAs层3b中也可插入多层的InxGa1-xAs层4,InxGa1-xAs层4也可位于并紧贴第一InAs层3a的上方或第二InAs层3b下方。
本发明可被应用于制作光电探测器,如光电二极管和光电导器件,或者制作发光器件,如发光二极管和激光器。本发明并不限于以某种特定的生长技术来实现,也并不限于采用某种特定的衬底。下面将描述本发明的一种实施实例,以展示如何将这种新型II类超晶格结构应用于红外探测器件。
II类超晶格材料的制作,即是通过合适的技术手段,选用合适的衬底材料,在沉积腔室中沉积组分与厚度可控的多组半导体薄层。现有技术中,可用的沉积方法有分子束外延(MBE)和金属有机物化学气相沉积(MOCVD),但本发明的实现方式并不限于上述两种薄膜沉积技术,也不限于采用何种衬底材料。构成超晶格原胞的半导体薄层需要以特定的顺序来进行沉积,重复进行原胞的沉积直至达到需要的超晶格总厚度。
本发明对超晶格原胞的重复沉积次数不作限制。然而为了表述本发明的大致物理尺度,示例结构使用的原胞含有7层GaSb、各2层InSb、各9层InAs和2层In0.1Ga0.9As,排列方式如附图2所示,超晶格原胞的厚度约为7.8nm。重复进行384个周期的原胞沉积,即形成总厚度约为3微米的超晶格结构。
上述II类超晶格可采用分子束外延(MBE)技术来制造。这种生长技术是在超高真空腔室中,采用高纯度源来逐层沉积薄膜材料。源材料包括In、Ga、As、Sb、Si和Be,各源分开放置且独立控温加热,以产生相应元素的蒸气。将薄膜组成元素的各路蒸气引导至加热的生长衬底上,经过特定时间后,即在衬底上形成特定厚度的半导体材料。
下面结合附图3来说明本实施例。将p型GaSb衬底装入MBE系统的生长室,并加热以去除衬底表面残余的氧化层。如附图3所示,先在衬底上生长0.5微米厚的p型GaSb:Be缓冲层6以形成高质量的GaSb表面,之后再生长超晶格。在此实例中,超晶格的原胞依次包括如下几层:2.1nm GaSb、0.3nm InSb、2.3nm InAs、0.5nm In0.1Ga0.9As、2.3nm InAs、0.3nmInSb。原胞的厚度约为7.8nm。
如附图3所示,在上述GaSb:Be缓冲层之上,首先生长64个周期的超晶格原胞,生长的同时掺入少量p型掺杂剂Be,形成p型超晶格原胞5b,重复沉积即构成总厚度约为0.5微米的p型超晶格。接下来不加任何掺杂剂生长256个周期的本征超晶格原胞5,即构成总厚度约为2微米的本征区。最后生长64个周期的超晶格原胞,生长的同时掺入少量n型掺杂剂Si,形成n型超晶格原胞5a,重复沉积即构成总厚度约为0.5微米的n型超晶格,共含384个周期的超晶格原胞。
此实例整体上形成了一个II类超晶格p-i-n二极管结构,此二极管的总厚度约为3微米。沉积生长完毕后,采用半导体工业常用的工艺,在外延片正面做上负电极,在外延片背面做上正电极,此实例结构即可被用于红外光探测的光电二极管器件,用以探测特定波段红外光的存在及强度。此外,沉积完毕后的基片还可以通过半导体器件领域的其他常见手段进行后续加工,例如刻蚀成像素阵列,减薄衬底以提高器件性能,或将光电二极管与读出电路相连。这种II类超晶格二极管结构可被应用于红外光探测的光电二极管,或者红外发光二极管/激光器。
实施实例制成的探测器件,在83K温度下的50%截止波长可达12.8微米,峰值光响应在10.7微米处,可达3.6A/W。
作为对比实例,另制作未插入InSb和In0.1Ga0.9As层的超晶格器件,其原胞结构为2.1nm GaSb/5.7nm InAs,原胞厚度约为7.8nm,且GaSb和InAs之间的界面为类InSb界面。对比实例制成的超晶格p-i-n二极管结构总周期数同样为384,总厚度同样约为3微米。对比实例制成的探测器件,在83K温度下的50%截止波长仅为11.6微米,峰值光响应在10.3微米处,仅为3.1A/W。
对比可见,应用本发明的实施实例具有更高的探测灵敏度,并且相比于常规超晶格结构,这种新型超晶格结构的50%截止波长向长波方向延伸了1.2微米。
本发明的优点主要包括以下几个方面:
1.较厚的InSb层的引入增加了超晶格结构中电子和空穴波函数的交叠,有利于提高量子效率;
2.较厚的InSb层的引入,使得不采用很厚的InAs层也能实现超晶格结构截止波长的延伸,避免InAs的厚度过大导致难以平衡的失配应力;
3.在超晶格结构中引入InxGa1-xAs层插入层,平衡了较厚的InSb层带来的应力,削弱了较厚的InSb插入层对超晶格外延质量的不利影响,而且5个以内原子层厚度的InxGa1- xAs薄层插入超晶格原胞后,不会对超晶格材料的截止波长产生显著影响;
4.在超晶格结构中引入InxGa1-xAs插入层,InxGa1-xAs以其较大的禁带宽度而在II类超晶格中起到了电子和空穴势垒的作用,有助于减小器件的暗电流和侧壁漏电。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (5)

1.一种中长波红外波段II类超晶格,其特征在于:包括多个超晶格原胞重复堆叠而成,所述超晶格原胞包括自下而上依次设置的GaSb层、第一InSb层、第一InAs层、第二InAs层和第二InSb层,所述超晶格原胞还包括InxGa1-xAs层,所述InxGa1-xAs层位于所述第一InAs层与所述第二InAs层之间、或位于并紧贴所述第一InAs层的上方、或所述第二InAs层下方。
2.根据权利要求1所述的中长波红外波段II类超晶格,其特征在于:所述GaSb层的厚度为1-20nm,所述第一InSb层和第二InSb层的厚度均为0-4nm,所述第一InAs层和第二InAs层的厚度范围均为0-21nm,所述InxGa1-xAs层的厚度为0-3nm。
3.根据权利要求1所述的中长波红外波段II类超晶格,其特征在于:所述InxGa1-xAs层中组分x为0.0-0.5。
4.根据权利要求1所述的中长波红外波段II类超晶格,其特征在于:所述第一InSb层和所述第二InSb层的厚度相同。
5.根据权利要求1所述的中长波红外波段II类超晶格,其特征在于:所述第一InAs层和所述第二InAs层的厚度之和为1-21nm。
CN201710727465.0A 2017-08-23 2017-08-23 一种中长波红外波段ii类超晶格 Active CN107507877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710727465.0A CN107507877B (zh) 2017-08-23 2017-08-23 一种中长波红外波段ii类超晶格

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710727465.0A CN107507877B (zh) 2017-08-23 2017-08-23 一种中长波红外波段ii类超晶格

Publications (2)

Publication Number Publication Date
CN107507877A true CN107507877A (zh) 2017-12-22
CN107507877B CN107507877B (zh) 2019-03-15

Family

ID=60692158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710727465.0A Active CN107507877B (zh) 2017-08-23 2017-08-23 一种中长波红外波段ii类超晶格

Country Status (1)

Country Link
CN (1) CN107507877B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224227A1 (en) * 2008-03-06 2009-09-10 Manijeh Razeghi TYPE-II InAs/GaSb SUPERLATTICE PHOTODIODE AND METHOD OF OPTIMIZING QUANTUM EFFICIENCY
CN102534764A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
CN102544229A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 甚长波InAs/GaSb二类超晶格红外探测器材料的制备方法
US20130043459A1 (en) * 2011-08-19 2013-02-21 Svt Associates, Inc. Long Wavelength Infrared Superlattice
CN103500765A (zh) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 基于砷阀开关的ii类超晶格结构及制备方法
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN105789355A (zh) * 2016-04-19 2016-07-20 中国科学院上海技术物理研究所 一种砷化铟基ii类超晶格结构及制备方法
CN105932106A (zh) * 2016-05-26 2016-09-07 中国科学院半导体研究所 InAs/InSb/GaSb/InSbⅡ类超晶格材料制造方法及产品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224227A1 (en) * 2008-03-06 2009-09-10 Manijeh Razeghi TYPE-II InAs/GaSb SUPERLATTICE PHOTODIODE AND METHOD OF OPTIMIZING QUANTUM EFFICIENCY
US20130043459A1 (en) * 2011-08-19 2013-02-21 Svt Associates, Inc. Long Wavelength Infrared Superlattice
CN102534764A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
CN102544229A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 甚长波InAs/GaSb二类超晶格红外探测器材料的制备方法
CN103500765A (zh) * 2013-10-10 2014-01-08 中国科学院上海技术物理研究所 基于砷阀开关的ii类超晶格结构及制备方法
CN103500765B (zh) * 2013-10-10 2016-01-13 中国科学院上海技术物理研究所 基于砷阀开关的ii类超晶格结构及制备方法
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN105789355A (zh) * 2016-04-19 2016-07-20 中国科学院上海技术物理研究所 一种砷化铟基ii类超晶格结构及制备方法
CN105932106A (zh) * 2016-05-26 2016-09-07 中国科学院半导体研究所 InAs/InSb/GaSb/InSbⅡ类超晶格材料制造方法及产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余连杰 等: "InAs/GaSb II类超晶格与HgCdTe红外探测器的比较研究", 《红外技术》 *

Also Published As

Publication number Publication date
CN107507877B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
Ringel et al. Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers
TWI552371B (zh) A group III-V compound semiconductor light-receiving element, a method for fabricating a III-V compound semiconductor light-receiving element, a light-receiving element, and an epitaxial wafer
US6888179B2 (en) GaAs substrate with Sb buffering for high in devices
US9117954B2 (en) High efficiency nanostructured photovoltaic device manufacturing
EP2454760A2 (en) Strain-balanced extended-wavelength barrier photodetector
KR20100084843A (ko) 다중접합 태양전지
KR20120024806A (ko) 양자 점 구조물들을 이용한 반도체 구조물 및 소자들의 제조 방법들 및 관련된 구조물들
WO2014175128A1 (ja) 半導体素子およびその製造方法
US20130043459A1 (en) Long Wavelength Infrared Superlattice
US9324900B2 (en) Method of fabricating a superlattice structure
US8426845B2 (en) Long wavelength infrared superlattice
US20130043458A1 (en) Long Wavelength Infrared Superlattice
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
JP5382696B2 (ja) 半導体光素子と半導体太陽電池
CN109473496B (zh) 一种雪崩探测器过渡层结构及制备方法
CN107507877B (zh) 一种中长波红外波段ii类超晶格
JP2015015306A (ja) 半導体素子およびその製造方法
KR20190044235A (ko) 격자 부정합 완충 구조를 갖는 다중 접합 태양전지 및 이의 제조 방법
CN104332511B (zh) InGaAs量子点太阳能电池及其制作方法
JPH08204215A (ja) 直列接続型太陽電池
Mansoori Reducing threading dislocation in GaSb epilayer grown on GaAs substrate for photovoltaic and thermophotovoltaic application
JPH11154763A (ja) 受光素子、火炎センサ及び受光素子の製造方法
US20230238328A1 (en) Band bend controlled topological semimetal devices and methods therefor
JPH04137768A (ja) 化合物半導体光電交換装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant