CN107492103A - 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法 - Google Patents

基于自适应粒子群算法的灰度阈值获取方法、图像分割方法 Download PDF

Info

Publication number
CN107492103A
CN107492103A CN201710541525.XA CN201710541525A CN107492103A CN 107492103 A CN107492103 A CN 107492103A CN 201710541525 A CN201710541525 A CN 201710541525A CN 107492103 A CN107492103 A CN 107492103A
Authority
CN
China
Prior art keywords
mrow
msubsup
population
msub
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710541525.XA
Other languages
English (en)
Inventor
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Jiji Intellectual Property Operation Co., Ltd
Original Assignee
Shanghai Feixun Data Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Feixun Data Communication Technology Co Ltd filed Critical Shanghai Feixun Data Communication Technology Co Ltd
Priority to CN201710541525.XA priority Critical patent/CN107492103A/zh
Publication of CN107492103A publication Critical patent/CN107492103A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

基于自适应粒子群算法的灰度阈值获取方法、图像分割方法,属于图像处理技术领域。本发明灰度阈值获取方法,其特征在于,包括以下步骤:步骤S01,对图像灰度值进行种群初始化;步骤SO2,计算种群内个体的适应度值;步骤S03,计算种群内个体最优位置和全局最优位置;步骤S04,更新种群内个体最优位置和全局最优位置;步骤S05,判断是否满足终止条件,若满足则获取最优解并得到最优灰度阈值;否则执行步骤S02进入下一代种群;其中,所述步骤S04采用惯性权重动态调节个体最优位置和全局最优位置。本发明具有自主学习和自适应性和较高的鲁棒性,且能够从全局并发求解灰度阈值,较好地规避局部最优值,准确高效。

Description

基于自适应粒子群算法的灰度阈值获取方法、图像分割方法
技术领域
本发明图像处理技术领域,尤其涉及一种基于自适应粒子群算法的灰度阈值获取方法、图像分割方法。
背景技术
图像处理从本质上讲是对图像信息进行加工以满足人们的视觉心理或应用需求的行为。而图像分割是图像处理技术中的一种,其目的是将图像分成各具特性的区域并提取出感兴趣的部分以满足人们的某种需要。近年来,对图像分割的研究一直是图像处理技术研究中心的热点,人们对其关注和投入不断提高,它是一种重要的图像分析技术,是从图像处理得到图像分析的关键步骤。
图像分割方法主要有边缘检测分割法、区域分割法、阈值分割法等。其中,阈值分割法因实现简单、运算效率高而成为一种有效的图像分割方法,而阈值的确定是阈值法图像分割的关键。然而要在一副多峰直方图的全灰度范围内搜索一个最佳的多阈值组合使得分割结果更为精准,求解的过程将变得异常耗时,运行速度慢,无法满足图像分割对实时性的要求,严重地阻碍了图像分割进程。
现有并行区域分割技术是对感兴趣区域进行并行方式检测来对图像进行分割。该分割基于的图像灰度阈值是靠先验知识来确定的,但对于不同图像具有不同特点,依赖先验知识确定的图像灰度阈值自适应性、稳定性差,进而使得依赖于图像灰度阈值进行图像分割的结果不准确。
现有的基于最大类间方差的阈值分割方法,包括遗传算法、蚁群算法、微粒群算法和最大类间方差阈值分割法,将上述算法相组合,提出了基于群体智能算法的最大类间方差阈值分割法,以加快最大类间方差方法求最优解的速度。上述算法各有优点,但也存在不足之处。如遗传算法收敛速度低,为此发明专利申请CN106023195A、发明专利申请CN105488528A采用BP神经网络结合遗传算法的方式改进标准遗传算法存在的问题。如粒子群算法虽然收敛速度快,但有着限于局部最小的缺点,为此发明专利申请CN104156945A利用聚类方法结合粒子群算法来改进标准粒子群算法存在的问题。如基于量子粒子群算法虽然全局搜索能力强,但仍然有着维数束缚的问题。
虽然,上述提及的现有申请虽然在一定程度上优化了收敛速度,但相对复杂。
发明内容
本发明针对现有技术存在的问题,提出了一种简单的,能全局并发求解灰度阈值,较好规避局部最优值的基于自适应粒子群算法的灰度阈值获取方法、及根据上述方法获取的灰度阈值进行的图像分割方法。
本发明引入惯性权重到粒子群算法中,且权重随迭代次数增加而线性减小。在应用上述算法求解图像分割的灰度阈值时,算法将利用迭代过程中得到的反馈信息自行调节并发搜索过程。当权重较大时,具有较强全局搜索能力,而当权重较小时,具有局部搜索能力,进而能快速收敛于某一全局最优区域,在最优区域中获得精度较高的解。这在很大程度上降低了算法陷入局部最优解的可能性。
本发明是通过以下技术方案得以实现的:
基于自适应粒子群算法的灰度阈值获取方法,包括以下步骤:
步骤S01,对图像灰度值进行种群初始化;
步骤SO2,计算种群内个体的适应度值;
步骤S03,计算种群内个体最优位置和全局最优位置;
步骤S04,更新种群内个体最优位置和全局最优位置;
步骤S05,判断是否满足终止条件,若满足则获取最优解并得到最优灰度阈值;否则执行步骤S02进入下一代种群;
其中,所述步骤S04采用惯性权重动态调节个体最优位置和全局最优位置。
作为优选,步骤S01的种群初始化包括初始化个体速度、个体位置矢量、初始代种群个体最优位置和全局最优位置。
作为优选,步骤S02的适应度值按如下公式(1)计算:
其中,为第k代的第i个粒子个体的适应度值,t={t1,t2,…tm}为种群初始化后的图像灰度值并作为用于将图像分割为m类区域的图像灰度阈值,pm为第m类区域内灰度值出现的概率,μm为第m类区域内灰度值的平均值,μav为整个图像的平均灰度值。
作为优选,步骤S03计算种群个体最优位置具体为:
其中,为第k代的第i个粒子个体的适应度值;为个体最优位置。
作为优选,步骤S03计算种群全局最优位置具体为
其中,为第k代整个粒子群的全局最优位置。
作为优选,步骤S04更新种群内个体最优位置和全局最优位置依据下述公式完成:
其中,r1和r2是[0,1]区间的随机数;Pi=(pi1,pi2,...,piD)T为当前第i个粒子搜寻到的最优位置;Pg=(pg1,pg2,...,pgD)T为当前整个粒子群所搜寻到的最优位置;Vi=(vi1,vi2,...,viD)T为第i个粒子的个体速度;c1、c2为加速系数;为第k代第i个粒子的位置;w为惯性权重。
作为优选,所述惯性权重按照下述公式调节:
其中,N_max为最大的迭代次数;N为当前的迭代次数;ω_max为预设的
最大惯性权重值;ω_min为预设的最小惯性权重值。
作为优选,步骤S04还包括溢出约束限制:设置最大个体速度,当个体速度大于最大个体速度时,将其更新为最大个体速度。
一种图像分割方法,包括以下步骤:
步骤一,读取图像信息并计算待分割图像的图像灰度直方图;
步骤二,根据上述基于自适应粒子群算法的灰度阈值获取方法获取最优灰度阈值;
步骤三,根据最优灰度阈值对图像进行分割。
作为优选,步骤三的图像分割具体包括:根据至少一个最优灰度阈值将待分割的图像划分为至少两类区域,进行并行方式的图像分割。
本发明具有以下有益效果:
本发明一种基于自适应粒子群算法的灰度阈值获取方法、图像分割方法,具有自主学习和自适应性、以及较高的鲁棒性,解决了现有先验知识适应性、稳定性差的问题,进而能从全局并发来求解灰度阈值,并进行准确高效的图像分割,为后续图像特征提取和识别提供了更准确信息,图像分析更精准。
附图说明
图1为本发明基于自适应粒子群算法的灰度阈值获取方法的流程图;
图2为本发明图像分割方法的流程图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
并行区域分割技术是一种采用并行方式对感兴趣区进行检测来对图像进行分割的技术。首先对于一副灰度图像,该技术会根据预先确定的一个处于图像灰度取值范围中的灰度阈值将所有像素归为两大类,灰度值大于灰度阈值的像素为一类,灰度值小于灰度阈值的像素归为另一类,灰度值等于灰度阈值的像素可视情况归为前面两类中的任意一类。通常情况下,两类像素分属于图像中的两类区域,从而根据阈值分类完成了对图像的分割。
但现有灰度阈值的获得是根据先验知识获得的,是基于以往的经验总结出来,并不能很好地适应不同的情况,因此图像分割的自适应性和稳定性不尽人意。在基本粒子群算法中,首先随机初始化一群粒子,而每个粒子则代表一个候选解,并通过适应度函数来评价各个候选解的优劣;在每次的搜寻过程中,各个粒子通过跟随两个“榜样”在整个候选解空间中进行搜索:一个是粒子自身到目前为止所搜寻到的最优值,即局部最优解;另一个是整个种群到目前为止所搜寻到的最优值,即全局最优解。由于每次搜寻都是在之前搜寻的最优结果的基础上进行的进一步搜索,所以随着迭代次数的不断增加,整个群体搜寻的结果质量也会不断提升。然而,在实际的搜寻过程中,如果某个粒子得到了到目前为止种群所发现的最优值,那么其他粒子也将快速向该粒子靠拢,但该粒子所发现的最优值往往是局部最优解,所以这将很有可能导致整个算法陷入局部最优解的现象。
为了平衡粒子的全局和局部搜寻能力,本文引入了惯性权重到粒子群算法中,且惯性权重随迭迭代次数增加而线性较小。研究表明,惯性权重较大时,算法倾向于全局搜索,具有较强的全局搜寻能力,而当惯性权重较小时,算法倾向于局部搜索,有助于提升解的精度。使惯性权重线性较小可使使搜索范围快速收敛于某一全局最优区域,然后在该区域中进行更加精细的搜寻以获得精度较高的解。这在很大程度上降低了算法陷入局部最优解的可能性。
本发明以单个阈值划分两个图像区域进行示例性描述,且本发明不限于多个阈值获取,不限于对图像进行多区域分割。
如图1,本发明基于自适应粒子群算法的灰度阈值获取方法,包括以下步骤:
步骤S01,对图像灰度值进行种群初始化。
获取图像的最小灰度值和最大灰度值,作为初始化种群的阈值上下限。若图像为黑白图像,粒子群的上下界设置为[0,255]。初始第一代种群时,在最小灰度值和最大灰度值之间分别随机产生一个整数来初始化种群的个体,如于黑白图像的第一代种群在[0,255]之间产生随机数的形式初始化。
种群初始化包括初始化个体速度、个体位置矢量、初始代种群个体最优位置和全局最优位置。粒子群个体的位置以矢量方式表示Xi=(xi1,xi2,…,xid)T∈Ω,其中xi1,xi2,…,xid分别为每个粒子的个体位置向量,Ω为位置空间。粒子群个体的速度以矢量方式表示Vi=(vi1,vi2,...,viD)T,其中vi1,vi2,...,viD分别为每个粒子的个体速度向量。
具体来说,随机初始化第一代种群的粒子初始位置,设第i个粒子的初始化位置是Xid(0),并初始化各个粒子的个体最优位置为Pid(0)=Xid(0)。全局最优位置为:Pgd=min{X1d(0),X2d(0),...,Xid(0)}。
上述个体最优位置,全局最优位置可根据经验设定,或根据运算确定,如上述基于随机初始值确定。
步骤SO2,计算种群内个体的适应度值。
本发明利用最大类间方差法计算适应度值,适应度函数如下:
其中,为第k代的第i个粒子个体的适应度值,t={t1,t2,…tm}为种群初始化后的图像灰度值并作为用于将图像分割为m类区域的图像灰度阈值,pm为第m类区域内灰度值出现的概率,μm为第m类区域内灰度值的平均值,μav为整个图像的平均灰度值。
当图像被分割成两类区域时,m为2,此时适应度函数为
将种群个体带入到适应度函数计算出种群个体的适应度函数值。
步骤S03,计算种群内个体最优位置和全局最优位置。
根据步骤S03挑选种群个体中适应度最大的个体得到个体最优,再挑选个体最优中适应度最大的个体得到全局最优,来计算种群内个体最优位置和全局最优位置。
计算种群个体最优位置具体为:
其中,为第k代的第i个粒子个体的适应度值;为个体最优位置。
计算种群全局最优位置具体为
其中,为第k代整个粒子群的全局最优位置。
步骤S04,更新种群内个体最优位置和全局最优位置。
为了克服粒子群算法易于陷入局部最优解的缺陷,引入惯性权重来更新种群内个体最优位置和全局最优位置。
粒子群按照下述公式移动位置:
其中,r1和r2是[0,1]区间的随机数;Pi=(pi1,pi2,...,piD)T为当前第i个粒子搜寻到的最优位置;Pg=(pg1,pg2,...,pgD)T为当前整个粒子群所搜寻到的最优位置;Vi=(vi1,vi2,...,viD)T为第i个粒子的个体速度;c1、c2为加速系数,一般取2,w为惯性权重;为第k代第i个粒子的位置。
在更新粒子速度后,按下述公式确定位置:
其中,惯性权重调节操作描述如下:
其中,N_max为最大的迭代次数;N为当前的迭代次数;ω_max为预设的最大惯性权重值;ω_min为预设的最小惯性权重值。
步骤S05,判断是否满足终止条件,若满足则获取最优解并得到最优灰度阈值;否则执行步骤S02进入下一代种群。
上述终止条件可设置为迭代次数,在未到达迭代次数,重复执行步骤S02-S04,直至迭代完成后,获得最优解,继而获得相对应的最优灰度阈值。该终止条件还可以设置为适应值达到某个水平时终止迭代。
为了防止溢出,还要设置溢出约束限制:设置最大个体速度,当个体速度大于最大个体速度时,将其更新为最大个体速度。
本发明图像分割方法,包括以下步骤:
步骤一,读取图像信息并计算待分割图像的图像灰度直方图。
读取的图像信息为感兴趣区域,针对该区域计算待分隔图像的图像灰度直方图。
步骤二,根据上述基于自适应粒子群算法的灰度阈值获取方法获取最优灰度阈值。
步骤三,根据最优灰度阈值对图像进行分割。
根据至少一个最优灰度阈值将待分割的图像划分为至少两类区域,进行并行方式的图像分割。当图像按两类区域划分时,依据得到的最优灰度阈值进行划分区域,进而进行图像分割,图像数据处理及分析。
图2具体示出了本发明图像分割方法的流程图,包括如下步骤:
步骤S10,读取图像信息并计算待分割图像的图像灰度直方图;
步骤S20,对图像灰度值进行种群初始化;
步骤S30,计算种群内个体的适应度值;
步骤S40,计算种群内个体最优位置和全局最优位置;
步骤S50,更新种群内个体最优位置和全局最优位置;
步骤S60,判断是否满足终止条件,若满足则获取最优解并得到最优灰度阈值;否则执行步骤S30进入下一代种群;
步骤S70,根据最优灰度阈值对图像进行分割。
其中,所述步骤S050采用惯性权重动态调节个体最优位置和全局最优位置。
本发明将惯性权重引入到粒子群算法中形成自适应粒子群算法,并将其应用于图像分割中,以便获得较优的分割结果。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (10)

1.基于自适应粒子群算法的灰度阈值获取方法,其特征在于,包括以下步骤:
步骤S01,对图像灰度值进行种群初始化;
步骤SO2,计算种群内个体的适应度值;
步骤S03,计算种群内个体最优位置和全局最优位置;
步骤S04,更新种群内个体最优位置和全局最优位置;
步骤S05,判断是否满足终止条件,若满足则获取最优解并得到最优灰度阈值;否则执行步骤S02进入下一代种群;
其中,所述步骤S04采用惯性权重动态调节个体最优位置和全局最优位置。
2.根据权利要求1所述的基于自适应粒子群算法的灰度阈值获取方法,其特征在于,步骤S01的种群初始化包括初始化个体速度、个体位置矢量、初始代种群个体最优位置和全局最优位置。
3.根据权利要求1所述的基于自适应粒子群算法的灰度阈值获取方法,其特征在于,步骤S02的适应度值按如下公式(1)计算:
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <msub> <mi>p</mi> <mi>m</mi> </msub> <mo>&amp;times;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>a</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,为第k代的第i个粒子个体的适应度值,t={t1,t2,…tm}为种群初始化后的图像灰度值并作为用于将图像分割为m类区域的图像灰度阈值,pm为第m类区域内灰度值出现的概率,μm为第m类区域内灰度值的平均值,μav为整个图像的平均灰度值。
4.根据权利要求1所述的一种基于自适应粒子群算法的灰度阈值获取方法,其特征在于,步骤S03计算种群个体最优位置具体为:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>f</mi> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> <mo>&amp;GreaterEqual;</mo> <mi>f</mi> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mi>f</mi> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> <mo>&lt;</mo> <mi>f</mi> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,为第k代的第i个粒子个体的适应度值;为个体最优位置。
5.根据权利要求1所述的一种基于自适应粒子群算法的灰度阈值获取方法,其特征在于,步骤S03计算种群全局最优位置具体为
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>g</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>max</mi> <mo>{</mo> <msubsup> <mi>P</mi> <mrow> <mn>1</mn> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mn>2</mn> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> <mo>,</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>g</mi> <mo>&amp;le;</mo> <mi>i</mi> </mrow>
其中,为第k代整个粒子群的全局最优位置。
6.根据权利要求1所述的一种基于自适应粒子群算法的灰度阈值获取方法,其特征在于,步骤S04更新种群内个体最优位置和全局最优位置依据下述公式(2)、(3)完成:
<mrow> <msubsup> <mi>v</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;omega;v</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>p</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>p</mi> <mrow> <mi>g</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
其中,r1和r2是[0,1]区间的随机数;Pi=(pi1,pi2,...,piD)T为当前第i个粒子搜寻到的最优位置;Pg=(pg1,pg2,...,pgD)T为当前整个粒子群所搜寻到的最优位置;Vi=(vi1,vi2,...,viD)T为第i个粒子的个体速度;c1、c2为加速系数;为第k代第i个粒子的位置;w为惯性权重。
7.根据权利要求6所述的一种基于自适应粒子群算法的灰度阈值获取方法,其特征在于,所述惯性权重按照下述公式(4)调节:
<mrow> <mi>&amp;omega;</mi> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mi>max</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> <mi>&amp;pi;</mi> </mfrac> <mo>.</mo> <mi>arctan</mi> <mfrac> <mi>N</mi> <msub> <mi>N</mi> <mi>max</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
其中,N_max为最大的迭代次数;N为当前的迭代次数;ω_max为预设的最大惯性权重值;ω_min为预设的最小惯性权重值。
8.根据权利要求6所述的一种基于自适应粒子群算法的灰度阈值获取方法,其特征在于,步骤S04还包括溢出约束限制:设置最大个体速度,当个体速度大于最大个体速度时,将其更新为最大个体速度。
9.一种图像分割方法,其特征在于,包括以下步骤:
步骤一,读取图像信息并计算待分割图像的图像灰度直方图;
步骤二,根据上述权利要求1-8之一的基于自适应粒子群算法的灰度阈值获取方法获取最优灰度阈值;
步骤三,根据最优灰度阈值对图像进行分割。
10.根据权利要求9所述的一种图像分割方法,其特征在于,步骤三的图像分割具体包括:根据至少一个最优灰度阈值将待分割的图像划分为至少两类区域,进行并行方式的图像分割。
CN201710541525.XA 2017-07-05 2017-07-05 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法 Pending CN107492103A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710541525.XA CN107492103A (zh) 2017-07-05 2017-07-05 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710541525.XA CN107492103A (zh) 2017-07-05 2017-07-05 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法

Publications (1)

Publication Number Publication Date
CN107492103A true CN107492103A (zh) 2017-12-19

Family

ID=60644549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710541525.XA Pending CN107492103A (zh) 2017-07-05 2017-07-05 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法

Country Status (1)

Country Link
CN (1) CN107492103A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198197A (zh) * 2018-01-26 2018-06-22 上海康斐信息技术有限公司 一种基于粒子群算法的图像边缘检测方法及系统
CN108564593A (zh) * 2018-03-30 2018-09-21 四川斐讯信息技术有限公司 一种基于变异型粒子群算法的图像分割方法及系统
CN108596926A (zh) * 2018-04-02 2018-09-28 四川斐讯信息技术有限公司 基于交叉型粒子群算法的灰度阈值获取、图像边缘检测方法
CN108810415A (zh) * 2018-06-27 2018-11-13 上海理工大学 一种基于量子粒子群优化算法的对焦方法
CN109035280A (zh) * 2018-06-14 2018-12-18 四川斐讯信息技术有限公司 一种基于交叉型粒子群算法的图像分割方法及系统
CN109284671A (zh) * 2018-08-02 2019-01-29 哈尔滨工程大学 一种基于asmp阈值最优和低通滤波的海水温度场重构算法
CN109886976A (zh) * 2019-02-19 2019-06-14 湖北工业大学 一种基于灰狼优化算法的图像分割方法及系统
CN109949312A (zh) * 2019-02-01 2019-06-28 广州番禺职业技术学院 一种基于搜索边界自适应调整算法的图像分割方法及系统
CN110866877A (zh) * 2019-11-12 2020-03-06 Oppo广东移动通信有限公司 基于约束粒子群算法的色彩校正方法、装置及终端设备
CN110969639A (zh) * 2019-11-21 2020-04-07 陕西师范大学 一种基于lfmvo优化算法的图像分割方法
CN111429419A (zh) * 2020-03-19 2020-07-17 国网陕西省电力公司电力科学研究院 一种基于混合蚁群算法的绝缘子轮廓检测方法
CN112232235A (zh) * 2020-10-20 2021-01-15 罗子尧 基于5g的智慧工厂远程监控方法及系统
CN114236401A (zh) * 2021-12-20 2022-03-25 上海正泰电源系统有限公司 一种基于自适应粒子群算法的电池状态估计方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887584A (zh) * 2010-07-07 2010-11-17 清华大学 一种基于适度随机搜索行为的多阈值图像分割方法
CN102903113A (zh) * 2012-10-08 2013-01-30 南京邮电大学 基于协作量子粒子群算法的多阈值图像分割方法
CN103646278A (zh) * 2013-11-14 2014-03-19 扬州西岐自动化科技有限公司 基于自适应策略的粒子群算法在机器人路径规划中的应用
CN103871029A (zh) * 2014-01-28 2014-06-18 西安科技大学 一种图像增强及分割方法
CN104134221A (zh) * 2014-08-21 2014-11-05 河海大学 一种基于自适应遗传算法和otsu算法的图像分割方法
CN104268869A (zh) * 2014-09-23 2015-01-07 中山大学 一种基于粒子群算法的多级分辨率遥感影像自动配准方法
CN104659816A (zh) * 2015-03-13 2015-05-27 贵州电力试验研究院 一种基于改进粒子群算法的分布式电源接入配电系统优化配置方法
CN105405136A (zh) * 2015-11-04 2016-03-16 南方医科大学 一种基于粒子群算法的自适应脊柱ct图像分割方法
CN105430706A (zh) * 2015-11-03 2016-03-23 国网江西省电力科学研究院 一种基于改进粒子群算法的无线传感网络路由优化方法
CN106229964A (zh) * 2016-07-22 2016-12-14 南京工程学院 一种基于改进二进制粒子群算法的配电网故障定位方法
CN106444956A (zh) * 2016-10-31 2017-02-22 北京信息科技大学 一种基于粒子群优化的光伏最大功率点跟踪的控制方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887584A (zh) * 2010-07-07 2010-11-17 清华大学 一种基于适度随机搜索行为的多阈值图像分割方法
CN102903113A (zh) * 2012-10-08 2013-01-30 南京邮电大学 基于协作量子粒子群算法的多阈值图像分割方法
CN103646278A (zh) * 2013-11-14 2014-03-19 扬州西岐自动化科技有限公司 基于自适应策略的粒子群算法在机器人路径规划中的应用
CN103871029A (zh) * 2014-01-28 2014-06-18 西安科技大学 一种图像增强及分割方法
CN104134221A (zh) * 2014-08-21 2014-11-05 河海大学 一种基于自适应遗传算法和otsu算法的图像分割方法
CN104268869A (zh) * 2014-09-23 2015-01-07 中山大学 一种基于粒子群算法的多级分辨率遥感影像自动配准方法
CN104659816A (zh) * 2015-03-13 2015-05-27 贵州电力试验研究院 一种基于改进粒子群算法的分布式电源接入配电系统优化配置方法
CN105430706A (zh) * 2015-11-03 2016-03-23 国网江西省电力科学研究院 一种基于改进粒子群算法的无线传感网络路由优化方法
CN105405136A (zh) * 2015-11-04 2016-03-16 南方医科大学 一种基于粒子群算法的自适应脊柱ct图像分割方法
CN106229964A (zh) * 2016-07-22 2016-12-14 南京工程学院 一种基于改进二进制粒子群算法的配电网故障定位方法
CN106444956A (zh) * 2016-10-31 2017-02-22 北京信息科技大学 一种基于粒子群优化的光伏最大功率点跟踪的控制方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIANJUN SHEN ET AL.: "Particle Swarm Optimization with Dynamic Adaptive Inertia Weight", 《2010 INTERNATIONAL CONFERENCE ON CHALLENGES IN ENVIRONMENTAL SCIENCE AND COMPUTER ENGINEERING》 *
李人厚: "《智能控制理论和方法 第2版》", 28 February 2013, 西安电子科技大学出版社 *
杨英杰: "《粒子群算法及其应用研究》", 31 March 2017, 北京理工大学出版社 *
颜声远 等: "《人机界面设计与评价》", 31 July 2013, 国防工业出版社 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198197A (zh) * 2018-01-26 2018-06-22 上海康斐信息技术有限公司 一种基于粒子群算法的图像边缘检测方法及系统
CN108564593A (zh) * 2018-03-30 2018-09-21 四川斐讯信息技术有限公司 一种基于变异型粒子群算法的图像分割方法及系统
CN108596926A (zh) * 2018-04-02 2018-09-28 四川斐讯信息技术有限公司 基于交叉型粒子群算法的灰度阈值获取、图像边缘检测方法
CN109035280A (zh) * 2018-06-14 2018-12-18 四川斐讯信息技术有限公司 一种基于交叉型粒子群算法的图像分割方法及系统
CN108810415B (zh) * 2018-06-27 2020-07-14 上海理工大学 一种基于量子粒子群优化算法的对焦方法
CN108810415A (zh) * 2018-06-27 2018-11-13 上海理工大学 一种基于量子粒子群优化算法的对焦方法
CN109284671A (zh) * 2018-08-02 2019-01-29 哈尔滨工程大学 一种基于asmp阈值最优和低通滤波的海水温度场重构算法
CN109284671B (zh) * 2018-08-02 2022-02-22 哈尔滨工程大学 一种基于asmp阈值最优和低通滤波的海水温度场重构算法
CN109949312A (zh) * 2019-02-01 2019-06-28 广州番禺职业技术学院 一种基于搜索边界自适应调整算法的图像分割方法及系统
CN109886976A (zh) * 2019-02-19 2019-06-14 湖北工业大学 一种基于灰狼优化算法的图像分割方法及系统
CN110866877A (zh) * 2019-11-12 2020-03-06 Oppo广东移动通信有限公司 基于约束粒子群算法的色彩校正方法、装置及终端设备
CN110969639A (zh) * 2019-11-21 2020-04-07 陕西师范大学 一种基于lfmvo优化算法的图像分割方法
CN110969639B (zh) * 2019-11-21 2023-03-21 陕西师范大学 一种基于lfmvo优化算法的图像分割方法
CN111429419A (zh) * 2020-03-19 2020-07-17 国网陕西省电力公司电力科学研究院 一种基于混合蚁群算法的绝缘子轮廓检测方法
CN111429419B (zh) * 2020-03-19 2023-04-07 国网陕西省电力公司电力科学研究院 一种基于混合蚁群算法的绝缘子轮廓检测方法
CN112232235A (zh) * 2020-10-20 2021-01-15 罗子尧 基于5g的智慧工厂远程监控方法及系统
CN114236401A (zh) * 2021-12-20 2022-03-25 上海正泰电源系统有限公司 一种基于自适应粒子群算法的电池状态估计方法
CN114236401B (zh) * 2021-12-20 2023-11-28 上海正泰电源系统有限公司 一种基于自适应粒子群算法的电池状态估计方法

Similar Documents

Publication Publication Date Title
CN107492103A (zh) 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法
WO2021134871A1 (zh) 基于局部二值模式和深度学习的合成人脸图像取证方法
CN108846826B (zh) 物体检测方法、装置、图像处理设备及存储介质
CN109977774B (zh) 一种基于自适应卷积的快速目标检测方法
CN107392919B (zh) 基于自适应遗传算法的灰度阈值获取方法、图像分割方法
CN111844101B (zh) 一种多指灵巧手分拣规划方法
CN111738301A (zh) 一种基于双通道学习的长尾分布图像数据识别方法
CN105574063A (zh) 基于视觉显著性的图像检索方法
Xiao et al. A fast method for particle picking in cryo-electron micrographs based on fast R-CNN
CN106934455B (zh) 基于cnn的遥感影像光学适配结构选取方法及系统
CN104881871A (zh) 基于改进多目标和声搜索算法的交通图像分割方法
CN109165658B (zh) 一种基于Faster-RCNN的强负样本水下目标检测方法
CN111738114B (zh) 基于无锚点精确采样遥感图像车辆目标检测方法
CN105405136A (zh) 一种基于粒子群算法的自适应脊柱ct图像分割方法
CN114627383A (zh) 一种基于度量学习的小样本缺陷检测方法
CN109492636B (zh) 基于自适应感受野深度学习的目标检测方法
CN111833322B (zh) 一种基于改进YOLOv3的垃圾多目标检测方法
CN111126401A (zh) 一种基于上下文信息的车牌字符识别方法
CN110909158A (zh) 基于改进萤火虫算法和k近邻的文本分类方法
CN116721414A (zh) 一种医学图像细胞分割与跟踪方法
CN111462090A (zh) 一种多尺度图像目标检测方法
CN107766792A (zh) 一种遥感图像舰船目标识别方法
CN101299238B (zh) 一种基于协同训练的快速指纹图像分割方法
CN113971644A (zh) 基于数据增强策略选择的图像识别方法及装置
CN114022682A (zh) 一种基于注意力的二次特征融合机制的弱小目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201125

Address after: Room 10242, No. 260, Jiangshu Road, Xixing street, Binjiang District, Hangzhou City, Zhejiang Province

Applicant after: Hangzhou Jiji Intellectual Property Operation Co., Ltd

Address before: 201616 Shanghai city Songjiang District Sixian Road No. 3666

Applicant before: Phicomm (Shanghai) Co.,Ltd.