CN104134221A - 一种基于自适应遗传算法和otsu算法的图像分割方法 - Google Patents

一种基于自适应遗传算法和otsu算法的图像分割方法 Download PDF

Info

Publication number
CN104134221A
CN104134221A CN201410416268.3A CN201410416268A CN104134221A CN 104134221 A CN104134221 A CN 104134221A CN 201410416268 A CN201410416268 A CN 201410416268A CN 104134221 A CN104134221 A CN 104134221A
Authority
CN
China
Prior art keywords
image
value
algorithm
population
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410416268.3A
Other languages
English (en)
Other versions
CN104134221B (zh
Inventor
李东新
封雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201410416268.3A priority Critical patent/CN104134221B/zh
Publication of CN104134221A publication Critical patent/CN104134221A/zh
Application granted granted Critical
Publication of CN104134221B publication Critical patent/CN104134221B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于自适应遗传算法和OTSU算法的图像分割方法,与现有技术相比,传统的阈值分割法在对图像进行多阈值分割时,运行速度慢,将标准的遗传算法(Standard Genetic Algorithm,SGA)与OTSU法相结合,能提高传统的OTSU法对图像阈值分割的速度,但分割的精确度不够。本发明将自适应遗传算法与最大类间方差法相结合对图像进行分割,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。能在较短的时间内收敛到最佳分割阈值,可广泛应用于生物医学图像分析和遥感等领域中。

Description

一种基于自适应遗传算法和OTSU算法的图像分割方法
技术领域
本发明涉及一种基于自适应遗传算法和OTSU算法的图像分割方法。
背景技术
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程,主要是对图像目标进行提取、测量,它是由图像处理到图像识别、分析的基础和关键步骤。
对于图像分割的方法,目前已有非常多的处理方法,例如边缘检测分割法、区域分割法、阈值分割法,其中阈值分割法应用比较广泛,但传统的阈值分割法在对图像进行多阈值分割时,运行速度慢。将标准遗传算法(Standard GeneticAlgorithm,SGA)与OTSU算法(最大类间方差法)相结合对图像进行阈值分割,能提高传统的OTSU法对图像阈值分割的速度,但分割的精确度不够,易早熟。
发明内容
针对上述问题,本发明提供一种基于自适应遗传算法和OTSU算法的图像分割方法,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,包括如下步骤:
步骤S01:计算待分割图像的图像灰度直方图;
步骤S02:对图像的灰度值进行编码,随机产生M个初始种群;
步骤S03:根据OTSU算法计算每个个体的适应度值;
步骤S04:进行遗传操作,包括顺次执行的选择操作、交叉操作和变异操作,其中,
选择操作:将当代种群中的个体按照适应度值由大到小选择前M个个体,将它们复制到下一代种群中;
交叉操作:将上述选择操作产生的种群中的个体的交叉率Pc按照下述方法进行变化:
当个体适应度值高于平均适应度值时,随着个体适应度值的增加交叉率加速减小;
当个体适应度值小于平均适应度值时,随着个体适应度值的增加,交叉率减速减小;
按照交叉率Pc由大到小依次选择若干对个体进行交叉,并更新种群;
变异操作:将上述交叉操作产生的种群中的个体的变异率Pm按照下述方法进行变化:
当个体适应度值高于平均适应度值时,随着个体适应度值的增加变异率加速减小;
当个体适应度值小于平均适应度值时,随着个体适应度值的增加,变异率减速减小;
按照变异率Pm由大到小选择若干个变异率Pm大的个体进行变异,并更新种群;
步骤S05:判断新种群是否满足终止条件,若满足则结束,并获得分割阈值,否则,进入步骤S03;
步骤S06:根据分割阈值处理待分割图像。
本发明将自适应遗传算法(Adaptive Genetic Algorithm,AGA)与最大类间方差法(OTSU法)相结合对图像进行分割,首先读取图像信息并计算图像灰度直方图,可以将图像的灰度级用二进制进行编码,随机产生M个初始种群,解码并将十进制灰度值代入OTSU法准则函数,计算当代种群中各个体的适应度值,选择优秀的个体组成新的种群,对新种群中的个体依次进行交叉操作和变异操作,然后判断是否满足终止条件,若满足条件则输出分割阈值并按分割阈值分割图像,若不满足终止条件则继续进行遗传操作。
其中,交叉算子和变异算子在操作过程中做自适应调整,即交叉率和变异率与种群中个体适应度值相关,既避免了算法在进化过程中趋于纯粹的随机搜索,又能避免算法处于停滞不前的状态,克服了标准遗传算法(standard GeneticAlgorithm,SGA)收敛速度慢、易早熟的缺点。将AGA与OTSU法相结合对图像进行阈值分割,能在较短的时间内收敛到最佳分割阈值,且图像分割的精确度更高。
本发明的有益效果是:本发明将自适应遗传算法与最大类间方差法相结合对图像进行分割,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。可广泛应用于生物医学图像分析和遥感等领域中。
附图说明
图1是本发明一种基于自适应遗传算法和OTSU算法的图像分割方法的流程图;
图2是本发明遗传操作的具体流程图;
图3是本发明个体基因串单点交叉示意图;
图4是本发明AGA遗传算子变化的曲线图。
具体实施方式
下面结合附图和具体的实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,其中G代表迭代次数,设初始迭代次数是0,每操作完一次遗传操作,迭代次数G加1。一种基于自适应遗传算法和OTSU算法的图像分割方法,包括如下步骤:
步骤S01:读取图像信息并计算待分割图像的图像灰度直方图。
步骤S02:对图像的灰度值进行编码,优选,图像的灰度范围为0-255,对范围为0-255的图像灰度级用8位二进制码串进行编码,编码范围为00000000-11111111。随机产生第0代M个初始种群。
步骤S03:解码并根据OTSU算法计算每个个体的适应度值。
其中,OTSU算法以准则函数计算适应度值,式中,设二进制码串解码后得到的阈值t将待分割图像分为C0类和C1类,其中ω0、ω1分别为C0类、C1类内像素点出现的概率,μ0、μ1分别为C0类、C1类内像素点的平均灰度值,即是二进制码串解码后得到的阈值t对应的个体的适应度值。
步骤S04:进行遗传操作,具体如图2所示,包括顺次执行的选择操作、交叉操作和变异操作,其中,选择操作采用的是精英选择策略,交叉和变异操作采用的是自适应变化的交叉算子和变异算子。具体为:
选择操作:将当代种群中的个体按照适应度值由大到小选择前M个个体,将它们复制到下一代种群中。即选择适应度值大的优秀个体,将它们复制到下一代种群中,淘汰适应度值小的较差个体。
交叉操作:将上述选择操作产生的种群中的个体的交叉率Pc按照下述内容进行变化,见图4的(a)曲线:
当个体适应度值高于平均适应度值(favg)时,随着个体适应度值的增加交叉率加速减小;
当个体适应度值小于平均适应度值(favg)时,随着个体适应度值的增加,交叉率减速减小;
当然,适应度值也有自己的最大值fmax和最小值fmin,交叉率有自己的最大值pcmax和最小值pcmin,可以根据需要自行设定相应的范围。
按照交叉率Pc由大到小依次选择若干对个体进行交叉,即两两交叉,并更新种群,将交叉后的个体代替交叉前的个体。
交叉算子将两个被选中的个体的基因串的某一部分进行交叉和互换操作,从而得到两个新的个体。交叉算子在实施时是按照一定的概率Pc来进行交叉操作,并且交叉的位置也是随机进行选择的。可以进行单点交叉,单点交叉是指在两个待交叉个体基因串中选择一个交叉点,将该点后部分的基因串相互交换组成两个新的个体。令“┆”为交叉点,执行过程如图3所示。
变异操作:将上述交叉操作产生的种群中的个体的变异率Pm按照下述内容进行变化,见图4的(b)曲线:
当个体适应度值高于平均适应度值时,随着个体适应度值的增加变异率加速减小;
当个体适应度值小于平均适应度值时,随着个体适应度值的增加,变异率减速减小;
同样的,变异率有自己的最大值pmmax和最小值pmmin,可以根据需要自行设定相应的范围。
按照变异率Pm由大到小顺次选择若干个变异率Pm大的个体进行变异,并更新种群,即变异后的个体替代变异前的个体。
至此,完成一次完整的遗传操作。
当个体适应度值低于平均适应度值时,随着个体适应度值的增加,交叉率和变异率减速减小,低适应度值个体能够保持快速进化,相对较优的个体进化速度大大减慢,解决了种群“盲目进化”的问题,节省了时间;当个体适应度值高于平均适应度值时,随着个体适应度值的增加,交叉率和变异率加速减小,适应度值大的个体能够保持稳定地进化,交叉率和变异率的最小值都不为零,这样保证了种群中任何个体都有一定的概率进行交叉和变异操作,不会出现近似停滞不前的情况。
其中,在进行选择操作、交叉操作和变异操作时,分别对选择操作的次数a、交叉操作的个体数b(由于每次交叉操作是操作两个个体,所以,每操作一次交叉,b加2)、变异操作的次数c进行计数,当a=M时,选择操作结束。优选交叉的次数次,即当b≤Pc·M时,交叉操作结束,变异的次数≤Pm·M次,变异操作结束,图2中均采用操作次数最大值进行遗传操作。
步骤S05:判断新种群是否满足终止条件,若满足则结束,并获得分割阈值,否则,进入步骤S03,其中,若满足最大迭代次数或种群中个体的最大适应度值不再发生变化,则算法终止并输出结果,否则继续进行遗传操作。
步骤S06:根据分割阈值处理待分割图像。
与现有技术相比,传统的阈值分割法在对图像进行多阈值分割时,运行速度慢,将标准的遗传算法(Standard Genetic Algorithm,SGA)与OTSU法相结合,能提高传统的OTSU法对图像阈值分割的速度,但分割的精确度不够。本发明将自适应遗传算法与最大类间方差法相结合对图像进行分割,采用自适应变化的交叉算子和变异算子,既能提高图像阈值分割的速度,又能提高图像分割的精确度。能在较短的时间内收敛到最佳分割阈值,可广泛应用于生物医学图像分析和遥感等领域中。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或者等效流程变换,或者直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

1.一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,包括如下步骤:
步骤S01:计算待分割图像的图像灰度直方图;
步骤S02:对图像的灰度值进行编码,随机产生M个初始种群;
步骤S03:根据OTSU算法计算每个个体的适应度值;
步骤S04:进行遗传操作,包括顺次执行的选择操作、交叉操作和变异操作,其中,
选择操作:将当代种群中的个体按照适应度值由大到小选择前M个个体,将它们复制到下一代种群中;
交叉操作:将上述选择操作产生的种群中的个体的交叉率Pc按照下述方法进行变化:
当个体适应度值高于平均适应度值时,随着个体适应度值的增加交叉率加速减小;
当个体适应度值小于平均适应度值时,随着个体适应度值的增加,交叉率减速减小;
按照交叉率Pc由大到小依次选择若干对个体进行交叉,并更新种群;
变异操作:将上述交叉操作产生的种群中的个体的变异率Pm按照下述方法进行变化:
当个体适应度值高于平均适应度值时,随着个体适应度值的增加变异率加速减小;
当个体适应度值小于平均适应度值时,随着个体适应度值的增加,变异率减速减小;
按照变异率Pm由大到小选择若干个变异率Pm大的个体进行变异,并更新种群;
步骤S05:判断新种群是否满足终止条件,若满足则结束,并获得分割阈值,否则,进入步骤S03;
步骤S06:根据分割阈值处理待分割图像。
2.根据权利要求1所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S04中,进行交叉的次数次。
3.根据权利要求1所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S04中,进行变异的次数≤Pm·M次。
4.根据权利要求1所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S02中,对范围为0-255的图像灰度级用8位二进制码串进行编码。
5.根据权利要求4所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S03中,OTSU算法以准则函数计算适应度值,
式中,设二进制码串解码后得到的阈值t将待分割图像分为C0类和C1类,其中ω0、ω1分别为C0类、C1类内像素点出现的概率,μ0、μ1分别为C0类、C1类内像素点的平均灰度值,即是二进制码串解码后得到的阈值t对应的适应度值。
6.根据权利要求5所述的一种基于自适应遗传算法和OTSU算法的图像分割方法,其特征在于,在步骤S05中,若满足最大迭代次数或种群中个体的最大适应度值不再发生变化,则算法终止并输出结果,否则继续进行遗传操作。
CN201410416268.3A 2014-08-21 2014-08-21 一种基于自适应遗传算法和otsu算法的图像分割方法 Expired - Fee Related CN104134221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410416268.3A CN104134221B (zh) 2014-08-21 2014-08-21 一种基于自适应遗传算法和otsu算法的图像分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410416268.3A CN104134221B (zh) 2014-08-21 2014-08-21 一种基于自适应遗传算法和otsu算法的图像分割方法

Publications (2)

Publication Number Publication Date
CN104134221A true CN104134221A (zh) 2014-11-05
CN104134221B CN104134221B (zh) 2017-01-25

Family

ID=51806890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410416268.3A Expired - Fee Related CN104134221B (zh) 2014-08-21 2014-08-21 一种基于自适应遗传算法和otsu算法的图像分割方法

Country Status (1)

Country Link
CN (1) CN104134221B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599264A (zh) * 2014-12-26 2015-05-06 温州大学 一种基于遗传算法的视频对象分割方法
CN105184798A (zh) * 2015-09-18 2015-12-23 浙江工商大学 引入遗传算法的最大类间距离法肺部恶性肿瘤mri识别方法
CN105912998A (zh) * 2016-04-05 2016-08-31 辽宁工业大学 一种基于视觉的车辆防碰撞预警方法
CN106251346A (zh) * 2016-07-27 2016-12-21 合肥高晶光电科技有限公司 一种基于遗传算法的颗粒图像处理方法
CN107067404A (zh) * 2017-03-30 2017-08-18 东北大学 基于植物根系觅食优化的多阈值金属微滴图像分割方法
CN107392919A (zh) * 2017-06-29 2017-11-24 上海斐讯数据通信技术有限公司 基于自适应遗传算法的灰度阈值获取方法、图像分割方法
CN107492103A (zh) * 2017-07-05 2017-12-19 上海斐讯数据通信技术有限公司 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法
CN107507210A (zh) * 2017-09-27 2017-12-22 上海斐讯数据通信技术有限公司 一种基于遗传算法的图像边缘检测方法及装置
CN107516318A (zh) * 2017-08-25 2017-12-26 四川长虹电器股份有限公司 基于模式搜索算法与萤火虫算法的图像多阈值分割方法
CN108596926A (zh) * 2018-04-02 2018-09-28 四川斐讯信息技术有限公司 基于交叉型粒子群算法的灰度阈值获取、图像边缘检测方法
CN110533665A (zh) * 2019-09-03 2019-12-03 北京航空航天大学 一种抑制扇贝效应和子带拼接效应的sar图像处理方法
CN110986884A (zh) * 2019-11-21 2020-04-10 吉林省水利水电勘测设计研究院 一种基于无人机航测数据预处理及植被快速识别方法
CN111462157A (zh) * 2020-03-31 2020-07-28 西安工程大学 一种基于遗传优化阈值法的红外图像分割方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604140A (zh) * 2004-11-11 2005-04-06 上海交通大学 形态学滤波器自动目标检测方法
CN103942815A (zh) * 2014-04-28 2014-07-23 东北石油大学 二进制算法和二维直线交叉熵结合的图像分割方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604140A (zh) * 2004-11-11 2005-04-06 上海交通大学 形态学滤波器自动目标检测方法
CN103942815A (zh) * 2014-04-28 2014-07-23 东北石油大学 二进制算法和二维直线交叉熵结合的图像分割方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M.SRINIVAS,L.M.PATNAIK: "Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms", 《IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS》 *
李茂民: "一种基于改进遗传算法的图像分割研究及应用", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
邝航宇,金晶,苏勇: "自适应遗传算法交叉变异算子的改进", 《计算机工程与应用》 *
魏志成,周激流,吕航,陶理,刘智明: "一种新的图象分割自适应算法的研究", 《中国图象图形学报》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104599264A (zh) * 2014-12-26 2015-05-06 温州大学 一种基于遗传算法的视频对象分割方法
CN105184798A (zh) * 2015-09-18 2015-12-23 浙江工商大学 引入遗传算法的最大类间距离法肺部恶性肿瘤mri识别方法
CN105912998A (zh) * 2016-04-05 2016-08-31 辽宁工业大学 一种基于视觉的车辆防碰撞预警方法
CN106251346A (zh) * 2016-07-27 2016-12-21 合肥高晶光电科技有限公司 一种基于遗传算法的颗粒图像处理方法
CN107067404A (zh) * 2017-03-30 2017-08-18 东北大学 基于植物根系觅食优化的多阈值金属微滴图像分割方法
CN107392919A (zh) * 2017-06-29 2017-11-24 上海斐讯数据通信技术有限公司 基于自适应遗传算法的灰度阈值获取方法、图像分割方法
CN107392919B (zh) * 2017-06-29 2021-07-20 广东唯仁医疗科技有限公司 基于自适应遗传算法的灰度阈值获取方法、图像分割方法
CN107492103A (zh) * 2017-07-05 2017-12-19 上海斐讯数据通信技术有限公司 基于自适应粒子群算法的灰度阈值获取方法、图像分割方法
CN107516318A (zh) * 2017-08-25 2017-12-26 四川长虹电器股份有限公司 基于模式搜索算法与萤火虫算法的图像多阈值分割方法
CN107507210A (zh) * 2017-09-27 2017-12-22 上海斐讯数据通信技术有限公司 一种基于遗传算法的图像边缘检测方法及装置
CN108596926A (zh) * 2018-04-02 2018-09-28 四川斐讯信息技术有限公司 基于交叉型粒子群算法的灰度阈值获取、图像边缘检测方法
CN110533665A (zh) * 2019-09-03 2019-12-03 北京航空航天大学 一种抑制扇贝效应和子带拼接效应的sar图像处理方法
CN110533665B (zh) * 2019-09-03 2022-04-05 北京航空航天大学 一种抑制扇贝效应和子带拼接效应的sar图像处理方法
CN110986884A (zh) * 2019-11-21 2020-04-10 吉林省水利水电勘测设计研究院 一种基于无人机航测数据预处理及植被快速识别方法
CN111462157A (zh) * 2020-03-31 2020-07-28 西安工程大学 一种基于遗传优化阈值法的红外图像分割方法
CN111462157B (zh) * 2020-03-31 2023-04-07 西安工程大学 一种基于遗传优化阈值法的红外图像分割方法

Also Published As

Publication number Publication date
CN104134221B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN104134221A (zh) 一种基于自适应遗传算法和otsu算法的图像分割方法
CN103745482B (zh) 一种基于蝙蝠算法优化模糊熵的双阈值图像分割方法
CN105678338B (zh) 基于局部特征学习的目标跟踪方法
EP3611799A1 (en) Array element arrangement method for l-type array antenna based on inheritance of acquired characteristics
CN103366379A (zh) 基于遗传核模糊聚类的水平集医学图像分割方法
CN102831604A (zh) 一种灰度图像的二维Renyi熵阈值分割方法
CN106600563A (zh) 基于局部搜索差分演化的图像增强方法
CN104123706A (zh) 一种基于自适应免疫遗传算法的图像增强方法
CN103020953A (zh) 一种指纹图像的分割方法
CN109300140A (zh) 基于遗传算法和蚁群算法的图像边缘检测方法
CN110827299B (zh) 一种基于哈里斯鹰优化算法的图像分割方法
CN116883672B (zh) 基于聚类划分的差分进化算法和otsu算法的图像分割方法
CN106127763A (zh) 一种具有广泛适应性的图像二值化方法
CN111462157B (zh) 一种基于遗传优化阈值法的红外图像分割方法
CN107240100A (zh) 一种基于遗传算法的图像分割方法和系统
CN104200073A (zh) 一种基于局部Lipschitz估计的自适应群体全局优化方法
CN108009471A (zh) 一种基于遗传算法和模拟退火算法的太阳黑子识别的方法
CN109447997A (zh) 一种自适应文化算法的水下声纳图像目标分割方法
CN103279796A (zh) 一种优化遗传算法进化质量的方法
CN106951901B (zh) 一种基于b型双链量子遗传算法的二维最大熵图像分割方法
CN107424165A (zh) 一种有效的图像分割系统
Peng et al. Image thresholding with cell-like P systems
CN104867132A (zh) 一种基于遗传算法和最大熵阈值分割算法的图像分割方法
CN109035258B (zh) 一种基于有向交叉遗传算法和二维最大熵阈值分割算法的图像分割方法
CN107507157B (zh) 一种改进的图像增强方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170125

Termination date: 20190821

CF01 Termination of patent right due to non-payment of annual fee