CN107482091B - 一种用于多结led的隧穿结、多结led及其制备方法 - Google Patents

一种用于多结led的隧穿结、多结led及其制备方法 Download PDF

Info

Publication number
CN107482091B
CN107482091B CN201710610318.5A CN201710610318A CN107482091B CN 107482091 B CN107482091 B CN 107482091B CN 201710610318 A CN201710610318 A CN 201710610318A CN 107482091 B CN107482091 B CN 107482091B
Authority
CN
China
Prior art keywords
layer
led
type
tunnel junctions
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710610318.5A
Other languages
English (en)
Other versions
CN107482091A (zh
Inventor
毕京锋
吴超瑜
王笃祥
李森林
吴俊毅
连恺熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Sanan Optoelectronics Co Ltd
Original Assignee
Tianjin Sanan Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Sanan Optoelectronics Co Ltd filed Critical Tianjin Sanan Optoelectronics Co Ltd
Priority to CN201710610318.5A priority Critical patent/CN107482091B/zh
Publication of CN107482091A publication Critical patent/CN107482091A/zh
Priority to PCT/CN2018/081671 priority patent/WO2019019691A1/zh
Application granted granted Critical
Publication of CN107482091B publication Critical patent/CN107482091B/zh
Priority to US16/711,721 priority patent/US11011674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0016Devices characterised by their operation having p-n or hi-lo junctions having at least two p-n junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种用于多结LED的隧穿结、多结LED及其制备方法,所述隧穿结包括:P型掺杂隔离层;重掺杂P型层;金属原子层;重掺杂N型层;N型掺杂隔离层。其中,所述N、P型掺杂隔离层作为高势垒层,能阻止高掺杂层的杂质扩散和杂质复合(俄歇复合),所述金属原子层作为辅助隧穿层,具有1~2原子层厚度,晶格处于应变状态,不存在晶格失配问题,同时能够有效减小遮光效应,不影响器件亮度,也可以有效减小串联电阻,提高光电转化效率。

Description

一种用于多结LED的隧穿结、多结LED及其制备方法
技术领域
本发明涉及一种用于多结LED的隧穿结、多结LED及其制备方法,属半导体材料技术领域。
背景技术
研究表明脸部与虹膜识别在移动设备上的应用将逐渐普及,预计到2020年搭载红外LED识别器件的移动设备将达到20亿部。届时红外LED脸部与虹膜识别器件产值将达到2.5亿美元,成为IR LED最具潜力的应用之一。商业化的虹膜识别系统主要采用700~900nm的近红外LED,利用其可拍摄出景深与立体影像的特征,辅助相机系统获取虹膜特征影像。
此系统对于IR LED的亮度要求较高,常用的解决方案是多结LED串联,即在外延生长过程中利用隧穿结将各个子器件串联起来,其关键技术是高峰值电流密度的隧穿结的外延生长,通常引入隧穿结峰值电流的概念来描述其特性。子电池间的隧穿结应是超薄高掺的“零压降”欧姆连接:1、p/n结双侧掺杂浓度足够高,使半导体进入简并状态,一般的其掺杂浓度达到1019cm-3;2、p/n结界面杂质浓度分布应尽可能陡峭,以避免杂质相互扩散引起杂质补偿;3、隧穿结p区和n区的厚度应尽可能的薄(小于15 nm)。为获得尽可能高的隧穿峰值电流,隧穿结材料的选择、掺杂源的选择、掺杂浓度及材料生长工艺等都是必须考虑的。此外,在后续生长过程中应避免有序掺杂剂的记忆效应和掺杂杂质的扩散等作用影响p/n结质量,进而恶化器件性能。
隧穿电流计算公式为:
在杂质全部电离的情况下,等于n和p区的掺杂浓度。
从上面公式可以看出:与隧穿结峰值电流关系最大的是掺杂浓度,还与材料的带隙有关,掺杂浓度越高,峰值电流越大,隧穿结材料的带隙越低,峰值电流越大。例如:带隙较低的GaInAs做隧穿结,4寸片J peak >1kA/cm 2
在多结LED实际应用中,随着大尺寸高亮度产品的需求(例如车灯、舞台灯、虹膜识别等产品),器件的注入电流越来越大,对隧穿结的峰值电流密度的要求也越来越高(J peak > 100 A/cm 2 )。由于低带隙隧穿结存在的吸光现象,严重影响器件的发光亮度。因此通过降低隧穿结半导体材料的带隙来提高峰值电流密度的方法行不通。
发明内容
针对现有技术中存在的上述问题,本发明旨在提供提一种用于多结LED的隧穿结、多结LED及其制备方法。
根据本发明的第一个方面,一种多结LED用高峰值电流密度的隧穿结,依次包括:P型掺杂隔离层;重掺杂P型层;金属原子层;重掺杂N型层;N型掺杂隔离层。
优选地,所述重掺杂P型层具有大于隧穿结上下两侧LED带隙的第一带隙,所述重掺杂N型层具有大于隧穿结上下两侧LED带隙的第二带隙;所述P型掺杂隔离层具有大于第一带隙的第三带隙;所述N型掺杂隔离层具有大于第二带隙的第四带隙。
所述重掺杂N、P型层的厚度和掺杂是有效调控PN结区耗尽层厚度的关键参数,是隧穿结隧穿效应和高峰值电流密度的保障。优选地,所述重掺杂P型层的厚度为5~20 nm,掺杂浓度大于1×1020cm-3,所述重掺杂N型层的厚度为5~20 nm,掺杂浓度大于2×1019cm-3
所述N、P型掺杂隔离层作为高势垒层,能阻止高掺杂层的杂质扩散和杂质复合(俄歇复合),又不会影响整个器件的串联电阻。优选地,所述P型掺杂隔离层的掺杂浓度为8×1017~5×1018cm-3,所述N型掺杂隔离层的掺杂浓度为8×1017~5×1018cm-3
所述金属原子层的材料可以是在MOCVD生长过程中MO源热裂解形成的金属原子,例如Ga、In、Al、Sb等金属原子,其作用是利用金属导电性辅助隧穿。优选的,所述金属原子层具有1~2原子层厚度,其晶格处于应变状态,不存在晶格失配问题,同时能够有效减小遮光效应,不影响器件亮度,也可以有效减小串联电阻,提高光电转化效率。
根据本发明的第二个方面,一种多结LED结构,至少包括第一LED外延结构、隧穿结和第二LED外延结构,所述隧穿结包含:P型掺杂隔离层;重掺杂P型层;金属原子层;重掺杂N型层;N型掺杂隔离层。
本发明同时提供了一种多结LED的制备方法,包括步骤:形成第一LED器件结构;在第一LED器件结构的上方形成隧穿结,其包含P型掺杂隔离层,重掺杂P型层,金属原子层,重掺杂N型层,N型掺杂隔离层;在隧穿结上方形成第二LED器件结。至此就形成了双结LED结构,可以依据此方法继续外延生长多结LED器件结构。可以依据芯片工艺要求进行正装或者倒装生长。各LED器件子结构一般包括n型半导体层、有源层和p型半导体,但也可以包含刻蚀截止层、欧姆接触层、透明导电层等功能层。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为根据本发明实施的一种多结LED的结构示意图。
图2为图1所示多结LED结构之隧穿结的区域放大示意图。
图3为包含高峰值电流密度的隧穿结的多结LED芯片示意图。
图中各标号表示:
001:生长衬底;
002:LED I 的N型层;
003:LED I 的有源层;
004:LED I 的P型层;
005:隧穿结;
006:LED II 的N型层;
007:LED II 的有源层;
008:LED II 的P型层;
009:光学掩膜;
010:正面电极
011:背面电极
101:N型掺杂隔离层
102:超薄重掺杂N型层;
103:1~2层金属原子层;
104:超薄重掺杂P型层;
105:P型掺杂隔离层。
具体实施方式
现在将描述本发明的细节,包含本发明的示范性方面和实施例。参看图示和以下描述,相同的参考编号用于识别相同或功能类似的元件,且意在以高度简化的图解方式说明示范性实施列的主要特征。另外,所述图示无意描绘实际实施例的每个特征或所描绘元件的相对尺寸,且所述图示未按比例绘制。
图1显示了根据本发明实施的一种多结LED结构,其至少包括第一LED结构LED I和第二LED结构LED II,在第二LED结构和第二LED结构之间通过隧穿结005连接。图2显示了隧穿结005的区域放大示意图,其依次包括:N型掺杂隔离层101、重掺杂N型层102、金属原子层103、重掺杂P型层104和P型掺杂隔离层105。其中N、P型掺杂隔离层分别位于P、N重掺杂层的外侧,作为高势垒层,能阻止高掺杂层的杂质扩散和杂质复合(俄歇复合),金属原子层103位于P、N重掺杂层的中间,辅助隧穿。
下面以AlGaInP系发光二极管为例,结合制作方法对上述多结LED结构进行详细说明。
实施例一
首先 ,在MOCVD系统中,选用n型掺杂的向(111)晶面偏角为20的GaAs衬底作为生长衬底001,厚度在350微米左右,掺杂浓度在1×1018cm-3 ~ 4×1018cm-3之间,在此衬底上生长LED I 的N型层002、有源层003、P型层004,构成第一LED外延结构。其中,N型层003可以包含n型GaAs欧姆接触层、N型AlInP Clading层、不掺杂AlGaInP作为空间隔离层;有源层003可以采用峰值波长为810nm的AlInGaAs/AlGaAs分别作为量子阱和势垒构成的多量子阱结构,共12个周期,总厚度为400~500 nm之间;P型层004可包括P型AlInP Clading层、不掺杂AlGaInP作为空间隔离层。
接着,在LED I 的P型层004上方形成隧穿结005。首先,生长AlGaInP:C作为N型掺杂隔离层101,其掺杂浓度为2×1018cm-3,其厚度为120 nm,带隙为2.1 eV;之后生长AlGaAs:Te作为超薄重掺杂N型层102,其厚度为15 nm,掺杂浓度可为5×1019cm-3,带隙为1.7 eV;然后所有关掉所有MOCVD源,用H2 purge生长室,打开三甲基镓源,在极低的生长速率下外延生长1-2原子层的Ga金属原子层103,作为辅助隧穿层;之后生长AlGaAs:C作为超薄重掺杂P型层104,其厚度为15 nm,掺杂浓度可为2.5×1020cm-3,带隙为1.7 eV;最后生长AlGaInP:Si作为P型掺杂隔离层105,其掺杂浓度为8×1017cm-3,其厚度为120 nm,带隙为2.1 eV。
然后,在隧穿结004的上方对称生长LED II 的N型层006、有源层007和P型层008,构成第二LED外延结构。其中,N型层006可以包含N型AlInP Clading层、不掺杂AlGaInP作为空间隔离层;有源层007采用峰值波长为810nm的AlInGaAs/AlGaAs分别作为量子阱和势垒构成的多量子阱结构,共12周期,总厚度为400~500 nm之间;P型层008可包括P型GaAs欧姆接触层、P型AlInP Clading层、不掺杂AlGaInP作为空间隔离层。
外延生长完毕后再通过芯片工艺制程,实现光学掩膜009、正面电极010和背面电极011蒸镀,形成所需要的双结810nm LED发光芯片,如图3所示。芯片尺寸和电极图形可以根据具体需要进行变化。
以30mil芯片为例:在其它结构相同的情况下,包含和不包含金属原子层的芯粒,在350mA测试电流下,Vf值相差1~1.5%,亮度相差2~3%。
实施例二
在MOCVD系统中,选用n型掺杂的向(111)晶面偏角为20的GaAs衬底001,厚度在350微米左右,掺杂浓度在1×1018cm-3~4×1018cm-3之间。依次在此衬底上生长LED I 的N型层002、有源层003、P型层004,构成第一LED外延结构。其中,N型层003可以包含:n型GaAs欧姆接触层,i厚度为200nm,掺杂浓度为1×1018cm-3;N型AlGaAs覆盖层,其厚度为500nm左右,掺杂浓度为为2~5×1018cm-3;不掺杂AlGaAs作为空间隔离层;有源层003可以采用发光波长为940nm的InGaAs/AlGaAs分别作为量子阱和势垒构成的多量子阱结构,共6周期,总厚度为200~250nm之间;P型层004可以包含不掺杂AlGaAs作为P型区域的空间隔离层和P-AlGaAs覆盖层,P-AlGaAs覆盖层的厚度为400nm,掺杂浓度为4×1017~1×1018cm-3
接着,在LED I 的P型层004上方形成隧穿结005。首先生和AlGaInP:C作为N型掺杂隔离层101,其掺杂浓度为2×1018cm-3,其厚度为120nm,带隙为2.1 eV。之后生长AlGaAs:Te作为超薄重掺杂N型层102,其厚度为15 nm,掺杂5×1019cm-3,带隙为1.7 eV。然后所有关掉所有MOCVD源,用H2 purge生长室,打开三甲基镓源,在极低的生长速率下外延生长1-2个原子层的In金属原子层,作为辅助隧穿层103;之后生长AlGaAs:C作为超薄重掺杂P型层104,其厚度为15 nm,掺杂浓度为2.5×1020cm-3,带隙为1.7 eV;最后生长AlGaInP:Si作为P型掺杂隔离层105,其掺杂浓度为5×1017cm-3,其厚度为120nm,带隙为2.1 eV。
之后对称生长006 LED II 的LED I 的N型层002、有源层003、P型层004,构成第一LED外延结构。其中,N型层002可以包含n型GaAs欧姆接触层,其厚度为200 nm,掺杂浓度为1×1018cm-3,N型AlGaAs覆盖层,其厚度为500 nm左右,掺杂浓度为2~5×1018cm-3,不掺杂AlGaAs作为空间隔离层;有源层003采用发光波长为940nm的InGaAs/AlGaAs分别作为量子阱和势垒构成的多量子阱结构,共6周期,总厚度为200~250 nm之间;P型层004可以包含不掺杂AlGaAs作为P型区域的空间隔离层,P型AlGaAs覆盖层,其中P型AlGaAs覆盖层的厚度为400 nm,掺杂浓度为4×1017~1×1018cm-3,P型GaAs欧姆接触层,厚度为200nm,掺杂浓度为5×1018cm-3
外延生长完毕后再通过芯片工艺制程。实现光学掩膜009、正面电极010和背面电极011蒸镀,形成所需要的双结940nm LED发光芯片,芯片尺寸和电极图形可以根据客户需要进行变化。

Claims (11)

1.一种用于多结LED的隧穿结,包括:
P型掺杂隔离层;
重掺杂P型层;
金属原子层;
重掺杂N型层;
N型掺杂隔离层;
所述N型掺杂隔离层和P型掺杂隔离层阻止重掺杂层的杂质扩散和杂质复合,所述金属原子层的材料是在MOCVD生长过程中MO源热裂解形成的金属原子。
2.根据权利要求1的一种用于多结LED的隧穿结,其特征在于:所述重掺杂P型层具有大于隧穿结上下两侧LED带隙的第一带隙,所述重掺杂N型层具有大于隧穿结上下两侧LED带隙的第二带隙;所述P型掺杂隔离层具有大于第一带隙的第三带隙;所述N型掺杂隔离层具有大于第二带隙的第四带隙。
3.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述重掺杂P型层的厚度为5~20nm,掺杂浓度大于1×1020cm-3,具有大于隧穿结上下两侧LED带隙的第一带隙。
4.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述重掺杂N型层的厚度为5~20nm,掺杂浓度大于2×1019cm-3,具有大于隧穿结上下两侧LED带隙的第二带隙。
5.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述P型掺杂隔离层的掺杂浓度为8×1017~5×1018cm-3,并且具有大于第一带隙的第三带隙。
6.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述N型掺杂隔离层的掺杂浓度为8×1017~5×1018cm-3,并且具有大于第二带隙的第四带隙。
7.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述N型掺杂隔离层和P型掺杂隔离层作为高势垒层,阻止所述重掺杂层的杂质扩散和杂质复合。
8.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述金属原子层利用金属自由电子辅助隧穿。
9.根据权利要求1所述的一种用于多结LED的隧穿结,其特征在于:所述金属原子层具有1~2层原子的厚度,其晶格处于应变状态。
10.一种多结LED结构,至少包括第一LED外延结构和第二LED外延结构,其特征在于:在所述第一LED外延结构与第二LED外延结构之间具有权利要求1-9所述的任意一种隧穿结。
11.一种多结LED的制备方法,包括步骤:
形成第一LED器件结构;
在所述第一LED器件结构的上方形成隧穿结,其包含P型掺杂隔离层,重掺杂P型层,金属原子层,重掺杂N型层,N型掺杂隔离层,所述N型掺杂隔离层和P型掺杂隔离层阻止重掺杂层的杂质扩散和杂质复合,所述金属原子层的材料是在MOCVD生长过程中MO源热裂解形成的金属原子;
在所述隧穿结上方形成第二LED器件结构。
CN201710610318.5A 2017-07-25 2017-07-25 一种用于多结led的隧穿结、多结led及其制备方法 Active CN107482091B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710610318.5A CN107482091B (zh) 2017-07-25 2017-07-25 一种用于多结led的隧穿结、多结led及其制备方法
PCT/CN2018/081671 WO2019019691A1 (zh) 2017-07-25 2018-04-03 一种用于多结 led 的隧穿结、多结 led 及其制备方法
US16/711,721 US11011674B2 (en) 2017-07-25 2019-12-12 Multi-layered tunnel junction structure, light emitting device having the same, and production method of such device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710610318.5A CN107482091B (zh) 2017-07-25 2017-07-25 一种用于多结led的隧穿结、多结led及其制备方法

Publications (2)

Publication Number Publication Date
CN107482091A CN107482091A (zh) 2017-12-15
CN107482091B true CN107482091B (zh) 2019-10-22

Family

ID=60596759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710610318.5A Active CN107482091B (zh) 2017-07-25 2017-07-25 一种用于多结led的隧穿结、多结led及其制备方法

Country Status (3)

Country Link
US (1) US11011674B2 (zh)
CN (1) CN107482091B (zh)
WO (1) WO2019019691A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482091B (zh) * 2017-07-25 2019-10-22 天津三安光电有限公司 一种用于多结led的隧穿结、多结led及其制备方法
US11552217B2 (en) 2018-11-12 2023-01-10 Epistar Corporation Semiconductor device
CN111261744A (zh) * 2018-11-30 2020-06-09 东泰高科装备科技有限公司 多结太阳能电池及其制备方法
WO2022099499A1 (zh) * 2020-11-11 2022-05-19 苏州晶湛半导体有限公司 二极管及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079586C (zh) * 1999-01-28 2002-02-20 北京工业大学 高效逐级增强高亮度发光二极管及其设计方法
KR100631898B1 (ko) * 2005-01-19 2006-10-11 삼성전기주식회사 Esd보호 능력을 갖는 질화갈륨계 발광 소자 및 그 제조방법
US7473941B2 (en) 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
US20130270514A1 (en) * 2012-04-16 2013-10-17 Adam William Saxler Low resistance bidirectional junctions in wide bandgap semiconductor materials
CN103579426B (zh) * 2012-07-19 2016-04-27 华夏光股份有限公司 半导体装置
CN103268912B (zh) * 2013-04-23 2017-05-03 沈光地 多有源区高效率光电子器件
CN103715326B (zh) * 2014-01-14 2016-10-26 厦门乾照光电股份有限公司 近红外发光二极管及其制造方法
US20150295114A1 (en) * 2014-04-11 2015-10-15 Sempruis, Inc. Multi-junction power converter with photon recycling
CN105977349B (zh) * 2016-05-17 2018-05-04 东南大学 一种具有p-i-n隧道结的多有源区发光二极管
CN107482091B (zh) * 2017-07-25 2019-10-22 天津三安光电有限公司 一种用于多结led的隧穿结、多结led及其制备方法

Also Published As

Publication number Publication date
US20200119224A1 (en) 2020-04-16
CN107482091A (zh) 2017-12-15
WO2019019691A1 (zh) 2019-01-31
US11011674B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
Zhang et al. III–V nanowires and nanowire optoelectronic devices
CN107482091B (zh) 一种用于多结led的隧穿结、多结led及其制备方法
US20130270514A1 (en) Low resistance bidirectional junctions in wide bandgap semiconductor materials
TWI552371B (zh) A group III-V compound semiconductor light-receiving element, a method for fabricating a III-V compound semiconductor light-receiving element, a light-receiving element, and an epitaxial wafer
CN103326242B (zh) 激光器有源区、半导体激光器及其制作方法
US20110012088A1 (en) Optoelectronic semiconductor body with a tunnel junction and method for producing such a semiconductor body
CN102136536A (zh) 应变平衡发光器件
Cai et al. Investigation of InGaN pin homojunction and heterojunction solar cells
CN106952952B (zh) 一种iii-v cmos型赝配异质结场效应晶体管
US10256366B2 (en) Light-emitting diode and method of fabricating the same
Pandey et al. Recent progress on micro-LEDs
CN109449223A (zh) 铟镓氮铋材料和使用该材料的激光器和探测器及制备方法
Brault et al. UVA and UVB light emitting diodes with AlyGa1− yN quantum dot active regions covering the 305–335 nm range
Lee et al. Stable electrical performance of AlGaInP-based red micro-light emitting diode by controlling interfacial morphologies of metal contacts
CN105870266B (zh) 电子阻挡层结构的生长方法及含此结构的led外延结构
Vaisman et al. Direct-gap 2.1–2.2 eV AlInP solar cells on GaInAs/GaAs metamorphic buffers
CN109950337A (zh) GaInP/GaAs/InGaAs三结薄膜太阳电池
CN105679903B (zh) 一种半极性led外延结构及其制备方法
Li et al. Effect of low-temperature interlayer in active-region upon photoluminescence in multiple-quantum-well InGaN/GaN
JP2013172072A (ja) 2接合太陽電池
Yi et al. InP-based InGaAs/InAlGaAs digital alloy quantum well laser structure at 2 μm
Huang et al. Improvement in modulation bandwidth of micro-LED arrays based on low-temperature-interlayer approach
JP3027116B2 (ja) 太陽電池
Faucher et al. AlGalnP solar cells with high internal quantum efficiency grown by molecular beam epitaxy
Park et al. Synthesis of hybrid nanowires comprising uniaxial and coaxial InGaN/GaN MQWs with a nano-cap

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant