CN107469826A - 合成在高温下进行水煤气变换反应的催化剂的方法 - Google Patents

合成在高温下进行水煤气变换反应的催化剂的方法 Download PDF

Info

Publication number
CN107469826A
CN107469826A CN201710416463.XA CN201710416463A CN107469826A CN 107469826 A CN107469826 A CN 107469826A CN 201710416463 A CN201710416463 A CN 201710416463A CN 107469826 A CN107469826 A CN 107469826A
Authority
CN
China
Prior art keywords
catalyst
precursor
temperature
under
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710416463.XA
Other languages
English (en)
Inventor
R·福尔
G·弗纳萨里
D·加里
C·卢卡雷利
N·斯基亚罗利
A·瓦卡里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Universita di Bologna
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN107469826A publication Critical patent/CN107469826A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dispersion Chemistry (AREA)

Abstract

使用具有以下通式的前体合成在大于300℃的温度下进行水煤气变换反应的催化剂的方法:其中:M=Al、La、Ga或In;A=CO3;0.33<x<0.5;1<n<3。[(Cu,Zn)1‑x(Al,M)x(OH)2]X+(An‑ x/n)·kH2O。

Description

合成在高温下进行水煤气变换反应的催化剂的方法
技术领域
本发明涉及合成在大于300℃的温度下进行水煤气变换反应(对应于高温(HTS))的催化剂的方法。
背景技术
市售HTS催化剂目前多数由Fe和Cr氧化物制成。如果装置以低蒸汽负载进行的话,由于Fe氧化物还原成金属Fe在这些条件下催化烃和焦炭形成,装置操作问题会由催化剂减活产生。此外,Cr的使用目前与安全的装置操作矛盾,因为Cr(VI)对地面、装置、动物和人类是有害的。
水煤气变换(WGS)反应在蒸汽重整(SR)装置中起关键作用,提高H2产量并降低出口料流中的CO含量。WGS反应多数时间以两个连续步骤进行:高温水煤气变换(HTS)和低温水煤气变换(LTS)。高温步骤通常在高于350℃的温度下在铁和铬氧化物基催化剂上进行,而第二步骤在较低温度(200℃)下使用Cu基催化剂进行。
使用HTS技术的主要优点是:
-最低的副产物(如低分子量醇)产量,其获益于降低温度和提高Cu含量
-最低的蒸汽产量,当蒸汽不通过装置蒸发或者不能很好地蒸发时为强优点
-能够接受较高的CO含量,所得放热效应不是问题,因为催化剂对抗烧结更力
-对抗中毒,更有力。
存在于第一反应器中的催化剂对操作条件而言是敏感的。工艺气体中的低蒸汽含量可通过铁碳化物或金属铁的形成而不可逆地损害Fe基催化剂,因此改变催化剂的选择性并提高产物气体中的烃含量。另外,含铬催化剂对健康和环境有害,且其制备和使用目前遭受严格规定。
已经尝试从HTS催化剂中除去铬。然而,这类催化剂仍遭遇氧化铁的还原,因此可能在工艺气体的低水含量下减活。
所以,问题是提供改进的催化剂。
发明内容
一种技术方案是使用具有以下通式的前体合成在大于…的温度下进行水煤气变换反应的催化剂的方法:
[(Cu,Zn)1-x(Al,M)x(OH)2]x+(An- x/n)·kH2O
其中:
-M=Al、La、Ga或In,
-A=CO3
-0.33<x<0.50,
-1<n<3。
该前体为HT前体(HT:水滑石状化合物)。
取决于情况,根据本发明的吸附剂混合物可具有一个或多个以下特性:
-方法包括以下步骤:
a)通过共沉淀方法合成前体,
b)洗涤前体,
c)将前体在60℃至80℃的温度下干燥,
d)在大于500℃的温度下煅烧。
-步骤d)持续2小时至6小时,温度上升速度为5℃/min至10℃/min。
-在步骤b)中,将前体用25℃至60℃的温度的去离子水洗涤。
-前体的合成包括以下步骤:
i)制备铜、锌和铝盐水溶液,
ii)通过保持pH为9.0±0.1而将水溶液滴入包含碳酸氢钠的溶液中以得到沉淀物,
iii)将该沉淀物老化。
-前体具有0.5-5重量%铜,且催化剂具有0.5-5重量%铜。
-在步骤d)以后,将催化剂用0.5-2重量%K掺杂。
-前体包含Ga,其中Al/Ga比为0/1-100/1。
-前体选自:
-[Cu0.042Zn0.458Al0.500(OH)2]0.50+(CO3 2-)0.25kH2O,
-[Cu0.042Zn0.458Al0.490La0.010(OH)2]0.50+(CO3 2-)0.25kH2O,
-[Cu0.042Zn0.458Al0.490Ga0.010(OH)2]0.50+(CO3 2-)0.25kH2O,
-[Cu0.042Zn0.458Al0.490In0.010(OH)2]0.50+(CO3 2-)0.25kH2O,
-[Cu0.023Zn0.643Al0.334(OH)2]0.34+(CO3 2-)0.17kH2O,
-[Cu0.023Zn0.643Al0.327La0.007(OH)2]0.34+(CO3 2-)0.17kH2O,et
-[Cu0.022Zn0.645Al0.327Ga0.007(OH)2]0.34+(CO3 2-)0.17kH2O
-催化剂具有通式:
(Cu,Zn)1-x(Al,M)xOx
通过本发明方法得到的催化剂优选用于以0.1-0.9的蒸汽/干气体比将CO从合成气体混合物中转化。
本发明涉及获得通过特殊混合氧化物还原而得到的含Cu催化剂的高活性、选择性和稳定性的可能性,其中Cu2+离子在将前体煅烧以后嵌入。夹层中含有碳酸盐的层状HT阴离子粘土作为前体用于得到新催化剂,由于存在良好分散于前体的水镁石型层内部的所有活性元素,其具有非常好的性能。通过受控煅烧,HT相形成具有直接影响催化活性的因素(热稳定性、表面积和活性相分散)的混合氧化物。HT前体通过所有元素共沉淀以得到均匀的沉淀物而制备。
该研究涉及不仅在HTS条件下显示出良好的物理化学性能,而且在WGS反应中充当活性相的稳定配制剂。
本发明描述了通过将HT前体煅烧而得到的催化剂,其具有低Cu含量(≤5重量%),证明Cu2+离子(以及在还原以后,Cu0颗粒)包含在稳定的基体中,容许将含Cu的物种稳定化,因此避免副反应(甲烷化和/或氧合物合成)和烧结引起的减活。另一改进是通过保持制备方法和前体性质而在配制中引入非常少量的添加剂(M=Ga、In或La),从而容许随着运行(Time-on-stream)改进活性和催化剂稳定性。最后,本发明还包括通过初始润湿浸渍将煅烧试样用少量K(≤2重量%)掺杂。
具有以下通式的本发明HT前体通过共沉淀方法合成:
[(Cu,Zn)1-x(Al,M)x(OH)2]x+(An- x/n)·kH2O
其中:
-M=Al、La、Ga或In,
-A=CO3
-0.33<x<0.5,
-1<n<3。
HT前体具有1-3的1-x/x原子比、0-100的Al/M原子比,以及优选0.5-5重量%铜。催化剂可直接使用或者通过初始润湿浸渍用K盐溶液掺杂至≤2.0重量%,优选≤1.0重量%的K最终含量。以下实施例描述本发明中所用的催化剂,其仅具有说明性,而不是详尽特征。
附图说明
图1显示一些前体(ZAC041cGa50、ZAC041cIn50和ZAC022cGa50)的XRD(X射线衍射)粉末图。
图2显示含有碳酸盐的HT结构形态上通过煅烧发展,且XRD图显示ZnO类和(Zn,Cu)Al2O4相,具有较高M(II)/M(III)或1-x/x原子比的试样中具有较高的ZnO峰强度。
图3显示在催化试验以后XRD图。
图4阐述ZAC041cM50催化剂[M(II)/M(III)=1原子比;Al/M=50原子比;M=Al、In或Ga]的活性对比。
图5阐述市售类催化剂和ZAC041cGa50催化剂[作为原子比,M(II)/M(III)=1;作为原子比,Al/Ga=50]的活性对比。
图6阐述ZAC022cM50未掺杂和K掺杂催化剂[作为原子比,M(II)/M(III)=2;作为原子比,Al/M=50;M=Al或Ga]的活性对比。
图7阐述ZAC041c催化剂[作为原子比,M(II)/M(III)=1]在不同温度下的活性对比。
图8阐述K掺杂的ZAC041cGa50-1K催化剂[作为原子比,M(II)/M(III)=1;作为原子比,Al/Ga=50]在不同温度下的活性对比。
图9阐述ZAC041cGa50-1K催化剂[作为原子比,M(II)/M(III)=1;Al/Ga=50]在不同温度下的活性和S/DG体积比的对比。
图10显示催化剂的稳定性相对于ToS(运行时间)。
具体实施方式
实施例1:催化剂ZAC041c的制备
该对比例阐述20g的含有4重量%铜且具有原子比(Cu+Zn)/Al=1的催化剂的制备方法,其中使用碳酸盐作为水滑石型前体中的嵌入阴离子。铜、锌和铝盐2M水溶液由2.988g98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、42.097g 98%硝酸锌六水合物[Zn(NO3)2,6H2O]和57.902g 98%硝酸铝九水合物[Al(NO3)2,9H2O]在151.26cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在约302.53cm3去离子水中包含25.492g99.70%碳酸氢钠(NaHCO3)的1摩尔浓度(1M)溶液中,同时通过逐滴加入3M氢氧化钠(NaOH)水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.042Zn0.458Al0.500(OH)2]0.50+(CO3 2-)0.25kH2O,
然后将该所得固体用热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例2:催化剂ZAC041cLa50的制备
制备方法如同实施例1中作用,不同的是在配制中以等于50的Al3+/La3+摩尔比加入La3+离子。金属盐2M水溶液由2.988g 98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、41.348g98%硝酸锌六水合物[Zn(NO3)2,6H2O]、55.841g 98%硝酸铝九水合物[Al(NO3)2,9H2O]和0.948g99.99%硝酸镧水合物[La(NO3)3H2O]在151.26cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在约297.60cm3去离子水中包含25.076g 99.70%碳酸氢钠(NaHCO3)的1M溶液中,同时通过逐滴加入3M氢氧化钠(NaOH)水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.042Zn0.458Al0.490La0.010(OH)2]0.50+(CO3 2-)0.25kH2O,
然后将该所得固体用丰富的热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例3:催化剂ZAC041cGa50的制备
制备方法如同实施例2中作用,不同的是在配制中加入Ga3+而不是La3+离子。同时保持等于50的Al3+/Ga3+摩尔比。铜、锌、铝和镓盐2M水溶液由2.988g 98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、39.915g 98%硝酸锌六水合物[Zn(NO3)2,6H2O]、54.070g 98%硝酸铝九水合物[Al(NO3)2,9H2O]和0.919g 99.9%硝酸镓四水合物[Ga(NO3)3 4H2O]在144.08cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在约288.16cm3去离子水中包含24.281g 99.70%碳酸氢钠(NaHCO3)的1M溶液中,同时通过逐滴加入3M氢氧化钠(NaOH)水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.042Zn0.458Al0.490Ga0.010(OH)2]0.50+(CO3 2-)0.25kH2O
然后将该所得固体用丰富的热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例4:催化剂ZAC041cIn50的制备
遵循实施例2的方法,不同的是在金属盐溶液中将La3+用In3+离子代替。铜、锌、铝和铟盐2M水溶液由2.988g 98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、41.493g 98%硝酸锌六水合物[Zn(NO3)2,6H2O]、56.020g 98%硝酸铝九水合物[Al(NO3)2,9H2O]和1.142g99.99%硝酸铟五水合物[In(NO3)3 5H2O]在149.27cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在约298.55cm3去离子水中包含25.157g99.70%碳酸氢钠(NaHCO3)的1M溶液中,同时通过逐滴加入3M NaOH水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.042Zn0.458Al0.490In0.010(OH)2]0.50+(CO3 2-)0.25kH2O
然后将该所得固体用丰富的热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例5:催化剂ZAC041cLa50 1K的制备
制备方法如同实施例2中作用;然而,在马弗炉中在550℃(10℃/分钟)下煅烧6小时以后,使用碳酸钾(K2CO3)溶液将催化剂粉末用1重量%K掺杂。钾溶液由0.35g K2CO3在27cm3去离子水中制备。然后通过初始润湿浸渍方法将煅烧试样用该溶液浸渍,再次在120℃下干燥2小时,在马弗炉中在550℃(10℃/分钟)下煅烧2小时,然后成型并以30-40目的尺寸筛分。
实施例6:催化剂ZAC041cGa50 1K的制备
制备方法如同实施例3中作用;然而,在马弗炉中在550℃(10℃/分钟)下煅烧6小时以后,使用碳酸钾(K2CO3)溶液将催化剂粉末用1重量%K掺杂。钾溶液由0.35g K2CO3在27cm3去离子水中制备。然后通过初始润湿浸渍方法将煅烧试样用该溶液浸渍,再次在120℃下干燥2小时,在马弗炉中在550℃(10℃/分钟)下煅烧2小时,然后成型并以30-40目的尺寸筛分。
实施例7:催化剂ZAC022c的制备
制备方法如同实施例1中作用,不同的是Cu含量为2重量%且金属(II)/金属(III)摩尔比为2。铜、锌和铝盐2M水溶液由1.494g 98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、54.926g 98%硝酸锌六水合物[Zn(NO3)2,6H2O]和35.835g 98%硝酸铝九水合物[Al(NO3)2,9H2O]在约140.42cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在187.23cm3去离子水中包含15.777g 99.70%碳酸氢钠(NaHCO3)的1M溶液中,同时通过逐滴加入3M氢氧化钠(NaOH)水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.023Zn0.643Al0.334(OH)2]0.34+(CO3 2-)0.17kH2O,
然后将该所得固体用丰富的热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例8:催化剂ZAC022c 0.5K的制备
制备方法如同实施例7中作用;然而,在马弗炉中在550℃(10℃/分钟)下煅烧6小时以后,使用碳酸钾(K2CO3)溶液将催化剂粉末用0.5重量%K掺杂。钾溶液由0.352g K2CO3在25cm3去离子水中制备。然后通过初始润湿浸渍方法将煅烧试样用该溶液浸渍,再次在120℃下干燥2小时,在马弗炉中在550℃(10℃/分钟)下煅烧2小时,然后成型并以30-40目的尺寸筛分。
实施例9:催化剂ZAC022cLa50的制备
制备方法如同实施例7中作用,不同的是在配制中以等于50的Al3+/La3+摩尔比加入La3+离子。金属盐2M水溶液由1.494g 98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、54.348g98%硝酸锌六水合物[Zn(NO3)2,6H2O]、34.775g 98%硝酸铝九水合物[Al(NO3)2,9H2O]和0.590g99.99%硝酸镧水合物[La(NO3)3H2O]在139.00cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在约185.33cm3去离子水中包含15.616g 99.70%碳酸氢钠(NaHCO3)的1摩尔浓度(1M)溶液中,同时通过逐滴加入3M氢氧化钠(NaOH)水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.023Zn0.643Al0.327La0.007(OH)2]0.34+(CO3 2-)0.17kH2O,
然后将该所得固体用丰富的热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例10:催化剂ZAC022cGa50的制备
制备方法如同实施例9中作用,不同的是在配制中加入Ga3+而不是La3+离子,同时保持等于50的Al3+/Ga3+摩尔比。铜、锌、铝和镓盐2M水溶液由1.494g 98%硝酸铜半五水合物[Cu(NO3)2,2.5H2O]、34.995g 98%硝酸锌六水合物[Zn(NO3)2,6H2O]、54.704g 98%硝酸铝九水合物[Al(NO3)2,9H2O]和0.600g 99.9%硝酸镓四水合物[Ga(NO3)3 4H2O]在139.88cm3去离子水中制备。然后将该溶液在60℃下在高能磁力搅拌下逐滴倒入在约186.50cm3去离子水中包含15.715g 99.70%碳酸氢钠(NaHCO3)的1M溶液中,同时通过逐滴加入3M氢氧化钠(NaOH)水溶液而将pH保持在9.0±0.1。将所得沉淀物在相同条件下(在60℃和pH=9.0下)在高能磁力搅拌下良好地分散老化45分钟。然后通过用Buchner漏斗过滤而将固体沉淀物与母液分离,其中真空由venture吸水设备提供。
所得固体对应于下式的HT化合物:
[Cu0.022Zn0.645Al0.327Ga0.007(OH)2]0.34+(CO3 2-)0.17kH2O
然后将该所得固体用丰富的热去离子水(60℃,400cm3/g试样)洗涤,并在70℃下干燥整夜。在将所得前体研磨以后,将粉末在马弗炉中在550℃下(10℃/分钟)煅烧6小时,然后成型并以30-40目的尺寸筛分。
实施例11:催化剂ZAC022cGa50 1K的制备
制备方法如同实施例10中作用;然而,在马弗炉中在550℃(10℃/分钟)下煅烧6小时以后,使用碳酸钾(K2CO3)溶液将催化剂粉末用1重量%K掺杂。钾溶液由0.35g K2CO3在27cm3去离子水中制备。然后通过初始润湿浸渍方法将煅烧试样用该溶液浸渍,再次在120℃下干燥2小时,在马弗炉中在550℃(10℃/分钟)下煅烧2小时,然后成型并以30-40目的尺寸筛分。
对比例12:市售类HTS催化剂(commercial-like HTS catalyst)
对比例为最佳化以在高温下进行水煤气变换反应的市售类HTS催化剂,其如文件US 7 998 897所述制备且具有以下重量%组成:Zn=42;Al=21;Cu=4;K=2。
分析这些催化剂。
图1显示一些前体(ZAC041cGa50、ZAC041cIn50和ZAC022cGa50)的XRD(X射线衍射)粉末图。沉淀期间碳酸根离子的存在导致与非常少量的Zn(OH)2一起形成HT结构,如XRD分析所确定的。
如图2所示,含有碳酸盐的HT结构形态上通过煅烧发展,且XRD图显示ZnO类和(Zn,Cu)Al2O4相,具有较高M(Ⅱ)/M(III)或1-x/x原子比的试样中具有较高的ZnO峰强度。M(Ⅱ)/M(III)为水滑石类前体内部二价与三价阳离子之间的原子比(显然GA部分地代替Al)。文献中主张该比率以得到5至.1的水滑石型相,但末端值还非常可能形成无定形相。更实际地,该比为3至2。
在催化试验以后(图3),XRD图显示存在与试验以前相同的相,尽管更加结晶。仅在非常少数试样中检测到痕量Cu0,符合低Cu含量且其良好地分散于氧化物基体中。
化学物理性能的汇总报告于表1中。通过加入非常少量的促进剂(La、Ga或In)观察到BET表面积和Cu0表面积(MSA)以及Cu分散(D%)明显提高,证明这些元素对所得催化剂的化学物理性能的积极影响。相反,K掺杂通常降低所有这些参数。
表1
样品 SBET[m2/g] MSA[m2/gCAT] D[%]
ZAC041c ZnO,尖晶石 73 1 4
ZAC041cLa50 ZnO,尖晶石 87 4 13
ZAC041cln50 ZnO,尖晶石 103 6 22
ZAC041cGa50 ZnO,尖晶石 97 5 20
ZAC041cLa50_1K ZnO,尖晶石 85 4 13
ZAC041cGa50-1K ZnO,尖晶石 87 5 20
ZAC022c_1K ZnO,尖晶石 40 1 9
ZAC022cLa50 ZnO,尖晶石 97 2 20
ZAC022cGa50 ZnO,尖晶石 106 2 17
ZAC022cGa50_1K ZnO,尖晶石 95 1 9
MSA和D%值通过N2O滴定法评估。将试样(100mg)载入小反应器中,并在40-350℃(10℃/分钟)下通过80mL/min的5体积%H2/N2混合物流预还原并在该温度下保持60分钟。在将催化剂床在He料流下冲洗20分钟以除去所有H2以后,将反应器冷却至40℃,并连续地通过6口阀将N2O(250μL)脉冲引入He载体料流中以将Cu0表面选择性氧化:
2Cu+N2O→N2+Cu2O
在各个脉冲以后,通过使用GS-Carbon Plot柱将N2和N2O分离,并进行滴定直至没有观察到另外的N2O转化。使用导热率检测器(TCD)以测量借助N2O分解放出的流出物气体。Cu0的比表面积由N2O消耗总量计算,假定1.46×1019Cu0原子/m2的铜密度和Cu/N2O=2的摩尔化学计量。
在HTS条件下的催化试验以前,将煅烧以后的HT前体还原以得到主要活性相。典型的程序包括:
-1)通过将氮气(N2)在反应器中吹扫而除去氧气(O2),其后将催化剂加热至275℃(50℃/小时),并在1.0MPa(10巴)下将反应器加压。
-2)在1.0MPa(10巴)下引入工艺气体(蒸汽+干气体),然后以30℃/小时跃升至350℃,其中考虑其它试验的高温反应条件下的流速。
-3)在350℃下将压力提高至试验值。
试验以前经煅烧催化剂的H2-TPR(TPR=用氢气的程序升温还原)特征显示两个还原峰值,最强烈的一个在约340℃,是通过与支撑体的强相互作用稳定化的Cu2+物种还原的特征,小的峰值在约550℃,可归因于含Cu尖晶石型相。少量促进剂(La、Ga或In)的添加使第一还原峰最大值降低约20℃,而在较高温度下保持不变。在催化试验以后,第一最强烈峰值以复杂形状降至约200℃,证明形成具有不同晶体大小的游离CuO。类ZnO相在实验条件下不还原。
本发明的催化剂与参比催化剂一起作为具有30-40目的尺寸的团粒成型,并在活塞流反应器中测试。通过炉将管式反应器加热以具有在接近催化床出口处测量为350-450℃(±1℃)的温度,并加压至15巴。在通过催化剂以前,将干气体(DG)和蒸汽(S)预热(215℃)并混合(质量流控制器)。为测定通过各个实施例制备的催化剂在HTS方法中的活性,使用包含18.8体积%CO、4.6体积%CO2、4.6体积%CH4与余量H2的典型DG组合物并以0.55和0.25v/v的蒸汽:干气体(S/DG)比通过预还原的催化剂。借助向已知组成的气体混合物校准的Agilent气相色谱定期测量入口和出口干气体中所有组分的浓度。气时空速(GHSV)为3600-14400h-1
表2和表3汇总了关于本发明主张的一些催化剂得到的催化结果,其仅作为说明性而不是详尽性实例:作为不同参数的函数,更具体的对比阐述于图4-9中。
表2:关于CO转化率和H2收率的催化结果汇总
表3:关于CO2选择性和形成的副产物MeOH的量的催化结果汇总
催化剂 T(℃) 350 350 350 400 400 450 450
S/DG(v/v) 0.55 0.55 0.55 0.55 0.55 0.55 0.55
接触时间(s) 0.25 0.50 1.00 0.50 1.00 0.50 1.00
ZAC041c CO2选择性(%) 98 100 96 97 97 100 98
MeOH(ppm) 14 69 93 50 57 26 19
ZAC041cLa50 CO2选择性(%) 96 96 98 100 98 97 98
MeOH(ppm) 123 172 248 135 131 48 31
ZAC041cln50 CO2选择性(%) 98 100 98 99 98 100 99
MeOH(ppm) 45 167 209 183 173 193 84
ZAC041cGa50 CO2选择性(%) 96 96 90 95 97 98 99
MeOH(ppm) 332 455 526 232 203 80 68
ZAC041cLa501K CO2选择性(%) 96 96 98 100 98 97 98
MeOH(ppm) 106 263 372 235 171 118 40
ZAC041cGa501K CO2选择性(%) 99 100 96 99 100 100 100
MeOH(ppm) 494 649 692 269 162 104 67
ZAC022c1K CO2选择性(%) 100 99 100 99 99 90 86
MeOH(ppm) 43 57 21 52 68 32 21
ZAC022cGa50 CO2选择性(%) 100 100 95 100 97 100 100
MeOH(ppm) 74 115 148 60 50 27 20
ZAC022cGa501K CO2选择性(%) 100 97 97 / / / /
MeOH(ppm) 80 164 263 / / / /
表2显示催化剂通常显示良好的催化活性,对于具有较低M(II)/M(II)或1-x/x原子比的试样,观察到明显更好的结果。在400和500℃下,几乎所有催化剂都达到热力学平衡值而不管接触时间值。少量Al被In替代(作为原子比,Al/In=50)恶化了催化活性,不同于加入少量La(以及令人惊讶地,Ga)所观察到的。作为掺杂或K掺杂的,该后者催化剂显示出非常好的催化性能,对于研究的最低温度,即在中等温度下操作,也达到热力学平衡值。不管组成,所有催化剂都显示出仅进一步形成少量甲醇(表3)而不具有任何其它副产物,符合在所有反应条件下检测到的高CO2选择性值。更详细地对比报告于图4-9中。
图4阐述ZAC041cM50催化剂[M(II)/M(III)=1原子比;Al/M=50原子比;M=Al、In或Ga]的活性对比。
图5阐述市售类催化剂和ZAC041cGa50催化剂[作为原子比,M(II)/M(III)=1;作为原子比,Al/Ga=50]的活性对比。
图6阐述ZAC022cM50未掺杂和K掺杂催化剂[作为原子比,M(II)/M(III)=2;作为原子比,Al/M=50;M=Al或Ga]的活性对比。
图7阐述ZAC041c催化剂[作为原子比,M(II)/M(III)=1]在不同温度下的活性对比。
图8阐述K掺杂的ZAC041cGa50-1K催化剂[作为原子比,M(II)/M(III)=1;作为原子比,Al/Ga=50]在不同温度下的活性对比。
图9阐述ZAC041cGa50-1K催化剂[作为原子比,M(II)/M(III)=1;Al/Ga=50]在不同温度下的活性和S/DG体积比的对比。
特别是,图9显示Ga促进的催化剂也在严苛反应条件下,例如以明显高于工业装置中所用那些的S/DG比操作,非常好的活性和稳定性。另一方面,低S/DG值提供非常有意义的经济优点,容许改进生产率、降低成本和反应器尺寸。然而,为得到关于最广泛应用的稳定性的数据,还在实验室规模中试装置中研究ZAC041cGa-1K的长运行时间活性。
ZAC041cGa50-1K催化剂的稳定性借助对相同组的操作条件而言在大于300小时期间进行的长持续时间试验评估。在载入反应器中以后,将催化剂(9g,30/40目)在320℃下在2小时期间通过使用在蒸汽中以蒸汽/碳比=10稀释的合成气混合物而活化,然后遵循最高达400℃的跃升3小时提高温度。
之后,在15巴的压力下减少蒸汽的注射以实现比蒸汽/干气体(S/DG)=0.55。入口温度目标在390℃,且接触时间值接近2秒。DG组成为H2/CO/CO2/CH4=0.75/0.168/0.041/0.041摩尔%。
在长试验期间,监控温度(入口/出口),并且借助IR检测器连续分析离开反应器的所得干气体(CO、CO2、CH4)。在反应器的出口处,湿气体通过冷却器骤冷,然后在越过分离罐以后,在罐的顶部回收干气体,并在底部收集冷凝物。
在300小时试验期间,气体的温度和组成保持稳定。CO减退(CO slip)符合CH4含量保持稳定的平衡预测。在气相中没有检测到副产物且仅检测到存在于冷凝物中的一些痕量MeOH,并且再次符合平衡。
图10显示催化剂的稳定性vs.ToS(运行时间(Time on stream))。
基于这些结果和测量的不确定性,我们可认为该新催化剂以平衡执行而不具有异常的副产物生产。
尽管文献中所述在HTS条件下操作的多数催化剂由铁和铬制成,本发明催化剂具有接近热力学平衡的在HTS条件(350-450℃)下操作的高活性与运行期间非常好的稳定性,而不具有铁且不具有铬。
与主张ZnAl基材料用于HTS应用的其它专利相反,本发明催化剂还包含少量铜,其能赋予反应快速起动性能和也在低于350℃的温度下的活性。
少量La或者主要Ga的添加显著提高催化活性和稳定性。考虑用铟观察到的恶化,Ga的行为是非常惊讶的,因为Al、Ga和In为元素周期表第III族的所有元素。
由小百分数的钾掺杂进一步改进Ga促进的催化剂也在低温下的性能。
此外,还在低接触时间和S/DG值下,即在高工业兴趣的条件下操作,观察到高活性和选择性值。

Claims (11)

1.使用具有以下通式的前体合成在大于300℃的温度下进行水煤气变换反应的催化剂的方法:
[(Cu,Zn)1-x(Al,M)x(OH)2]x+(An- x/n)·kH2O
其中:
-M=Al、La、Ga或In,
-A=CO3
-0.33<x<0.5,
-1<n<3。
2.根据权利要求1的方法,其特征在于方法包括以下步骤:
a)通过共沉淀方法合成前体,
b)洗涤前体,
c)将前体在60℃至80℃的温度下干燥,
d)在大于500℃的温度下煅烧。
3.根据权利要求2的方法,其特征在于步骤d)持续2小时至6小时,温度上升速度为5℃/min至10℃/min。
4.根据权利要求2或3的方法,其特征在于在步骤b)中,将前体用25℃至60℃的温度的去离子水洗涤。
5.根据权利要求2-4中任一项的方法,其特征在于前体的合成包括以下步骤:
i)制备铜、锌和铝盐水溶液,
ii)通过保持pH为9.0±0.1而将水溶液滴入包含碳酸氢钠的溶液中以得到沉淀物,
iii)将该沉淀物老化。
6.根据权利要求1-4中任一项的方法,其特征在于前体具有0.5至5重量%铜,且催化剂具有0.5至5重量%铜。
7.根据权利要求1-6中任一项的方法,其特征在于在步骤d)以后,将催化剂用0.5至2重量%K掺杂。
8.根据权利要求1-7中任一项的方法,其特征在于前体包含Ga,其中Al/Ga比为0/1至100/1。
9.根据权利要求1-8中任一项的方法,其特征在于前体选自:
-[Cu0.042Zn0.458Al0.500(OH)2]0.50+(CO3 2-)0.25k H2O,
-[Cu0.042Zn0.458Al0.490La0.010(OH)2]0.50+(CO3 2-)0.25k H2O,
-[Cu0.042Zn0.458Al0.490Ga0.010(OH)2]0.50+(CO3 2-)0.25k H2O,
-[Cu0.042Zn0.458Al0.490In0.010(OH)2]0.50+(CO3 2-)0.25k H2O,
-[Cu0.023Zn0.643Al0.334(OH)2]0.34+(CO3 2-)0.17k H2O,
-[Cu0.023Zn0.643Al0.327La0.007(OH)2]0.34+(CO3 2-)0.17k H2O,et
-[Cu0.022Zn0.645Al0.327Ga0.007(OH)2]0.34+(CO3 2-)0.17k H2O。
10.根据权利要求1-7中任一项的方法,其特征在于催化剂具有通式:
(Cu,Zn)1-x(Al,M)xOx
11.通过根据权利要求1-10中任一项的方法得到的催化剂用于以0.1至0.9的蒸汽/干气体比将CO从合成气体混合物中转化的用途。
CN201710416463.XA 2016-06-07 2017-06-06 合成在高温下进行水煤气变换反应的催化剂的方法 Pending CN107469826A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16305660.9A EP3254760A1 (en) 2016-06-07 2016-06-07 Process to synthesize a catalyst performing water-gas shift reaction at a high temperature
EP16305660.9 2016-06-07

Publications (1)

Publication Number Publication Date
CN107469826A true CN107469826A (zh) 2017-12-15

Family

ID=56137255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710416463.XA Pending CN107469826A (zh) 2016-06-07 2017-06-06 合成在高温下进行水煤气变换反应的催化剂的方法

Country Status (7)

Country Link
US (1) US10464049B2 (zh)
EP (1) EP3254760A1 (zh)
KR (1) KR20170138354A (zh)
CN (1) CN107469826A (zh)
AR (1) AR110608A1 (zh)
BR (1) BR102017011995A2 (zh)
CA (1) CA2968578A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046316B2 (en) * 2015-02-05 2018-08-14 Tosoh Corporation Zeolite
US20230398518A1 (en) * 2022-06-09 2023-12-14 Clariant International Ltd Water-gas shift reaction catalysts
US20230398521A1 (en) * 2022-06-09 2023-12-14 Clariant International Ltd Water-gas shift reaction catalysts
US20230398520A1 (en) * 2022-06-09 2023-12-14 Clariant International Ltd High temperature methanol steam reforming catalyst
CN116371417B (zh) * 2023-03-06 2023-10-03 济南悟通生物科技有限公司 一种用于合成3,4-二甲基吡咯的催化剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835132A (en) * 1986-01-29 1989-05-30 Dyson Refractories Limited Catalyst and method of making a precursor for the catalyst
US6693057B1 (en) * 2002-03-22 2004-02-17 Sud-Chemie Inc. Water gas shift catalyst
CN101495226A (zh) * 2006-07-26 2009-07-29 巴斯夫欧洲公司 用于低温转化的催化剂和将一氧化碳和水低温转化为二氧化碳和氢的方法
US20100112397A1 (en) * 2007-04-10 2010-05-06 Idemitsu Kosan Co., Ltd Catalyst precursor substance, and catalyst using the same
CN103212452A (zh) * 2013-03-05 2013-07-24 神华集团有限责任公司 减少沉淀金属催化剂前体沉淀物洗涤损失的方法以及由此制备沉淀金属催化剂的方法
CN104080528A (zh) * 2011-12-02 2014-10-01 乔治洛德方法研究和开发液化空气有限公司 在中等温度下操作的水煤气变换催化剂及其制备方法
KR20160061480A (ko) * 2014-11-21 2016-06-01 한국에너지기술연구원 메탄올 합성용 촉매, 이의 제조방법 및 이의 용도

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141118B1 (en) 2008-07-03 2013-08-07 Haldor Topsoe A/S Chromium-free water gas shift catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835132A (en) * 1986-01-29 1989-05-30 Dyson Refractories Limited Catalyst and method of making a precursor for the catalyst
US6693057B1 (en) * 2002-03-22 2004-02-17 Sud-Chemie Inc. Water gas shift catalyst
CN101495226A (zh) * 2006-07-26 2009-07-29 巴斯夫欧洲公司 用于低温转化的催化剂和将一氧化碳和水低温转化为二氧化碳和氢的方法
US20100112397A1 (en) * 2007-04-10 2010-05-06 Idemitsu Kosan Co., Ltd Catalyst precursor substance, and catalyst using the same
CN104080528A (zh) * 2011-12-02 2014-10-01 乔治洛德方法研究和开发液化空气有限公司 在中等温度下操作的水煤气变换催化剂及其制备方法
CN103212452A (zh) * 2013-03-05 2013-07-24 神华集团有限责任公司 减少沉淀金属催化剂前体沉淀物洗涤损失的方法以及由此制备沉淀金属催化剂的方法
KR20160061480A (ko) * 2014-11-21 2016-06-01 한국에너지기술연구원 메탄올 합성용 촉매, 이의 제조방법 및 이의 용도

Also Published As

Publication number Publication date
CA2968578A1 (en) 2017-12-07
US10464049B2 (en) 2019-11-05
EP3254760A1 (en) 2017-12-13
AR110608A1 (es) 2019-04-17
US20170348675A1 (en) 2017-12-07
KR20170138354A (ko) 2017-12-15
BR102017011995A2 (pt) 2019-04-16

Similar Documents

Publication Publication Date Title
CN107469826A (zh) 合成在高温下进行水煤气变换反应的催化剂的方法
Valderrama et al. LaNi1-xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane
Ladera et al. Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts
Wu et al. Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants
CN101618318B (zh) 无铬水煤气变换催化剂
TWI433723B (zh) Catalyst precursors and catalysts using them
Chihaia et al. Ni–Al layered double hydroxides as catalyst precursors for CO 2 removal by methanation
US7964114B2 (en) Iron-based water gas shift catalyst
Zwiener et al. Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis
CN104080528A (zh) 在中等温度下操作的水煤气变换催化剂及其制备方法
US20140308597A1 (en) Steam Reforming Of Methanol
US20150018439A1 (en) Treating of catalyst carrier, fischer-tropsch catalysts and method of preparation thereof
Ivanova et al. Effect of the composition of Ni x Co 3–x O 4 (x= 0–0.9) oxides on their catalytic activity in the low-temperature reaction of N 2 O decomposition
US3546140A (en) Low temperature shift reactions
KR102023267B1 (ko) 알칼리금속 또는 알칼리토금속이 조촉매로 첨가된 수성 가스 전이 반응용 코발트계 촉매의 제조방법
Yeragi et al. Low-temperature water-gas shift reaction over Mn-promoted Cu/Al 2 O 3 catalysts
KR20200043607A (ko) 일단 수성가스 전이 반응을 위한 촉매의 제조 방법
WO2018141648A1 (de) Eisendotierte nickel-methanisierungskatalysatoren
Il’in et al. Mechanochemical synthesis of calcium and copper ferrite catalysts for medium-temperature carbon monoxide conversion
Zhang et al. Controlling the metal-support interaction of Cu/ZnO sorbent to improve its ultra-deep desulfurization performance for thiophene in coke oven gas
Costantino et al. Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol
JP4202087B2 (ja) ジメチルエーテル改質用触媒および該触媒を用いた水素含有ガスの製造方法
Gerzeliev et al. Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 2. Synthesis of solid contacts and syngas production in a pilot plant with a riser reactor
Gabrovska et al. Structure and reducibility of the mixed metal oxides obtained from Ni-Al layered double hydroxides. Catalytic activity in CO2 methanation reaction
Usmanova et al. Obtaining of nanocatalizers for low-temperature conversion of oxide carbon (CuO/ZnO/Al 2 O 3) with reduced copper content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180907

Address after: Paris, FRA

Applicant after: Liquid Air Georges Letude Method Use and Study Co., Ltd.

Applicant after: Univ Bologna Alma Mater

Address before: Paris, FRA

Applicant before: Liquid Air Georges Letude Method Use and Study Co., Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171215