CN107462452B - 一种测定鳞片石墨矿粒度分布特性的方法 - Google Patents

一种测定鳞片石墨矿粒度分布特性的方法 Download PDF

Info

Publication number
CN107462452B
CN107462452B CN201710872358.7A CN201710872358A CN107462452B CN 107462452 B CN107462452 B CN 107462452B CN 201710872358 A CN201710872358 A CN 201710872358A CN 107462452 B CN107462452 B CN 107462452B
Authority
CN
China
Prior art keywords
graphite
acid
ore
graphite ore
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710872358.7A
Other languages
English (en)
Other versions
CN107462452A (zh
Inventor
岑对对
张韬
于阳辉
程飞飞
杨启帆
刘克起
贺洋
安卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd
Original Assignee
Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd filed Critical Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd
Priority to CN201710872358.7A priority Critical patent/CN107462452B/zh
Publication of CN107462452A publication Critical patent/CN107462452A/zh
Application granted granted Critical
Publication of CN107462452B publication Critical patent/CN107462452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0272Investigating particle size or size distribution with screening; with classification by filtering

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明提供了一种测定鳞片石墨矿粒度分布特性的方法。本发明的测定鳞片石墨矿粒度分布特性的方法,包括如下步骤:1)将石墨块矿进行烘干、破碎处理;2)将破碎后的石墨矿进行酸浸处理;3)将酸浸后的石墨矿进行碱熔处理;4)将碱熔后的石墨矿进行酸洗处理;5)将酸洗后的石墨矿清洗、过滤、烘干,得到高纯度石墨,用标准筛筛分测定大鳞片石墨粒度的分布特性。本发明的测定鳞片石墨矿粒度分布特性的方法,获取的石墨纯度高,并保持原始赋存粒度,用于测定石墨大鳞片含量和粒度分布,可准确反映石墨原矿中鳞片石墨的粒度分布特性。

Description

一种测定鳞片石墨矿粒度分布特性的方法
技术领域
本发明属于矿物加工技术领域,涉及一种矿物含量的测定方法,具体涉及一种测定鳞片石墨矿粒度分布特性的方法,特别涉及一种用酸浸-碱熔-酸洗测定鳞片石墨矿粒度分布特性的方法。
背景技术
石墨具有耐高温、热电导性、抗热震及润滑性等优良特性,广泛应用于冶金、机械、化工、耐火材料、航空航天等领域,是当今高新技术发展必不可少的非金属材料之一。
鳞片石墨根据其鳞片的大小分为大鳞片石墨和细鳞片石墨,通常大鳞片是指+35目(0.5mm)、+60目(0.3mm)、+80目(0.18mm)、+100目(0.15mm)的鳞片状石墨,低于这些目数的鳞片石墨叫做细鳞片石墨。相比细鳞片石墨,大鳞片石墨在市场和应用方面具有更大的竞争优势,相同品位的大鳞片石墨价格远超细鳞片石墨。大鳞片石墨性能优于细鳞片石墨,在制备石墨坩埚、膨胀石墨、石墨烯等材料中具有无可比拟的优势,且大鳞片石墨除了在原矿中提取之外,现代的工业技术无法生产合成,鳞片一旦被破坏就无法恢复。因而大鳞片石墨的含量是判断石墨矿价值的重要指标。
目前,测定石墨矿中大鳞片石墨含量大部分都是通过岩矿鉴定的方法来大致判断,根据石墨颗粒在点、面上的分布特征来推断石墨矿粒整体的粒度特性,由于统计区域有限其结果偏差较大。此外,还有用粗磨-浮选的方法对大鳞片石墨含量进行评价,由于矿石经过了磨矿且浮选粗精矿石墨纯度不高,因此该方法表征鳞片石墨原始的赋存粒度准确性较差。要准确测定石墨矿中大鳞片石墨的含量,需要有一种直接测定方法,目前现有的常规方式均难以解决这一问题。
CN105823712A公开了一种测定鳞片石墨矿中大鳞片石墨含量的方法。该方法利用热裂破碎,在不破坏石墨鳞片的情况下粉碎矿石,实现石墨与脉石矿物的解离,再用混合酸溶解掉脉石矿物,用于测定石墨大鳞片含量和粒度分布。但是该方法的热裂破碎对高硅脉石、高硬度的石墨矿难以起到有效破碎,且用混合酸浸并不能溶解掉所有脉石矿物,尚存在硅含量高的石英等脉石矿物,获得的石墨纯度不高,难以准确反映大鳞片石墨含量的粒度分布特性。
目前,高纯石墨的制备方法主要有碱酸法、氢氟酸法、氯化焙烧法、高温法等,但是其针对对象一般为浮选精矿(固定碳含量90%以上),对原矿进行粒度分布特性测定依照上述方法难以实现。
发明内容
针对现有技术的不足,本发明的目的在于提供一种测定鳞片石墨矿粒度分布特性的方法,获取的石墨纯度高,并保持原始赋存粒度,用于测定石墨大鳞片含量和粒度分布,可准确反映石墨原矿中鳞片石墨的粒度分布特性。
为达此目的,本发明采用以下技术方案:
一种测定鳞片石墨矿粒度分布特性的方法,包括如下步骤:
1)将石墨块矿进行烘干、破碎处理;
2)将破碎后的石墨矿进行酸浸处理;
3)将酸浸后的石墨矿进行碱熔处理;
4)将碱熔后的石墨矿进行酸洗处理;
5)将酸洗后的石墨矿清洗、过滤、烘干,得到高纯度石墨,用标准筛筛分测定大鳞片石墨粒度的分布特性。
石墨具有很强的韧性,且一般鳞片石墨矿固定碳含量较低,在3~20%左右,在破碎粒度较大的前提下,用机械设备破碎石墨块矿几乎不会破坏大鳞片石墨。酸浸后石墨矿样中主要为含硅杂质,强碱与硅反应可生成可溶性的硅酸钠或酸溶性的硅铝酸钠,用稀酸洗涤即可除去,石墨有着良好的化学稳定性并不会被溶解和破坏。基于上述原理的石墨矿石处理方法,最后获取的石墨纯度高,并保持原始赋存粒度,用于测定石墨大鳞片含量和粒度分布,可准确反映石墨原矿中鳞片石墨的粒度分布特性。
步骤1)中,所述烘干是在烘箱中进行的,所述烘干的温度为100~110℃,例如烘干的温度为100℃、101℃、102℃、103℃、104℃、105℃、106℃、107℃、108℃、109℃、110℃。
步骤1)中,所述破碎是由颚式破碎机破碎的,经破碎后石墨矿的粒径为5mm以下。
步骤2)中,所述酸浸的具体过程为:将破碎后的石墨矿浸于混合酸中,在40~90℃下慢速搅拌2~8h,静置沉降,抽出上清液,重复该步骤2~5次,例如搅拌温度为40℃、50℃、60℃、70℃、80℃、90℃,搅拌时间为2h、3h、4h、5h、6h、7h、8h。
所述混合酸与所述石墨矿的液固比为1~4,例如所述混合酸与所述石墨矿的液固比为1、2、3、4。
优选地,所述混合酸为盐酸、硝酸和氢氟酸的混合物;所述混合酸中盐酸、硝酸和氢氟酸的体积比为(1~3):(1~3):(1~3)。
步骤3)中,所述碱熔的具体过程为:将酸浸后的石墨矿经清洗、过滤、烘干,肉眼观察并挑出大颗粒脉石矿物,将石墨矿称重后置于不锈钢罐中,加入碱混合均匀并盖上盖子隔绝氧气,置于马弗炉中熔融。
优选地,所述碱与酸浸后石墨矿的质量比为0.2~1,例如所述碱与酸浸后石墨矿的质量比为0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1。
优选地,所述碱为氢氧化钠或氢氧化钾。
优选地,所述熔融的温度为400~900℃,例如熔融的温度为400℃、500℃、600℃、700℃、800℃、900℃;所述熔融的时间为0.5~4h,例如熔融的时间为0.5h、1h、1.5h、2h、2.5h、3h、3.5h、4h。
步骤4)中,所述酸洗的具体过程为:将碱熔后的石墨矿加入酸中进行洗涤,静置沉降,抽出上清液,重复该步骤2~5次。
优选地,所述酸与碱熔后的石墨矿的液固比为10~40,例如所述酸与碱熔后的石墨矿的液固比为10、20、30、40。
优选地,所述酸为硫酸或盐酸;优选地,所述酸的体积浓度为1~5%,例如酸的体积浓度为1%、2%、3%、4%、5%。
所述碱熔和所述酸洗之间还包括热水浸泡的步骤。
所述热水浸泡的具体过程为:将碱熔后的石墨矿用50~90℃的热水浸泡1~3h,将石墨矿全部转移至烧杯中,洗至中性,例如热水的温度为50℃、60℃、70℃、80℃、90℃;浸泡时间为1h、1.5h、2h、2.5h、3h。
作为优选方案,本发明的测定鳞片石墨矿粒度分布特性的方法,包括如下步骤:
1)选取石墨块矿,在100~110℃烘箱中烘干;
2)取出烘干后的石墨块矿,颚式破碎机破碎至5mm以下;
3)将破碎后的石墨矿置于聚四氟乙烯烧杯中,按所述混合酸与所述石墨矿的液固比1~4加入混合酸,在40~90℃下慢速搅拌2~8h,静置沉降,抽出上清液,重复该步骤2~5次;
4)将酸浸后的石墨矿清洗、过滤、烘干,肉眼观察并挑出大颗粒脉石矿物,将石墨矿称重,置于不锈钢罐中,按所述碱与酸浸后石墨矿的质量比0.2~1加入碱中,混合均匀并盖上盖子隔绝氧气,在400~900℃的马弗炉中熔融0.5~4h;
5)将碱熔融后的石墨矿用50~90℃热水浸泡,并将石墨矿全部转移至烧杯中,洗至中性;
6)按酸与碱熔后的石墨矿的液固比为10~40加入酸进行洗涤,静置沉降,抽出上清液,重复该步骤2~5次;
7)将酸洗后的石墨矿清洗、过滤、烘干,得到高纯度石墨,用标准筛筛分测定大鳞片石墨粒度的分布特性。
与现有技术相比,本发明的有益效果为:
本发明的测定方法结合混酸法和碱酸法的优点,首先利用混酸除去大部分脉石矿物,避免原矿直接碱熔难以溶解;当大部分脉石矿物通过混酸除去之后,利用强碱熔融剩余硅质矿物,进一步提高石墨固定碳含量;再通过酸洗,除去金属杂质,最后获取的石墨纯度高,并保持原始赋存粒度,用于测定石墨大鳞片含量和粒度分布,可准确反映石墨原矿中鳞片石墨的粒度分布特性,为评估石墨矿的价值提供了科学依据。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。
如无具体说明,本发明的各种原料均可市售购得,或根据本领域的常规方法制备得到。
实施例1
鳞片石墨矿,固定碳含量6.63%,主要脉石矿物为石英、长石、黑云母、角闪石、透辉石、高岭石、石榴石、黄铁矿等。选取石墨块矿于105℃烘箱烘干,称重为298.31g,颚式破碎机破碎至5mm以下,放入1L的聚四氟乙烯烧杯中,加入800mL混合酸(盐酸:硝酸:氢氟酸=3:1:3),置于通风橱中,70℃水浴锅慢速搅拌2小时,静置沉降30分钟,抽出上清液;再加入600mL混合酸,慢速搅拌3小时,静置沉降30分钟,抽出上清液;再加入400mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液;再加入200mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液,将酸浸后矿样清洗、过滤、烘干、肉眼观察并挑出大颗粒脉石矿物、称重得到26.37g矿样,将矿样放入不锈钢罐中,加入20g氢氧化钠,盖上盖子,放入马弗炉中加热至800℃煅烧1小时,冷却至常温取出,用90℃热水将熔融后矿样全部浸出并转移至1L烧杯中,洗涤至中性,用600mL稀硫酸(体积浓度3%)洗涤,静置沉降15分钟,抽出上清液;再加入400mL稀硫酸,静置沉降15分钟,抽出上清液;再加入200mL稀硫酸,静置沉降15分钟,抽出上清液,将酸洗后矿样清洗、过滤、烘干,得到石墨19.54g,用60目、80目、100目标准筛筛分15分钟,得到-80+100目产品3.23g,-60+80目产品5.73g,+60目产品1.66g,该石墨矿中大鳞片石墨所占比例54.35%,经测定,-80+100目产品固定碳含量为99.23%,-60+80目产品固定碳含量为99.44%,+60目产品固定碳含量为99.78%。
实施例2
鳞片石墨矿,固定碳含量14.22%,主要脉石矿物为石英、方解石、角闪石、透辉石、绿泥石、高岭石、褐铁矿等。选取石墨块矿于105℃烘箱烘干,称重为186.34g,颚式破碎机破碎至5mm以下,放入1L的聚四氟乙烯烧杯中,加入600mL混合酸(盐酸:硝酸:氢氟酸=3:1:3),置于通风橱中,65℃水浴锅中慢速搅拌2小时,静置沉降30分钟,抽出上清液;再加入500mL混合酸,慢速搅拌3小时,静置沉降30分钟,抽出上清液;再加入400mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液,将酸浸后矿样清洗、过滤、烘干、肉眼观察并挑出大颗粒脉石矿物、称重得到36.73g矿样,将矿样放入不锈钢罐中,加入25g氢氧化钠,盖上盖子,放入马弗炉中加热至900℃煅烧1小时,冷却至常温取出,用80℃热水将熔融后矿样全部浸出并转移至1L烧杯中,洗涤至中性,用400mL稀硫酸(体积浓度3%)洗涤,静置沉降15分钟,抽出上清液;再加入300mL稀硫酸,静置沉降15分钟,抽出上清液;再加入200mL稀硫酸,静置沉降15分钟,抽出上清液,将酸洗后矿样清洗、过滤、烘干,得到石墨26.31g,用80目、100目标准筛筛分15分钟,-80+100目产品4.72g,+80目产品2.18g,该石墨矿中大鳞片石墨所占比例26.23%,经测定,-80+100目产品固定碳含量为99.15%,+80目产品固定碳含量为99.32%。
实施例3
鳞片石墨矿,固定碳含量20.55%,主要脉石矿物为石英、高岭石、三水铝石、方解石、褐铁矿等。选取石墨块矿于105℃烘箱烘干,称重为205.32g,颚式破碎机破碎至5mm以下,放入1L的聚四氟乙烯烧杯中,加入500mL混合酸(盐酸:硝酸:氢氟酸=3:1:3),置于通风橱中,80℃水浴锅中慢速搅拌2小时,静置沉降30分钟,抽出上清液;再加入400mL混合酸,慢速搅拌3小时,静置沉降30分钟,抽出上清液;再加入300mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液;再加入200mL混合酸,慢速搅拌5小时,静置沉降30分钟,抽出上清液,将酸浸后矿样清洗、过滤、烘干、肉眼观察并挑出大颗粒脉石矿物、称重得到53.72g矿样,将矿样放入不锈钢罐中,加入30g氢氧化钠,盖上盖子,放入马弗炉中加热至850℃煅烧1小时,冷却至常温取出,用85℃热水将熔融后矿样全部浸出并转移至1L烧杯中,洗涤至中性,用500mL稀硫酸(体积浓度3%)洗涤,静置沉降15分钟,抽出上清液;再加入400mL稀硫酸,静置沉降15分钟,抽出上清液;再加入300mL稀硫酸,静置沉降15分钟,抽出上清液,将酸洗后矿样清洗、过滤、烘干,得到石墨46.43g,用35目、60目、80目、100目标准筛筛分15分钟,-80+100目产品6.54g,-60+80目产品7.76g,-35+60目产品5.63g,+35目产品1.87g,该石墨矿中大鳞片石墨所占比例46.95%,经测定,-80+100目产品固定碳含量为99.03%,-60+80目产品固定碳含量为99.19%,-35+60目产品固定碳含量为99.54%,+35目产品的固定碳含量为99.62%。
对比例1
鳞片石墨矿,固定碳含量6.63%,主要脉石矿物为石英、长石、黑云母、角闪石、透辉石、高岭石、石榴石、黄铁矿等。选取石墨块矿于105℃烘箱烘干,称重为312.44g,在高温炉中隔氧煅烧10分钟,取出,迅速放入冷水中,取出冷却后矿块,手工破碎至5mm以下,烘箱中烘干后放入1L的聚四氟乙烯烧杯中,加入800mL混合酸(盐酸:硝酸:氢氟酸=3:1:3),置于通风橱中,70℃水浴锅慢速搅拌2小时,静置沉降30分钟,抽出上清液;再加入600mL混合酸,慢速搅拌3小时,静置沉降30分钟,抽出上清液;再加入400mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液;再加入200mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液,将酸浸后矿样清洗、过滤、烘干、肉眼观察并挑出大颗粒脉石矿物、称重得到27.94g矿样,用100目标准筛筛分15分钟,得到+100目产品16.64g,固定碳含量为77.29%。
对比例2
鳞片石墨矿,固定碳含量14.22%,主要脉石矿物为石英、方解石、角闪石、透辉石、绿泥石、高岭石、褐铁矿等。选取石墨块矿于105℃烘箱烘干,称重为175.79g,在高温炉中隔氧煅烧8分钟,取出,迅速放入冷水中,取出冷却后矿块,手工破碎至5mm以下,烘箱中烘干后放入1L的聚四氟乙烯烧杯中,加入600mL混合酸(盐酸:硝酸:氢氟酸=3:1:3),置于通风橱中,65℃水浴锅中慢速搅拌2小时,静置沉降30分钟,抽出上清液;再加入500mL混合酸,慢速搅拌3小时,静置沉降30分钟,抽出上清液;再加入400mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液,将酸浸后矿样清洗、过滤、烘干、肉眼观察并挑出大颗粒脉石矿物、称重得到34.65g矿样,用100目标准筛筛分15分钟,得到+100目产品9.55g,固定碳含量为75.34%。
对比例3
鳞片石墨矿,固定碳含量20.55%,主要脉石矿物为石英、高岭石、三水铝石、方解石、褐铁矿等。选取石墨块矿于105℃烘箱烘干,称重为185.93g,在高温炉中隔氧煅烧9分钟,取出,迅速放入冷水中,取出冷却后矿块,手工破碎至5mm以下,烘箱中烘干后放入1L的聚四氟乙烯烧杯中,加入500mL混合酸(盐酸:硝酸:氢氟酸=3:1:3),置于通风橱中,80℃水浴锅中慢速搅拌2小时,静置沉降30分钟,抽出上清液;再加入400mL混合酸,慢速搅拌3小时,静置沉降30分钟,抽出上清液;再加入300mL混合酸,慢速搅拌4小时,静置沉降30分钟,抽出上清液;再加入200mL混合酸,慢速搅拌5小时,静置沉降30分钟,抽出上清液,将酸浸后矿样清洗、过滤、烘干、肉眼观察并挑出大颗粒脉石矿物、称重得到47.98g矿样,用100目标准筛筛分15分钟,得到+100目产品34.60g,固定碳含量为81.75%。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (15)

1.一种测定鳞片石墨矿粒度分布特性的方法,其特征在于,包括如下步骤:
1)将石墨块矿进行烘干、破碎处理;
2)将破碎后的石墨矿进行酸浸处理;
步骤2)中,所述酸浸的具体过程为:将破碎后的石墨矿浸于混合酸中,在40~90℃下慢速搅拌2~8h,静置沉降,抽出上清液,重复该步骤2~5次;所述混合酸中盐酸、硝酸和氢氟酸的体积比为(1~3):(1~3):(1~3);
3)将酸浸后的石墨矿进行碱熔处理;
4)将碱熔后的石墨矿进行酸洗处理;
5)将酸洗后的石墨矿清洗、过滤、烘干,得到高纯度石墨,用标准筛筛分测定大鳞片石墨粒度的分布特性;
步骤3)中,所述碱熔的具体过程为:将酸浸后的石墨矿经清洗、过滤、烘干,肉眼观察并挑出大颗粒脉石矿物,将石墨矿称重后置于不锈钢罐中,加入碱混合均匀并盖上盖子隔绝氧气,置于马弗炉中熔融,所述碱与酸浸后石墨矿的质量比为0.2~1。
2.根据权利要求1所述的方法,其特征在于,步骤1)中,所述烘干是在烘箱中进行的,所述烘干的温度为100~110℃。
3.根据权利要求1所述的方法,其特征在于,步骤1)中,所述破碎是由颚式破碎机破碎的,经破碎后石墨矿的粒径为5mm以下。
4.根据权利要求1所述的方法,其特征在于,所述混合酸与所述石墨矿的液固比为1~4。
5.根据权利要求1所述的方法,其特征在于,所述混合酸为盐酸、硝酸和氢氟酸的混合物。
6.根据权利要求1所述的方法,其特征在于,所述碱为氢氧化钠或氢氧化钾。
7.根据权利要求1所述的方法,其特征在于,所述熔融的温度为400~900℃。
8.根据权利要求1所述的方法,其特征在于,所述熔融的时间为0.5~4h。
9.根据权利要求1所述的方法,其特征在于,步骤4)中,所述酸洗的具体过程为:将碱熔后的石墨矿加入酸中进行洗涤,静置沉降,抽出上清液,重复该步骤2~5次。
10.根据权利要求9所述的方法,其特征在于,所述酸与碱熔后的石墨矿的液固比为10~40。
11.根据权利要求9所述的方法,其特征在于,所述酸为硫酸或盐酸。
12.根据权利要求9所述的方法,其特征在于,所述酸的体积浓度为1~5%。
13.根据权利要求1所述的方法,其特征在于,所述碱熔和所述酸洗之间还包括热水浸泡的步骤。
14.根据权利要求13所述的方法,其特征在于,所述热水浸泡的具体过程为:将碱熔后的石墨矿用50~90℃的热水浸泡1~3h,将石墨矿全部转移至烧杯中,洗至中性。
15.根据权利要求1所述的方法,其特征在于,包括如下步骤:
1)选取石墨块矿,在100~110℃烘箱中烘干;
2)取出烘干后的石墨块矿,颚式破碎机破碎至5mm以下;
3)将破碎后的石墨矿置于聚四氟乙烯烧杯中,按所述混合酸与所述石墨矿的液固比1~4加入混合酸,在40~90℃下慢速搅拌2~8h,静置沉降,抽出上清液,重复该步骤2~5次;
4)将酸浸后的石墨矿清洗、过滤、烘干,肉眼观察并挑出大颗粒脉石矿物,将石墨矿称重,置于不锈钢罐中,按所述碱与酸浸后石墨矿的质量比0.2~1加入碱中,混合均匀并盖上盖子隔绝氧气,在400~900℃的马弗炉中熔融0.5~4h;
5)将碱熔融后的石墨矿用50~90℃热水浸泡,并将石墨矿全部转移至烧杯中,洗至中性;
6)按酸与碱熔后的石墨矿的液固比为10~40加入酸进行洗涤,静置沉降,抽出上清液,重复该步骤2~5次;
7)将酸洗后的石墨矿清洗、过滤、烘干,得到高纯度石墨,用标准筛筛分测定大鳞片石墨粒度的分布特性。
CN201710872358.7A 2017-09-25 2017-09-25 一种测定鳞片石墨矿粒度分布特性的方法 Active CN107462452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710872358.7A CN107462452B (zh) 2017-09-25 2017-09-25 一种测定鳞片石墨矿粒度分布特性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710872358.7A CN107462452B (zh) 2017-09-25 2017-09-25 一种测定鳞片石墨矿粒度分布特性的方法

Publications (2)

Publication Number Publication Date
CN107462452A CN107462452A (zh) 2017-12-12
CN107462452B true CN107462452B (zh) 2020-07-07

Family

ID=60553644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710872358.7A Active CN107462452B (zh) 2017-09-25 2017-09-25 一种测定鳞片石墨矿粒度分布特性的方法

Country Status (1)

Country Link
CN (1) CN107462452B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932286B (zh) * 2017-12-15 2022-11-25 广东凯金新能源科技股份有限公司 一种测试石墨粒度分布的方法
CN108059157A (zh) * 2018-02-13 2018-05-22 苏州中材非金属矿工业设计研究院有限公司 一种隐晶质石墨的提纯方法
CN108358201A (zh) * 2018-05-22 2018-08-03 赵文渊 一种石墨提纯方法
CN110823985B (zh) * 2019-11-19 2022-06-28 长春黄金研究院有限公司 一种铜矿物单体解离度的测定方法
CN113447405A (zh) * 2020-03-26 2021-09-28 北京橡胶工业研究设计院有限公司 一种微晶石墨粒径测试方法
CN111537329A (zh) * 2020-05-26 2020-08-14 攀钢集团攀枝花钢铁研究院有限公司 镍铁合金中镍含量测定方法及其样品制备工艺
CN117819541A (zh) * 2024-03-04 2024-04-05 矿冶科技集团有限公司 一种原料免高温干燥且简易酸碱法实现高产的提纯石墨的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101920957A (zh) * 2010-08-17 2010-12-22 北京矿冶研究总院 一种高纯石墨的制备方法
CN102275904A (zh) * 2011-05-31 2011-12-14 黑龙江科技学院 利用化学液相法制备高纯石墨的方法
CN102616773A (zh) * 2012-04-10 2012-08-01 中国地质大学(武汉) 一种将中碳鳞片石墨提纯至高纯石墨的方法
CN102701198A (zh) * 2012-06-29 2012-10-03 长沙理工大学 一种天然隐晶质石墨提纯的方法
CN103449425A (zh) * 2013-08-30 2013-12-18 黑龙江科技大学 一种用碱酸-络合法提纯高碳天然鳞片石墨制备高纯石墨的方法
CN104591155A (zh) * 2013-10-31 2015-05-06 青岛泰浩达碳材料有限公司 细鳞片石墨的提纯方法
CN104843696A (zh) * 2015-05-26 2015-08-19 山东理工大学 以中碳鳞片石墨为原料制备高碳石墨的方法
CN105823712A (zh) * 2016-03-08 2016-08-03 山东理工大学 一种测定鳞片石墨矿中大鳞片石墨含量的方法
CN106517177A (zh) * 2016-11-04 2017-03-22 吉林吉恩镍业股份有限公司 一种利用高压碱浸出提纯石墨的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845879B2 (en) * 2010-11-24 2014-09-30 Saint Louis Univesrity Organelle bioelectrodes and methods of making and using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101920957A (zh) * 2010-08-17 2010-12-22 北京矿冶研究总院 一种高纯石墨的制备方法
CN102275904A (zh) * 2011-05-31 2011-12-14 黑龙江科技学院 利用化学液相法制备高纯石墨的方法
CN102616773A (zh) * 2012-04-10 2012-08-01 中国地质大学(武汉) 一种将中碳鳞片石墨提纯至高纯石墨的方法
CN102701198A (zh) * 2012-06-29 2012-10-03 长沙理工大学 一种天然隐晶质石墨提纯的方法
CN103449425A (zh) * 2013-08-30 2013-12-18 黑龙江科技大学 一种用碱酸-络合法提纯高碳天然鳞片石墨制备高纯石墨的方法
CN104591155A (zh) * 2013-10-31 2015-05-06 青岛泰浩达碳材料有限公司 细鳞片石墨的提纯方法
CN104843696A (zh) * 2015-05-26 2015-08-19 山东理工大学 以中碳鳞片石墨为原料制备高碳石墨的方法
CN105823712A (zh) * 2016-03-08 2016-08-03 山东理工大学 一种测定鳞片石墨矿中大鳞片石墨含量的方法
CN106517177A (zh) * 2016-11-04 2017-03-22 吉林吉恩镍业股份有限公司 一种利用高压碱浸出提纯石墨的方法

Also Published As

Publication number Publication date
CN107462452A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
CN107462452B (zh) 一种测定鳞片石墨矿粒度分布特性的方法
Alkan et al. Conditioning of red mud for subsequent titanium and scandium recovery–a conceptual design study
Zhang et al. Zinc recovery from franklinite by sulphation roasting
CN109336116B (zh) 一种含有长石矿型石英岩制备光伏用高纯石英砂粉的方法
CN106498108B (zh) 用钛磁铁矿精矿生产直接还原铁和氮碳化钛的方法
CN101186455A (zh) 一种石英坩埚用石英砂的制备方法
CN109534347A (zh) 一种含有长石矿型石英岩制备电子产品用高纯石英砂粉的方法
CN109593974B (zh) 一种从锂矿中提取锂的方法
CN110407190A (zh) 一种铝电解废阴极回收炭的方法
CN112111660A (zh) 一种从锂矿石中富集锂同时制备硅铁合金回收氧化铝的方法
Li et al. Study on the high-efficiency separation of Fe in extracted vanadium residue by sulfuric acid roasting and the solidification behavior of V and Cr
AU2020101888A4 (en) A process for recovering aluminium and silicon from clay rock and enriching niobium and titanium
CN110592385B (zh) 一种废弃电路板熔炼烟灰无害化回收方法
CN101875494A (zh) 低钛高纯多晶硅的制备方法
CN110396610B (zh) 一种铵盐加压热解处理钛矿物和金属硅酸盐矿物的方法
CN107604187A (zh) 一种铜合金精炼剂及其制备方法
CN105567973A (zh) 利用含钨钼镍废料制备镍铁合金和钨钼铁合金的方法
Roshchin et al. Complex processing of copper smelting slags with obtaining of cast iron grinding media and proppants
CN104445105B (zh) 一种从含碲苏打渣中富集回收二氧化碲的方法
CN109609776A (zh) 一种利用铝电解槽废阴极炭块提取铜转炉渣中铜钴的方法
CN110923442B (zh) 一种从钛铁中矿中回收钛与铁的方法
CN113621815A (zh) 一种高炉布袋灰与烧结机头除尘灰联合资源化处理的方法
CN106521192A (zh) 采用微波预处理从低品位羟硅铍石中浸出铍的方法
CN110863112A (zh) 一种铝精炼过程产生的铝渣的资源化利用方法
Guocai et al. Recovering indium with sulfating roasting from copper-smelting ash

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant