CN107460453A - 一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法 - Google Patents

一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法 Download PDF

Info

Publication number
CN107460453A
CN107460453A CN201610391771.7A CN201610391771A CN107460453A CN 107460453 A CN107460453 A CN 107460453A CN 201610391771 A CN201610391771 A CN 201610391771A CN 107460453 A CN107460453 A CN 107460453A
Authority
CN
China
Prior art keywords
composite coating
colloidal sol
arc oxidation
magnesium alloy
differential arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610391771.7A
Other languages
English (en)
Inventor
宋仁国
庄俊杰
宋若希
刘萍
王超
唐暜洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Ruilong Surface Technology Co Ltd
Original Assignee
Ningbo Ruilong Surface Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Ruilong Surface Technology Co Ltd filed Critical Ningbo Ruilong Surface Technology Co Ltd
Priority to CN201610391771.7A priority Critical patent/CN107460453A/zh
Publication of CN107460453A publication Critical patent/CN107460453A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cookers (AREA)

Abstract

本发明提供了一种镁合金微弧氧化‑溶胶凝胶复合涂层的制备方法,先将镁合金在磷酸盐系电解液中进行微弧氧化,电参数为:电压是400‑650 V,频率是100‑300 HZ,占空比是20‑45%;配置溶胶,溶胶的组成浓度为:正硅酸乙酯10‑30 g/L,二氧化钛5‑20 g/L,二氧化铈5‑15 g/L,乙醇10‑40 mL/L,盐酸1‑5 mL/L;将所制备的陶瓷膜层浸入溶胶中20‑40 s,以5‑20 cm/s的速率提拉,在50‑100℃下烘烤5‑20 min,自然冷却至室温;再次将试样浸入溶胶中5‑20 min,以5‑20 cm/s的速率提拉,100~300℃下烘烤10‑30 min,自然冷却至室温;对试样表面形成的半凝固的凝胶膜进行热处理,形成复合涂层。本发明所制复合涂层结合力好、结构致密;多组分的SiO2‑CeO2‑TiO2氧化物涂层,克服单一组分或双组分氧化物涂层的局限性,提高涂层性能。

Description

一种镁合金微弧氧化 - 溶胶凝胶复合涂层的制备方法
技术领域
本发明属于镁合金微弧氧化表面处理技术,具体涉及一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法。
背景技术
镁合金具有比强度和比刚度高、导热性和导电性好、电磁屏蔽能力强等优越性能,在电子、汽车等领域都表现出强大的优点。但是镁的电极电位低,而氧化膜疏松,因此镁合金在多数介质中的耐蚀性差,影响和限制了镁合金的应用。
微弧氧化是近年来应用较广泛的一种镁合金表面处理方法,工艺简单,易操作,与基体结合良好。虽然在微弧氧化技术在铝、钛等金属及合金的表面处理上已经很成功,但是对镁合金表面处理工艺还存在缺陷。微弧氧化陶瓷膜属于多孔结构,甚至有些孔隙从涂层表面一直延伸到基体表面,这使微弧氧化膜的防腐蚀作用难以适应复杂环境。因此,对微弧氧化膜进行孔隙密封处理相当重要。
溶胶凝胶法是一种很有前景的涂层制备技术,具有工艺设备简单,价格低等优点,且能有效改善微弧氧化膜的缺陷。现有溶胶凝胶法制备涂层的技术中多为单一组分或双组分氧化物涂层,结构简单,易被损坏,因此,有必要开发出多组分的氧化物涂层,进一步提高涂层性能。
发明内容
为解决上述问题,本发明提供了一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法。
为达到发明目的,本发明所采用的技术方案是:
一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法,包括如下步骤:
(1)配置电解液,电解液的组成浓度为:六偏磷酸钠15 g/L,氢氧化钾2 g/L,氟化钠3 g/L;
(2)用(1)中的电解液对清洁后的镁合金表面进行微弧氧化处理,制备陶瓷膜层,电参数为:电压是400-650 V,频率是100-300 HZ,占空比是20-45%,温度控制在20-30 ℃,处理时间是20-40 min;
(3)配置溶胶,溶胶的组成浓度为:正硅酸乙酯10-30 g/L,二氧化钛5-20 g/L,二氧化铈5-15 g/L,乙醇10-40 mL/L,盐酸1-5 mL/L;
(4)将步骤(2)中制备的表面覆有陶瓷膜层的镁合金浸入步骤(3)的溶胶中20-40 s,以5-20 cm/s的速率提拉,在50-100 ℃下烘烤5-20 min,自然冷却至室温;再次将试样浸入溶胶中5-20 min,以5-20 cm/s的速率提拉,100-300 ℃下烘烤10-30 min,自然冷却至室温;
(5)对试样表面形成的半凝固的凝胶膜进行热处理,将试样放入炉内,随炉升温至100-200 ℃,保温10-30 min,再次升温至250-450 ℃,保温10-30 min后试样随炉冷却,干燥固化形成复合涂层。
上述步骤(2)中电参数为:电压是450 V,频率是150 HZ,占空比是30%,处理时间是25 min。
上述步骤(3)中溶胶的组成浓度为:正硅酸乙酯20 g/L,二氧化钛10 g/L,二氧化铈8 g/L,乙醇25 mL/L,盐酸3 mL/L。
上述步骤(4)中第一次浸泡40 s,以10 cm/s的速率提拉,在60 ℃下烘烤20 min;第二次浸泡10 min,以10 cm/s的速率提拉,在200 ℃下烘烤20 min。
上述步骤(5)中第一次升温至150 ℃,保温20 min,第二次升温至300 ℃,保温25 min。
本发明的有益效果为:(1)多次浸泡、烘烤使所形成的复合涂层结合力好、结构致密;(2)最后对复合涂层进行热处理,提高涂层附着力,进一步提高镁合金的耐腐蚀性能;(3)在微弧氧化陶瓷膜层上制备出多组分的SiO2-CeO2-TiO2氧化物涂层,克服传统单一组分或双组分氧化物涂层的局限性,提高涂层性能。
附图说明
图1为不同试样的腐蚀速率:(a)AZ31镁合金;(b)微弧氧化陶瓷膜层;(c)微弧氧化-溶胶凝胶复合涂层。
具体实施方式
下面结合具体方式对本发明进行进一步描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护范围。
实施例1:
(1)配置电解液,电解液的组成浓度为:六偏磷酸钠15 g/L,氢氧化钾2 g/L,氟化钠3 g/L;
(2)用(1)中的电解液对清洁后的镁合金表面进行微弧氧化处理制备陶瓷膜层,电参数为:电压是400 V,频率是100 HZ,占空比是20%,温度控制在20-30 ℃,处理时间是20 min;
(3)配置溶胶,溶胶的组成浓度为:正硅酸乙酯10 g/L,二氧化钛15 g/L,二氧化铈5 g/L,乙醇40 mL/L,盐酸2 mL/L;
(4)将步骤(2)中制备的表面覆有陶瓷膜层的镁合金浸入步骤(3)的溶胶中20 s,以20 cm/s的速率提拉,在50 ℃下烘烤20 min,自然冷却至室温;再次将试样浸入溶胶中5 min,以5 cm/s的速率提拉,100 ℃下烘烤30 min,自然冷却至室温;
(5)对试样表面形成的半凝固的凝胶膜进行热处理,将试样放入炉内,随炉升温至100 ℃,保温30 min,再次升温至250 ℃,保温30 min后试样随炉冷却,干燥固化形成复合涂层。
实施例2:
(1)配置电解液,电解液的组成浓度为:六偏磷酸钠15 g/L,氢氧化钾2 g/L,氟化钠3 g/L;
(2)用(1)中的电解液对清洁后的镁合金表面进行微弧氧化处理制备陶瓷膜层,电参数为:电压是650 V,频率是300 HZ,占空比是30%,温度控制在20-30 ℃,处理时间是30 min;
(3)配置溶胶,溶胶的组成浓度为:正硅酸乙酯30 g/L,二氧化钛5 g/L,二氧化铈15 g/L,乙醇20 mL/L,盐酸1 mL/L;
(4)将步骤(2)中制备的表面覆有陶瓷膜层的镁合金浸入步骤(3)的溶胶中40 s,以5 cm/s的速率提拉,在100 ℃下烘烤5min,自然冷却至室温;再次将试样浸入溶胶中15 min,以10 cm/s的速率提拉,200 ℃下烘烤20 min,自然冷却至室温;
(5)对试样表面形成的半凝固的凝胶膜进行热处理,将试样放入炉内,随炉升温至150 ℃,保温15 min,再次升温至350 ℃,保温15 min后试样随炉冷却,干燥固化形成复合涂层。
实施例3:
(1)配置电解液,电解液的组成浓度为:六偏磷酸钠15 g/L,氢氧化钾2 g/L,氟化钠3 g/L;
(2)用(1)中的电解液对清洁后的镁合金表面进行微弧氧化处理制备陶瓷膜层,电参数为:电压是500 V,频率是200 HZ,占空比是35%,温度控制在20-30 ℃,处理时间是40 min;
(3)配置溶胶,溶胶的组成浓度为:正硅酸乙酯20 g/L,二氧化钛5 g/L,二氧化铈15 g/L,乙醇10 mL/L,盐酸5 mL/L;
(4)将步骤(2)中制备的表面覆有陶瓷膜层的镁合金浸入步骤(3)的溶胶中30 s,以10 cm/s的速率提拉,在80 ℃下烘烤10 min,自然冷却至室温;再次将试样浸入溶胶中10 min,以15 cm/s的速率提拉,200 ℃下烘烤20 min,自然冷却至室温;
(5)对试样表面形成的半凝固的凝胶膜进行热处理,将试样放入炉内,随炉升温至150 ℃,保温15 min,再次升温至300 ℃,保温20 min后试样随炉冷却,干燥固化形成复合涂层。
实施例4:
(1)配置电解液,电解液的组成浓度为:六偏磷酸钠15 g/L,氢氧化钾2 g/L,氟化钠3 g/L;
(2)用(1)中的电解液对清洁后的镁合金表面进行微弧氧化处理制备陶瓷膜层,电参数为:电压是400 V,频率是100 HZ,占空比是20%,温度控制在20-30 ℃,处理时间是20 min;
(3)配置溶胶,溶胶的组成浓度为:正硅酸乙酯15 g/L,二氧化钛10 g/L,二氧化铈10 g/L,乙醇20 mL/L,盐酸3 mL/L;
(4)将步骤(2)中制备的表面覆有陶瓷膜层的镁合金浸入步骤(3)的溶胶中40 s,以10 cm/s的速率提拉,在100 ℃下烘烤20 min,自然冷却至室温;再次将试样浸入溶胶中10 min,以10 cm/s的速率提拉,200 ℃下烘烤30 min,自然冷却至室温;
(5)对试样表面形成的半凝固的凝胶膜进行热处理,将试样放入炉内,随炉升温至200 ℃,保温30 min,再次升温至450 ℃,保温30 min后试样随炉冷却,干燥固化形成复合涂层。
将AZ31镁合金、微弧氧化陶瓷膜层和实施例4中微弧氧化-溶胶凝胶复合涂层的试样浸入50 g/L的NaCl溶液中,浸泡100 h后取出,将腐蚀产物干燥后称重,通过失重法比较试样的耐腐蚀性能。
耐腐蚀性能分析:从图1可以看出,微弧氧化使AZ31镁合金的腐蚀速率由215 mg/(m2·h)降至112 mg/(m2·h),而所制得的微弧氧化-溶胶凝胶复合涂层的腐蚀速率大幅降低至36 mg/(m2·h),表明微弧氧化-溶胶凝胶复合涂层具有非常好的耐腐蚀性能。

Claims (5)

1.一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法,其特征在于,包括如下步骤:
(1)配置电解液,电解液的组成浓度为:六偏磷酸钠15 g/L,氢氧化钾2 g/L,氟化钠3 g/L;
(2)用(1)中的电解液对清洁后的镁合金表面进行微弧氧化处理,制备陶瓷膜层,电参数为:电压是400-650 V,频率是100-300 HZ,占空比是20-45%,温度控制在20-30 ℃,处理时间是20-40 min;
(3)配置溶胶,溶胶的组成浓度为:正硅酸乙酯10-30 g/L,二氧化钛5-20 g/L,二氧化铈5-15 g/L,乙醇10-40 mL/L,盐酸1-5 mL/L;
(4)将步骤(2)中制备的表面覆有陶瓷膜层的镁合金浸入步骤(3)的溶胶中20-40 s,以5-20 cm/s的速率提拉,在50-100 ℃下烘烤5-20 min,自然冷却至室温;再次将试样浸入溶胶中5-20 min,以5-20 cm/s的速率提拉,100-300 ℃下烘烤10-30 min,自然冷却至室温;
(5)对试样表面形成的半凝固的凝胶膜进行热处理,将试样放入炉内,随炉升温至100-200 ℃,保温10-30 min,再次升温至250-450 ℃,保温10-30 min后试样随炉冷却,干燥固化形成复合涂层。
2.根据权利要求1所述的镁合金微弧氧化-溶胶凝胶复合涂层的制备方法,其特征在于,步骤(2)中电参数为:电压是450 V,频率是150 HZ,占空比是30%,处理时间是25 min。
3.根据权利要求1所述的镁合金微弧氧化-溶胶凝胶复合涂层的制备方法,其特征在于,步骤(3)中溶胶的组成浓度为:正硅酸乙酯20 g/L,二氧化钛10 g/L,二氧化铈8 g/L,乙醇25 mL/L,盐酸3 mL/L。
4.根据权利要求1所述的镁合金微弧氧化-溶胶凝胶复合涂层的制备方法,其特征在于,步骤(4)中第一次浸泡40 s,以10 cm/s的速率提拉,在60 ℃下烘烤20 min;第二次浸泡10 min,以10 cm/s的速率提拉,在200 ℃下烘烤20 min。
5.根据权利要求1所述的镁合金微弧氧化-溶胶凝胶复合涂层的制备方法,其特征在于,步骤(5)中第一次升温至150 ℃,保温20 min,第二次升温至300 ℃,保温25 min。
CN201610391771.7A 2016-06-06 2016-06-06 一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法 Pending CN107460453A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610391771.7A CN107460453A (zh) 2016-06-06 2016-06-06 一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610391771.7A CN107460453A (zh) 2016-06-06 2016-06-06 一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法

Publications (1)

Publication Number Publication Date
CN107460453A true CN107460453A (zh) 2017-12-12

Family

ID=60544495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610391771.7A Pending CN107460453A (zh) 2016-06-06 2016-06-06 一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN107460453A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267132A (zh) * 2018-11-23 2019-01-25 西安工业大学 一种适于铝基板表面高性能导热绝缘陶瓷层的制备方法
CN110965105A (zh) * 2020-01-06 2020-04-07 山西银光华盛镁业股份有限公司 一种异质材料同槽微弧氧化电解液
CN113089047A (zh) * 2021-04-12 2021-07-09 四川九洲电器集团有限责任公司 一种铝合金构件及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481117A (zh) * 2009-01-22 2009-07-15 上海交通大学 SiO2溶胶凝胶液及用其制备压电颗粒表面SiO2涂层的方法
CN102041541A (zh) * 2010-11-30 2011-05-04 沈阳理工大学 二氧化硅溶胶浸渍微弧氧化法制备镁合金微弧氧化膜
CN102389588A (zh) * 2011-11-07 2012-03-28 郑州大学 一种用于生物植入的镁或镁合金材料及其制备方法
CN102560591A (zh) * 2011-12-01 2012-07-11 浙江吉利汽车研究院有限公司 一种微弧氧化电解液及微弧氧化方法
CN102677127A (zh) * 2012-06-11 2012-09-19 西北有色金属研究院 一种镁合金微弧氧化-电泳复合涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481117A (zh) * 2009-01-22 2009-07-15 上海交通大学 SiO2溶胶凝胶液及用其制备压电颗粒表面SiO2涂层的方法
CN102041541A (zh) * 2010-11-30 2011-05-04 沈阳理工大学 二氧化硅溶胶浸渍微弧氧化法制备镁合金微弧氧化膜
CN102389588A (zh) * 2011-11-07 2012-03-28 郑州大学 一种用于生物植入的镁或镁合金材料及其制备方法
CN102560591A (zh) * 2011-12-01 2012-07-11 浙江吉利汽车研究院有限公司 一种微弧氧化电解液及微弧氧化方法
CN102677127A (zh) * 2012-06-11 2012-09-19 西北有色金属研究院 一种镁合金微弧氧化-电泳复合涂层及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267132A (zh) * 2018-11-23 2019-01-25 西安工业大学 一种适于铝基板表面高性能导热绝缘陶瓷层的制备方法
CN109267132B (zh) * 2018-11-23 2019-08-30 西安工业大学 一种适于铝基板表面高性能导热绝缘陶瓷层的制备方法
CN110965105A (zh) * 2020-01-06 2020-04-07 山西银光华盛镁业股份有限公司 一种异质材料同槽微弧氧化电解液
CN113089047A (zh) * 2021-04-12 2021-07-09 四川九洲电器集团有限责任公司 一种铝合金构件及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN102953108B (zh) 一种自动控制硬质阳极氧化工艺
CN104651908B (zh) 一种镁合金表面陶瓷膜层的制备方法及封孔方法
CN102154673A (zh) 在铝合金表面制备环保型微弧氧化黑色陶瓷膜的方法
CN107460453A (zh) 一种镁合金微弧氧化-溶胶凝胶复合涂层的制备方法
CN103296283B (zh) 一种表面包覆有Ti4O7膜的钛板及其制成的双极性铅酸电池的基板
CN105441743B (zh) 一种铝基非晶合金复合材料及其制备方法
CN107217281B (zh) 一种复合阻氚涂层及其制备方法
CN108899551A (zh) 复合材料及其制备方法、锂离子电池负极材料及锂离子电池
CN107955961A (zh) 一种镁合金表面导电防腐涂层的制备方法
CN103556205A (zh) 一种镁合金微弧氧化复合膜着色的方法
CN105088314A (zh) 一种在镁合金微弧氧化陶瓷层表面构建超疏水膜层的方法
CN108385150A (zh) 一种复合薄膜及其制备方法
CN107937874B (zh) 一种在铌合金表面制备Pt-Al高温防护涂层的方法
CN109234773A (zh) 一种镁合金表面复合涂层的制备方法
CN106702459B (zh) 一种在锆合金表面制备耐磨多孔氧化锆陶瓷层的方法
CN102808209A (zh) 铌及铌合金表面氧化着色的方法
CN107460518A (zh) 一种金属纳米陶瓷涂层制备方法
CN110129858A (zh) 一种离子液体辅助镁锂合金阳极氧化成膜方法
CN105506705A (zh) 一种铝合金硬质阳极氧化膜的制备方法
CN113278850A (zh) 一种耐高温钛基合金及其制备方法
CN108060382A (zh) 一种提高锌铝镁合金镀层钢板胶粘性能的方法
CN107460481A (zh) 一种镁合金微弧氧化-化学镀镍复合涂层的制备方法
JP2008202118A (ja) 陽極酸化皮膜の改質方法
CN114032547B (zh) 一种合金表面复合涂层及其制备方法
CN105603495A (zh) 一种钛基合金抗高温氧化涂层的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171212

RJ01 Rejection of invention patent application after publication