CN107452821B - 一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法 - Google Patents

一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法 Download PDF

Info

Publication number
CN107452821B
CN107452821B CN201710561987.8A CN201710561987A CN107452821B CN 107452821 B CN107452821 B CN 107452821B CN 201710561987 A CN201710561987 A CN 201710561987A CN 107452821 B CN107452821 B CN 107452821B
Authority
CN
China
Prior art keywords
sno
nano wire
shell structure
nuclear shell
schottky junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710561987.8A
Other languages
English (en)
Other versions
CN107452821A (zh
Inventor
潘新花
王伟豪
吕斌
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710561987.8A priority Critical patent/CN107452821B/zh
Publication of CN107452821A publication Critical patent/CN107452821A/zh
Application granted granted Critical
Publication of CN107452821B publication Critical patent/CN107452821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,依次有低阻Si、SiO2绝缘层、SnO/Ag核壳结构纳米线沟道层和Au电极。其制备方法是先采用一步水热法合成SnO/Ag核壳结构纳米线,再采用溶剂蒸发法制备纳米线沟道,将器件退火后镀上Au电极完成该器件的制作。本发明通过SnO/Ag核壳结构形成肖特基结,当晶体管处于关态时限制载流子的注入,从而抑制晶体管的暗电流;由于沟道材料内部核心是金属Ag,当晶体管处于开态时,可以获得很高的场效应迁移率,提高晶体管的工作响应速度。同时该器件对360nm的紫外光具有响应。该光电薄膜晶体管器件在紫外探测器、紫外光控开关、光敏晶体管等光电器件领域具有重要的应用价值。

Description

一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电 薄膜晶体管及其制备方法
技术领域
本发明涉及一种SnO/Ag肖特基结核壳结构纳米线沟道的p型多功能光电薄膜晶体管及其制备方法,属于光电子功能器件领域。
背景技术
SnO是最近几年发现的一种重要的宽禁带半导体材料,它是一种本征p型半导体材料,是目前p型金属氧化物半导体中最为看好的材料之一。其禁带宽度可在2.5~3.4eV之间变化,适合制备p型金属氧化物半导体器件。
相对于ZnO材料,SnO材料是本征p型半导体,不需要进行掺杂处理。并且SnO具有较高的迁移率,因此可以制造出性能优异的薄膜晶体管。另外,因为SnO的禁带宽度可调,因此SnO在发光及光探测领域具有巨大的发展潜力。
发明内容
本发明的目的是提供一种具有低漏电流、高场效应迁移率,基于SnO/Ag肖特基结核壳结构纳米线沟道的多功能p型薄膜晶体管及其制备方法。
本发明的SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,其特征是依次包括低阻Si(1)、SiO2绝缘层(2)、SnO/Ag纳米线层(3)和Au 电极(4),所述的SnO/Ag纳米线层(3)中纳米线均呈同向排列铺设于SiO2绝缘层上。
所述的SnO/Ag纳米线层中纳米线是以Ag纳米线为核,外层包覆有SnO的核壳结构纳米线,SnO与Ag形成肖特基结,可以抑制载流子的注入,从而限制器件的漏电流。
进一步的,所述的SnO/Ag纳米线层中纳米线还可以是以Ag纳米线为核,外层包覆有SnO的核壳结构纳米线,所述的SnO为纳米棒形貌。
进一步的,所述的SnO/Ag纳米线层中纳米线的长度为2~10μm,直径为 100~300nm。
进一步的,所述的低阻Si(1)的电阻率为0.001~0.005Ω·cm。
进一步的,所述的SiO2绝缘层(2)厚度为150~300nm。
制备上述的多功能光电薄膜晶体管的方法,包括以下步骤:
1)采用一步水热法制备SnO/Ag核壳结构纳米线:
将异辛酸亚锡、油胺溶于乙醇和乙二醇的混合溶剂中,并加入Ag纳米线,搅拌均匀后在120~180℃下水热反应24~48h,反应结束后,将所得溶液离心清洗后,分散于乙醇中;
2)采用溶剂蒸发法制备SnO/Ag核壳结构纳米线沟道:
将Si/SiO2衬底清洗,再用氧等离子体清洗,清洗完后将衬底垂直浸没到步骤1获得的SnO/Ag纳米线乙醇分散液中,在30~60℃下蒸干溶剂,SnO/Ag 纳米线随着溶剂的蒸干自组装排列,形成SnO/Ag纳米线层(3),在300~500℃下退火1h;
3)在上述的SnO/Ag纳米线层(3)上蒸镀厚度为70~100nm的Au电极(4),获得SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管。
其中,进一步的,所述的乙醇与乙二醇体积比为1:1。
进一步的,所述的异辛酸亚锡、油胺的摩尔比为1:12。
本发明的有益效果在于:
1)本发明以异辛酸亚锡为锡源,并采用油胺辅助合成SnO,反应过程中油胺具有的还原性可以防止2价Sn离子的氧化,形成的SnO表面被油胺保护,得到的SnO可以在空气中稳定存在;
2)本发明以SnO为外壳包覆Ag纳米线为核心的核壳结构纳米线作为薄膜晶体管沟道,SnO与Ag形成肖特基接触,可以抑制载流子的注入,从而在晶体管处于关态时可以很好地抑制器件的暗电流;
3)利用同向排列的SnO/Ag纳米线作为TFT沟通层的传输通道,可避免多晶薄膜中晶界的影响,当晶体管导通时,核心Ag纳米线的存在可以极大地提高薄膜晶体管的场效应迁移率;
4)本发明的晶体管不仅可以通过栅极电压调控,同时对360nm的紫外光有良好的响应,Ag纳米线的存在使其对紫外光的响应极快,因此可实现光控晶体管,应用于光控开关、光敏晶体管、紫外探测器等领域。
附图说明
图1是SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管的结构示意图。
图2是SnO/Ag纳米线在SiO2绝缘层上的分布示意图。
图3是SnO/Ag核壳结构纳米线示意图。
图4为实例3制得的SnO/Ag核壳结构纳米线的电镜图。
图5为实施例3与对比例1中制得的纳米线的XRD对比图谱。
图中:1为低阻Si、2为SiO2绝缘层、3为SnO/Ag纳米线沟道层、4为Au 电极。
具体实施方式
以下结合附图及具体实施例对本发明做进一步阐述。
参照图1,本发明的SnO/Ag肖特基结核壳结构纳米线沟道的多功能p型薄膜晶体管,自下而上依次包括低阻Si(1)、SiO2绝缘层(2)、SnO/Ag肖特基结核壳结构纳米线沟道层(3)和Au电极(4),所述的SnO/Ag纳米线层中的纳米线均呈同向排列,其中纳米线是以Ag纳米线为核,外层包覆有SnO的核壳结构纳米线,SnO与Ag形成肖特基结。纳米线的长度为2~10μm,直径为100~300 nm,外层的SnO根据合成条件的不同呈现出纳米颗粒,纳米棒和纳米花的形貌。所述的低阻Si的电阻率为0.001~0.005Ω·cm。所述的SiO2绝缘层厚度为150~300nm。
实施例1
1)水热法制备SnO/Ag核壳结构纳米线:
在25mL的水热釜中,以平均直径60nm,平均长度2μm的Ag纳米线为核心,加入2mg的Ag纳米线,165μL异辛酸亚锡,2mL油胺溶于5mL的乙醇和5mL的乙二醇的混合溶剂中,搅拌均匀后在180℃下水热反应24h。反应结束后,将所得溶液离心清洗后,分散在40mL的乙醇中。
2)溶剂蒸发法在洁净的Si/SiO2衬底上制备SnO/Ag核壳结构纳米线沟道:
将Si/SiO2衬底分别置于丙酮,乙醇,去离子水中超声清洗10min,再用氧等离子体清洗10min,清洗完后马上将衬底垂直浸没到SnO/Ag纳米线的乙醇溶液中,在35℃下蒸干溶剂,SnO/Ag纳米线随着溶剂的蒸干会自组装排列,形成SnO/Ag纳米线层(3),在400℃下退火1h。
3)在上述的SnO/Ag纳米线层(3)上蒸镀厚度为70nm的Au电极(4),获得p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管。
本例制得的SnO/Ag肖特基结核壳结构纳米线沟道的多功能p型薄膜晶体管的场效应迁移率μFE=1.74cm2V-1s-1
实施例2
1)水热法制备SnO/Ag核壳结构纳米线:
在25mL的水热釜中,以平均直径60nm,平均长度10μm的Ag纳米线为核心,加入2mg的Ag纳米线,165μL异辛酸亚锡,2mL油胺溶于5mL的乙醇和5mL的乙二醇的混合溶剂中,搅拌均匀后在120℃下水热反应48h。反应结束后,将所得溶液离心清洗后,分散在60mL的乙醇中。
2)溶剂蒸发法在洁净的Si/SiO2衬底上制备SnO/Ag核壳结构纳米线沟道:
将Si/SiO2衬底分别置于丙酮,乙醇,去离子水中超声清洗10min,再用氧等离子体清洗10min,清洗完后马上将衬底垂直浸没到SnO/Ag纳米线的乙醇溶液中,在35℃下蒸干溶剂,SnO/Ag纳米线随着溶剂的蒸干会自组装排列,形成SnO/Ag纳米线层(3),在300℃下退火1h。
3)在上述的SnO/Ag纳米线层(3)上蒸镀厚度为70nm的Au电极(4),获得p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管。
本例制得的SnO/Ag肖特基结核壳结构纳米线沟道的多功能p型薄膜晶体管的场效应迁移率μFE=3.48cm2V-1s-1
实施例3
1)水热法制备SnO/Ag核壳结构纳米线:
在25mL的水热釜中,以平均直径60nm,平均长度10μm的Ag纳米线为核心,加入2mg的Ag纳米线,165μL异辛酸亚锡,2mL油胺溶于5mL的乙醇和5mL的乙二醇的混合溶剂中,搅拌均匀后在150℃下水热反应36h。反应结束后,将所得溶液离心清洗后,分散在40mL的乙醇中。
2)溶剂蒸发法在洁净的Si/SiO2衬底上制备SnO/Ag核壳结构纳米线沟道:
将Si/SiO2衬底分别置于丙酮,乙醇,去离子水中超声清洗10min,再用氧等离子体清洗10min,清洗完后马上将衬底垂直浸没到SnO/Ag纳米线的乙醇溶液中,在40℃下蒸干溶剂,SnO/Ag纳米线随着溶剂的蒸干会自组装排列,形成SnO/Ag纳米线层(3),在300℃下退火1h。
3)在上述的SnO/Ag纳米线层(3)上蒸镀厚度为70nm的Au电极(4),获得p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管。
本例制得的SnO/Ag纳米线的电镜图如图4所示,可以看出,该纳米线中SnO 外壳以纳米棒的形式存在,SnO纳米棒直径为20-50nm,长度为80-150nm;制得的SnO/Ag肖特基结核壳结构纳米线沟道的多功能p型薄膜晶体管的场效应迁移率μFE=6.26cm2V-1s-1,漏电流为10-11A。
对比例1
1)水热法制备SnO/Ag核壳结构纳米线:
在25mL的水热釜中,以平均直径60nm,平均长度10μm的Ag纳米线为核心,加入2mg的Ag纳米线,将165μL异辛酸亚锡溶于5mL的乙醇和5mL 的乙二醇的混合溶剂中,搅拌均匀后在150℃下水热反应36h。反应结束后,将所得溶液离心清洗后,分散在40mL的乙醇中。
后续步骤与实施例3相同,本例制得的产物的XRD图与本发明方法获得产物的XRD对比如图5所示,可以看出本例产物中明显具有SnO2的存在,即本发明通过油胺的加入可以有效地抑制SnO2的生成,有利于获得p型的薄膜晶体管。
对比例2
1)水热法制备SnO:
在25mL的水热釜中,165μL异辛酸亚锡,2mL油胺溶于5mL的乙醇和 5mL的乙二醇的混合溶剂中,搅拌均匀后在150℃下水热反应36h。反应结束后,将所得溶液离心清洗后,分散在40mL的乙醇中。
后续步骤与实施例3相同,本例制得的产物是以SnO作为沟道层的p型薄膜晶体管,其场效应迁移率μFE=0.02cm2V-1s-1,漏电流为10-8A。

Claims (8)

1.一种SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管的制备方法,其特征在于,包括以下步骤:
1)采用一步水热法制备SnO/Ag核壳结构纳米线:
将异辛酸亚锡、油胺溶于乙醇和乙二醇的混合溶剂中,并加入Ag纳米线,
搅拌均匀后在120~180 ℃下水热反应24~48 h,反应结束后,将所得溶液离心清洗后,分散于乙醇中;
2)采用溶剂蒸发法制备SnO/Ag核壳结构纳米线沟道:
将Si/SiO2衬底清洗,再用氧等离子体清洗,清洗完后将衬底垂直浸没到步骤1)获得的SnO/Ag纳米线乙醇分散液中,在30~60 ℃下蒸干溶剂,SnO/Ag纳米线随着溶剂的蒸干自组装排列,形成SnO/Ag纳米线层(3),在300~500 ℃下退火1 h;
3)在上述的SnO/Ag纳米线层(3)上蒸镀厚度为70~100 nm的Au电极(4),获得SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管。
2.根据权利要求1所述的方法,其特征在于,所述的乙醇与乙二醇体积比为1:1。
3.根据权利要求1所述的方法,其特征在于,所述的异辛酸亚锡、油胺的摩尔比为1:12。
4.一种SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,其特征是,采用如权利要求1所述的方法制得,该晶体管依次包括低阻Si(1)、SiO2绝缘层(2)、SnO/Ag纳米线层(3)和Au电极(4),所述的SnO/Ag纳米线层(3)中纳米线均呈同向排列铺设于SiO2绝缘层上;所述的SnO/Ag纳米线层中纳米线是以Ag纳米线为核,外层包覆有SnO的核壳结构纳米线,SnO与Ag形成肖特基结。
5.根据权利要求4所述的SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,其特征是,所述的SnO/Ag纳米线层中纳米线是以Ag纳米线为核,外层包覆有SnO的核壳结构纳米线,所述的SnO为纳米棒形貌。
6. 根据权利要求4所述的SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,其特征是,所述的SnO/Ag纳米线层中纳米线的长度为2~10 μm,直径为100~300 nm。
7. 根据权利要求4所述的SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,其特征是所述的低阻Si(1)的电阻率为0.001~0.005 Ω·cm。
8. 根据权利要求4所述的SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管,其特征是所述的SiO2绝缘层(2)厚度为150~300 nm。
CN201710561987.8A 2017-07-11 2017-07-11 一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法 Active CN107452821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710561987.8A CN107452821B (zh) 2017-07-11 2017-07-11 一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710561987.8A CN107452821B (zh) 2017-07-11 2017-07-11 一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN107452821A CN107452821A (zh) 2017-12-08
CN107452821B true CN107452821B (zh) 2018-12-25

Family

ID=60487132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710561987.8A Active CN107452821B (zh) 2017-07-11 2017-07-11 一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN107452821B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258058B (zh) * 2018-01-23 2020-08-11 福州大学 一种基于金/二氧化硅壳核微结构与二硫化钼复合薄膜晶体管的制备方法
CN110459632B (zh) * 2019-08-20 2021-03-05 中国科学院半导体研究所 基于核壳纳米线的柔性偏振光探测器及制备方法
CN111599925B (zh) * 2020-05-29 2021-09-21 河南大学 一种以双(甲酸)二甲基锡n型半导体薄膜作为电子传输层的太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842745A (zh) * 2003-08-28 2006-10-04 株式会社半导体能源研究所 薄膜晶体管、薄膜晶体管的制造方法、以及显示器件的制造方法
CN101764065A (zh) * 2010-01-20 2010-06-30 中国科学院宁波材料技术与工程研究所 一种p型氧化亚锡沟道薄膜晶体管的制备方法
US20140263945A1 (en) * 2013-03-14 2014-09-18 Nutech Ventures Floating-gate transistor photodetector
CN105655442A (zh) * 2016-01-12 2016-06-08 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
CN106057908A (zh) * 2016-07-15 2016-10-26 浙江大学 一种Ag纳米线和ZnO纳米晶复合沟道的多功能光电薄膜晶体管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842745A (zh) * 2003-08-28 2006-10-04 株式会社半导体能源研究所 薄膜晶体管、薄膜晶体管的制造方法、以及显示器件的制造方法
CN101764065A (zh) * 2010-01-20 2010-06-30 中国科学院宁波材料技术与工程研究所 一种p型氧化亚锡沟道薄膜晶体管的制备方法
US20140263945A1 (en) * 2013-03-14 2014-09-18 Nutech Ventures Floating-gate transistor photodetector
CN105655442A (zh) * 2016-01-12 2016-06-08 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
CN106057908A (zh) * 2016-07-15 2016-10-26 浙江大学 一种Ag纳米线和ZnO纳米晶复合沟道的多功能光电薄膜晶体管及其制备方法

Also Published As

Publication number Publication date
CN107452821A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107452821B (zh) 一种p型SnO/Ag肖特基结核壳结构纳米线沟道的多功能光电薄膜晶体管及其制备方法
Bong et al. High-mobility low-temperature ZnO transistors with low-voltage operation
Kushwaha et al. Defect induced high photocurrent in solution grown vertically aligned ZnO nanowire array films
US9153712B2 (en) Conductive contact for solar cell
US8962137B2 (en) Branched nanowire and method for fabrication of the same
CN106816532B (zh) 基于有机-无机杂化钙钛矿取向结晶薄膜的太阳电池
CN107833940A (zh) 一种基于二维二硫化钼‑二硫化铼异质结的光电子器件、制备方法及应用
CN106784115A (zh) 费米能级可调的pin结构石墨烯光探测器及其制备方法
Williams et al. Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells
Li et al. Anomalous photoconductive behavior of a single InAs nanowire photodetector
Rasool et al. Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays
Singh et al. Simulation, fabrication and characterization of sol–gel deposited ZnO based thin film transistors
Schricker et al. Temperature dependence of the field effect mobility of solution-grown germanium nanowires
TW201220504A (en) Metal oxide thin film transistor and manufacturing method thereof
CN111525033A (zh) 一种反向介孔钙钛矿太阳能电池结构及其制备方法
Isobe et al. Impact of surface treatment on metal-work-function dependence of barrier height of GaN-on-GaN Schottky barrier diode
Li et al. Water-based processed and alkoxide-based processed indium oxide thin-film transistors at different annealing temperatures
Vinod Specific contact resistance and metallurgical process of the silver-based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell
CN101798089A (zh) 锗催化生长的氧化硅纳米线及其制备方法
CN208548341U (zh) 石墨烯晶体管电路装置
CN103187249B (zh) 一种半导体纳米材料器件的制作方法
Yıldız et al. Investigation on dielectric properties of atomic layer deposited Al2O3 dielectric films
CN111009613A (zh) 一种钙钛矿量子点掺杂的有机紫外探测器及其制备方法
Yang et al. Hybrid ZnO nanowire networked field-effect transistor with solution-processed InGaZnO film
Balasubramani et al. Analysis of opto-electrical properties of Cu/Sr–W/n-Si (MIS) Schottky barrier diode for optoelectronic applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant