CN107450319A - 一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法 - Google Patents

一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法 Download PDF

Info

Publication number
CN107450319A
CN107450319A CN201710731297.2A CN201710731297A CN107450319A CN 107450319 A CN107450319 A CN 107450319A CN 201710731297 A CN201710731297 A CN 201710731297A CN 107450319 A CN107450319 A CN 107450319A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710731297.2A
Other languages
English (en)
Other versions
CN107450319B (zh
Inventor
杨跃能
闫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201710731297.2A priority Critical patent/CN107450319B/zh
Publication of CN107450319A publication Critical patent/CN107450319A/zh
Application granted granted Critical
Publication of CN107450319B publication Critical patent/CN107450319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,针对终端滑模控制的奇异问题以及误差收敛时间问题,定义了一种指定时间收敛的终端滑模函数,设计了非奇异终端滑模航迹控制律。由该方法控制的闭环系统能够在指定时间跟踪指令航迹,跟踪误差在指定时间内收敛至零,为飞艇航迹控制的工程实现提供了有效方案。

Description

一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法
技术领域
本发明涉及自动控制技术领域,具体的涉及一种飞艇航迹跟踪的指定时间非奇异终端滑 模控制方法。
背景技术
飞艇是一种典型的浮空器,依靠艇囊内轻于空气的气体(如氦气)升空,具有能耗低、 滞空时间长等优点,广泛应用于对地观测、侦察监视、环境监测、国土测绘等领域,具有重 要应用价值和广阔的应用前景,当前已成为航空领域的研究热点。完成上述飞行任务均要求 高精度的航迹控制,即操控飞艇按照预定的航迹飞行。飞艇的飞行力学具有非线性、通道耦 合、不确定等特点,使得航迹控制成为一项关键技术难题。
已有文献针对飞艇航迹控制问题,采用滑模控制方法设计航迹控制律。滑模控制中的滑 动模态可以按需要设计,且系统的滑模运动与受控对象的参数变化及外界扰动无关,因此, 滑动模态对系统参数摄动及外界干扰不敏感,具有良好的鲁棒性。但是,滑模控制的跟踪误 差不能在有限时间收敛,是渐近收敛的。由此,提出了终端滑模控制方法以解决滑模控制的 渐近收敛问题。但是,终端滑模控制存在两大问题:一是奇异问题,二是收敛时间与初始状 态及滑模参数有关。
发明内容
为解决上述问题,本发明提供了一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法。
本发明针对飞艇的航迹跟踪问题,建立了其空间运动的数学模型;以此模型为受控对象, 定义了一种指定时间收敛的终端滑模函数,设计了非奇异终端滑模航迹控制律。由该方法控 制的闭环系统能够在指定时间跟踪指令航迹,跟踪误差在指定时间内收敛至零,为飞艇航迹 控制的工程实现提供了有效方案。
本发明提供一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,包括以下步骤:
步骤S100:设定指令航迹:ηd=[xd,yd,zdddd]T,xd、yd、zd、θd、ψd和φd分 别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转角,上标T 表示向量或矩阵的转置,计算指令航迹与实际航迹之间的误差量e及其导数定义系统状态 误差为
步骤S200:建立飞艇空间运动的数学模型;
步骤S300:定义指定时间收敛的终端滑模面:
终端滑模面定义如下:
s=CE(t)-CP(t) (1)
式中,C=[c1,c2],cl=diag(cl1,cl2,cl3,cl4,cl5,cl6),clj>0为设计参数,l=1,2,j=1,2,3,4,5,6;p(t)=[p1(t),p2(t),p3(t),p4(t),p5(t),p6(t)]T,pi(t),i=1,2,3,4,5,6,其中,pi(t)满足以下条件:pi(t)∈C2[0,∞),pi (n)∈L,对 某一常数T>0,pi(t)在[0,T]区间有界,且pi(0)=ei(0),
函数pi(t)表达式为:
式中,k=0,1,2,aλn为设计参数,λ,n=0,1,2;
步骤S400:根据数学模型和终端滑模面设计终端滑模的航迹控制律u,
航迹控制律为:
其中,γ>0,
其中,在步骤S100中指令航迹为广义坐标ηd=[xd,yd,zdddd]T,xd、yd、zd、θd、ψd和φd分别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转 角,上标T表示向量或矩阵的转置;
步骤S500:根据控制律u计算航迹控制量,输出控制量对飞艇进行控制,对控制量的控 制结果进行判断是否满足预设控制要求,如果不满足,则调整控制参数后返回步骤S200重新 定义终端滑膜面,如果满足则控制结束。
进一步地,建立飞艇空间运动的数学模型包括以下步骤:
步骤S310:确定飞艇的坐标系及运动参数;
采用地面坐标系oexyz和体坐标系obxbybzb对飞艇的空间运动进行描述,CV为浮心,CG 为重心,浮心到重心的矢量为rG=[xG,yG,zG]T
运动参数定义:位置P=[x,y,z]T,x、y、z分别为轴向、侧向和竖直方向的位移;姿态 角Ω=[θ,ψ,φ]T,θ、ψ、φ分别为俯仰角、偏航角和滚转角;速度v=[u,v,w]T,u、v、w分别为体坐标系中轴向、侧向和垂直方向的速度;角速度ω=[p,q,r]T,p、q、r分别为滚转、俯仰和偏航角速度,
记广义坐标η=[x,y,z,θ,ψ,φ]T,广义速度为V=[u,v,w,p,q,r]T
步骤S320:构建飞艇的数学模型:
飞艇空间运动的数学模型描述如下:
式中
其中:
式中,m为飞艇质量,m11、m22、m33为附加质量,I11、I22、I33为附加惯量;Q为动 压,α为迎角,β为侧滑角,CX、CY、CZ、Cl、Cm、Cn为气动系数;Ix、Iy、Iz分别为绕obxb、 obyb、obzb的主惯量;Ixy、Ixz、Iyz分别为关于平面obxbyb、obxbzb、obybzb的惯量积;T为推 力大小,μ为推力矢量与obxbzb面之间的夹角,规定其在obxbzb面之左为正,υ为推力矢量在 obxbzb面的投影与obxb轴之间的夹角,规定其投影在obxb轴之下为正;lx、ly、lz表示推力作 用点距原点ob的距离,
式(5)为关于广义速度V的表达式,需要将其变换为关于广义坐标η的表达式,
由式(4)可得:
式中,J-1(η)为J(η)的逆矩阵,
对式(18)微分,可得
式中
式(21)左乘可得
综合式(5)、式(21)以及式(24)可得:
式中
Mη=RTMR (25)
u=RTτ (28)
其中,u=[u1,u2,u3,u4,u5,u6]T,τ=[τ123456]T
进一步地,按下式计算指令航迹与实际航迹之间的误差量:
e=η-ηd=[x-xd,y-yd,z-zd,θ-θd,ψ-ψd,φ-φd]T (29)
其中,η=[x,y,z,θ,ψ,φ]T为实际航迹,x、y、z、θ、ψ、φ分别为实际航迹的x坐 标、y坐标、z坐标、俯仰角、偏航角和滚转角。
进一步地,按下式计算指令航迹与实际航迹之间的误差量的导数:
本发明的技术效果:
1、本发明提供的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,该方法能够在指定 时间内使得跟踪误差收敛至零,解决了传统滑模控制的渐近收敛问题,且收敛时间能够任意 指定,与初始状态及滑模参数无关。
2、本发明提供的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,该方法有效避免了 终端滑模控制的奇异问题。控制工程师在应用过程中可以根据实际飞艇给定任意指令航迹, 并将由该方法得到的控制量传输至执行机构实现航迹控制功能。
具体请参考根据本发明的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法提出的各种 实施例的如下描述,将使得本发明的上述和其他方面显而易见。
附图说明
图1是本发明提供的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法流程示意图;
图2是本发明优选实施例中飞艇坐标系及运动参数定义示意图;
图3是为本发明优选实施例中飞艇航迹控制结果;
图4是本发明优选实施例中飞艇航迹控制误差结果示意图,其中包括X、Y、Z三个轴向 上的误差示意图;
图中符号说明如下:
η=[x,y,z,θ,ψ,φ]T为飞艇航迹,其中,x、y、z、θ、ψ、φ分别为实际航迹的x坐 标、y坐标、z坐标、俯仰角、偏航角和滚转角;
ηd=[xd,yd,zdddd]T为指令航迹,其中xd、yd、zd、θd、ψd和φd分别为指令x 坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转角;
V=[u,v,w,p,q,r]T为飞艇速度,其中,u、v、w分别为体坐标系中轴向、侧向和垂直方 向的速度,p、q、r分别为滚转、俯仰和偏航角速度;
oexyz表示地面坐标系;
obxbybzb表示飞艇体坐标系;
CV为飞艇的浮心;
CG为飞艇的重心;
rG=[xG,yG,zG]T为浮心到重心的矢量;
e=[xe,ye,zeeee]T为航迹控制误差,xe、ye、ze、θe、ψe和φe分别为航迹控制的x坐标误差、y坐标误差、z坐标误差、俯仰角误差、偏航角误差和滚转角误差;
u=[u1,u2,u3,u4,u5,u6]T为飞艇航迹控制量,u1为轴向控制力、u2为侧向控制力、u3为 垂直方向控制力、u4为滚转控制力矩、u5俯仰控制力矩、u6为偏航控制力矩。
具体实施方式
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及 其说明用于解释本发明,并不构成对本发明的不当限定。
本发明提供的一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,首先由给定的指 令航迹和实际航迹计算误差量及其导数,定义系统状态误差,然后设计一种指定时间收敛的 终端滑模面,设计非奇异终端滑模航迹控制律。实际应用中,飞艇航迹由组合导航系统测量 得到,将由该方法计算得到的控制量传输至执行机构即可实现航迹控制功能。
参见图1,本发明提供的一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,包括以 下步骤:
步骤S100:设定指令航迹:ηd=[xd,yd,zdddd]T,xd、yd、zd、θd、ψd和φd分 别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转角,上标T 表示向量或矩阵的转置,计算指令航迹与实际航迹之间的误差量e及其导数定义系统状态 误差为
步骤S200:建立飞艇空间运动的数学模型;
步骤S300:定义指定时间收敛的终端滑模面:
终端滑模面定义如下:
s=CE(t)-CP(t) (1)
式中,C=[c1,c2],cl=diag(cl1,cl2,cl3,cl4,cl5,cl6),clj>0为设计参数,l=1,2,j=1,2,3,4,5,6;p(t)=[p1(t),p2(t),p3(t),p4(t),p5(t),p6(t)]T。pi(t),i=1,2,3,4,5,6,其中,pi(t)满足以下条件:pi(t)∈C2[0,∞),pi (n)∈L,对 某一常数T>0,pi(t)在[0,T]区间有界,且pi(0)=ei(0),
函数pi(t)表达式为:
式中,k=0,1,2,aλn为设计参数,λ,n=0,1,2;
步骤S400:根据数学模型和终端滑模面设计终端滑模的航迹控制律u,
航迹控制律为:
其中,γ>0。
其中,在步骤S100中指令航迹为广义坐标ηd=[xd,yd,zdddd]T,xd、yd、zd、θd、ψd和φd分别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转 角,上标T表示向量或矩阵的转置;
步骤S500:根据控制律u计算航迹控制量,输出控制量对飞艇进行控制,对控制量的控 制结果进行判断是否满足预设控制要求,如果不满足,则调整控制参数后返回步骤S200重新 定义终端滑膜面,如果满足则控制结束。
通过设计得到的航迹控制律,在指定时间内使得跟踪误差收敛至零,且收敛时间能够任 意指定,与初始状态及滑模参数无关。该方法中未详述部分按现有方法中的常用步骤进行即 可。终端滑模控制的误差收敛时间由初始状态及滑模参数决定。飞艇空间运动的数学模型构 建可以按现有方法进行。
优选的,建立飞艇空间运动的数学模型包括以下步骤:
步骤S310:确定飞艇的坐标系及运动参数;
为便于描述,飞艇空间运动的坐标系及运动参数如图2所示,采用地面坐标系oexyz和体 坐标系obxbybzb对飞艇的空间运动进行描述,CV为浮心,CG为重心,浮心到重心的矢量为 rG=[xG,yG,zG]T
运动参数定义:位置P=[x,y,z]T,x、y、z分别为轴向、侧向和竖直方向的位移;姿态 角Ω=[θ,ψ,φ]T,θ、ψ、φ分别为俯仰角、偏航角和滚转角;速度v=[u,v,w]T,u、v、w分别为体坐标系中轴向、侧向和垂直方向的速度;角速度ω=[p,q,r]T,p、q、r分别为滚转、俯仰和偏航角速度。
记广义坐标η=[x,y,z,θ,ψ,φ]T,广义速度为V=[u,v,w,p,q,r]T
步骤S320:构建飞艇的数学模型:
飞艇空间运动的数学模型描述如下:
式中
其中
式中,m为飞艇质量,m11、m22、m33为附加质量,I11、I22、I33为附加惯量;Q为动 压,α为迎角,β为侧滑角,CX、CY、CZ、Cl、Cm、Cn为气动系数;Ix、Iy、Iz分别为绕obxb、 obyb、obzb的主惯量;Ixy、Ixz、Iyz分别为关于平面obxbyb、obxbzb、obybzb的惯量积;T为推 力大小,μ为推力矢量与obxbzb面之间的夹角,规定其在obxbzb面之左为正,υ为推力矢量在 obxbzb面的投影与obxb轴之间的夹角,规定其投影在obxb轴之下为正;lx、ly、lz表示推力作 用点距原点ob的距离。
式(5)为关于广义速度V的表达式,需要将其变换为关于广义坐标η的表达式。
由式(4)可得:
式中,J-1(η)为J(η)的逆矩阵。
对式(18)微分,可得
式中
式(21)左乘可得
综合式(5)、式(21)以及式(24)可得:
式中
Mη=RTMR (25)
u=RTτ (28)
其中,u=[u1,u2,u3,u4,u5,u6]T,τ=[τ123456]T
优选的,按下式计算指令航迹与实际航迹之间的误差量:
e=η-ηd=[x-xd,y-yd,z-zd,θ-θd,ψ-ψd,φ-φd]T (29)
其中,η=[x,y,z,θ,ψ,φ]T为实际航迹,x、y、z、θ、ψ、φ分别为实际航迹的x坐 标、y坐标、z坐标、俯仰角、偏航角和滚转角。
优选的,按下式计算指令航迹与实际航迹之间的误差量的导数:
下面结合附图,对本发明中的设计方法作进一步的说明:
本发明提供的一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,包括以下步骤:
步骤一:给定指令航迹
给定指令航迹为:
ηd=[xd,yd,zdddd]T=[180sin(0.01t)m,120sin(0.02t)m,10m,0rad,0.02rad,0rad]T,xd、yd、zd、θd、ψd和φd分别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、 指令偏航角和指令滚转角;
步骤二:误差量计算
计算指令航迹与实际航迹之间的误差量:
e=η-ηd=[x-xd,y-yd,z-zd,θ-θd,ψ-ψd,φ-φd]T
其中,η=[x,y,z,θ,ψ,φ]T为实际航迹,x、y、z、θ、ψ、φ分别为实际航迹的x坐 标、y坐标、z坐标、俯仰角、偏航角和滚转角,为连续变化值。
初始航迹为:
η0=[x0,y0,z0000]T=[50m,-50m,10m,0.01rad,0.01rad,0.01rad]T
初始速度:
V0=[u0,v0,w0,p0,q0,r0]T=[15m/s,2.5m/s,0m/s,0.001rad/s,0.001rad/s,0rad/s]T
步骤三:设计航迹控制律:
1)建立飞艇空间运动的数学模型
飞艇空间运动的数学模型可表示为:
式中
其中
式中,m为飞艇质量,m11、m22、m33为附加质量,I11、I22、I33为附加惯量;Q为动 压,α为迎角,β为侧滑角,CX、CY、CZ、Cl、Cm、Cn为气动系数;Ix、Iy、Iz分别 为绕obxb、obyb、obzb的主惯量;Ixy、Ixz、Iyz分别为关于平面obxbyb、obxbzb、obybzb的 惯量积;T为推力大小,μ为推力矢量与obxbzb面之间的夹角,规定其在obxbzb面之左为正, υ为推力矢量在obxbzb面的投影与obxb轴之间的夹角,规定其投影在obxb轴之下为正;lx、ly、 lz表示推力作用点距原点ob的距离。
式(31)为关于广义速度V的表达式,需要将其变换为关于广义坐标η的表达式。
由式(30)可得:
式中,J-1(η)为J(η)的逆矩阵,
对式(44)微分,可得
式中
式(47)左乘可得
综合式(31)、式(47)以及式(49)可得:
式中
Mη(η)=RTMR (52)
u=RTτ (55)
其中,u=[u1,u2,u3,u4,u5,u6]T,τ=[τ123456]T
本实施例中的飞艇参数见表1。
表1飞艇参数表
参数 数值 参数 数值
m 9.5kg m11 1.2kg
m22 7.5kg m33 7.5kg
Ix 2.2kg·m2 Iy 19kg·m2
Iz 19.2kg·m2 Ixz 0kg·m2
I11 0kg·m2 I22 9.1kg·m2
I33 9.1kg·m2 xc 0m
yc 0m zc -0.05m
lx 0m ly 0.02m
lz -0.06m
2)航迹控制律设计
定义如下终端滑模面:
s=CE(t)-CP(t) (56)
式中,C=[c1,c2],c1=diag(2,2,2,5,5,5), c2=diag(0.001,0.002,0.002,0.01,0.01,0.01);diag(·)表示对角矩阵; p(t)=[p1(t),p2(t),p3(t),p4(t),p5(t),p6(t)]T。pi(t), i=1,2,3,4,5,6,pi(t)表达式为:
其中,T=20s。
设计航迹控制律,航迹控制量为:
其中,γ=10。
本实施例中的飞艇三维航迹跟踪结果如图3~4所示。图3给出了飞艇航迹控制结果,由 图3可得:飞艇的实际航迹η能够准确地跟踪指令航迹ηd,验证了本发明所提出的航迹控制 方法的有效准确性。图4为航迹控制误差,由图4可得:飞艇X、Y、Z方向上的航迹控制误 差能够在较短的指定的时间内收敛至零,均能在20s左右的时间内实现收敛。
本领域技术人员将清楚本发明的范围不限制于以上讨论的示例,有可能对其进行若干改 变和修改,而不脱离所附权利要求书限定的本发明的范围。尽管己经在附图和说明书中详细 图示和描述了本发明,但这样的说明和描述仅是说明或示意性的,而非限制性的。本发明并 不限于所公开的实施例。
通过对附图,说明书和权利要求书的研究,在实施本发明时本领域技术人员可以理解和 实现所公开的实施例的变形。在权利要求书中,术语“包括”不排除其他步骤或元素,而不 定冠词“一个”或“一种”不排除多个。在彼此不同的从属权利要求中引用的某些措施的事 实不意味着这些措施的组合不能被有利地使用。权利要求书中的任何参考标记不构成对本发 明的范围的限制。

Claims (4)

1.一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,其特征在于,包括以下步骤:
步骤S100:设定指令航迹:ηd=[xd,yd,zdddd]T,xd、yd、zd、θd、ψd和φd分别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转角,上标T表示向量或矩阵的转置,计算所述指令航迹与实际航迹之间的误差量e及其导数定义系统状态误差为
步骤S200:建立飞艇空间运动的数学模型;
步骤S300:定义指定时间收敛的终端滑模面:
所述终端滑模面定义如下:
s=CE(t)-CP(t) (1)
式中,C=[c1,c2],cl=diag(cl1,cl2,cl3,cl4,cl5,cl6),clj>0为设计参数,l=1,2,j=1,2,3,4,5,6;p(t)=[p1(t),p2(t),p3(t),p4(t),p5(t),p6(t)]T,pi(t),i=1,2,3,4,5,6,其中,pi(t)满足以下条件:pi(t)∈C2[0,∞),对某一常数T>0,pi(t)在[0,T]区间有界,且pi(0)=ei(0),
函数pi(t)表达式为:
<mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>2</mn> </munderover> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> <msup> <msub> <mi>e</mi> <mi>&amp;lambda;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <msup> <mi>t</mi> <mi>k</mi> </msup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>2</mn> </munderover> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>2</mn> </munderover> <mfrac> <msub> <mi>a</mi> <mrow> <mi>&amp;lambda;</mi> <mi>n</mi> </mrow> </msub> <msup> <mi>T</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> </mrow> </msup> </mfrac> <msup> <msub> <mi>e</mi> <mi>&amp;lambda;</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> <msup> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <mi>t</mi> <mo>&amp;le;</mo> <mi>T</mi> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&gt;</mo> <mi>T</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式中,k=0,1,2,aλn为设计参数,λ,n=0,1,2;
步骤S400:根据所述数学模型和所述终端滑模面设计所述终端滑模的航迹控制律u,
所述航迹控制律为:
<mrow> <mi>u</mi> <mo>=</mo> <msub> <mi>N</mi> <mi>&amp;eta;</mi> </msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>G</mi> <mi>&amp;eta;</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>&amp;eta;</mi> </msub> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>&amp;eta;</mi> </msub> <mover> <mi>p</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>M</mi> <mi>&amp;eta;</mi> </msub> <msubsup> <mi>c</mi> <mn>2</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>c</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mover> <mi>p</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;gamma;</mi> <mfrac> <mrow> <msubsup> <mi>c</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mi>s</mi> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msubsup> <mi>c</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mi>s</mi> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
其中,γ>0,
其中,在步骤S100中所述指令航迹为广义坐标ηd=[xd,yd,zdddd]T,xd、yd、zd、θd、ψd和φd分别为指令x坐标、指令y坐标、指令z坐标、指令俯仰角、指令偏航角和指令滚转角,上标T表示向量或矩阵的转置;
步骤S500:根据所述控制律u计算航迹控制量,输出所述控制量对所述飞艇进行控制,对所述控制量的控制结果进行判断是否满足预设控制要求,如果不满足,则调整控制参数后返回步骤S200重新定义所述终端滑膜面,如果满足则控制结束。
2.根据权利要求1所述的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,其特征在于,所述建立飞艇空间运动的数学模型包括以下步骤:
步骤S310:确定所述飞艇的坐标系及运动参数;
采用地面坐标系oexyz和体坐标系obxbybzb对飞艇的空间运动进行描述,CV为浮心,CG为重心,浮心到重心的矢量为rG=[xG,yG,zG]T
运动参数定义:位置P=[x,y,z]T,x、y、z分别为轴向、侧向和竖直方向的位移;姿态角Ω=[θ,ψ,φ]T,θ、ψ、φ分别为俯仰角、偏航角和滚转角;速度v=[u,v,w]T,u、v、w分别为体坐标系中轴向、侧向和垂直方向的速度;角速度ω=[p,q,r]T,p、q、r分别为滚转、俯仰和偏航角速度,
记广义坐标η=[x,y,z,θ,ψ,φ]T,广义速度为V=[u,v,w,p,q,r]T
步骤S320:构建所述飞艇的数学模型:
飞艇空间运动的数学模型描述如下:
<mrow> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>J</mi> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>J</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>J</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>V</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>M</mi> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>N</mi> <mo>&amp;OverBar;</mo> </mover> <mo>+</mo> <mover> <mi>G</mi> <mo>&amp;OverBar;</mo> </mover> <mo>+</mo> <mi>&amp;tau;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
式中
<mrow> <msub> <mi>J</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>-</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>-</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>sec</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sec</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>M</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>mz</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>my</mi> <mi>G</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>22</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>mz</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>mx</mi> <mi>G</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>33</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>my</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>mx</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>mz</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>my</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>11</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>mz</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>mx</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>22</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>mx</mi> <mi>G</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>33</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>G</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>B</mi> <mo>-</mo> <mi>G</mi> <mo>)</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>G</mi> <mo>-</mo> <mi>B</mi> <mo>)</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>G</mi> <mo>-</mo> <mi>B</mi> <mo>)</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>G</mi> </msub> <mi>G</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>G</mi> </msub> <mi>G</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>x</mi> <mi>G</mi> </msub> <mi>G</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>G</mi> </msub> <mi>G</mi> <mi> </mi> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>G</mi> </msub> <mi>G</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>+</mo> <msub> <mi>y</mi> <mi>G</mi> </msub> <mi>G</mi> <mi> </mi> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;tau;</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>T</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;mu;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;upsi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>T</mi> <mi> </mi> <mi>sin</mi> <mi>&amp;mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>T</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;mu;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;upsi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>T</mi> <mi> </mi> <mi>sin</mi> <mi>&amp;upsi;</mi> <msub> <mi>l</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>T</mi> <mi> </mi> <msub> <mi>cos&amp;upsi;l</mi> <mi>z</mi> </msub> <mo>-</mo> <mi>T</mi> <mi> </mi> <msub> <mi>sin&amp;upsi;l</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>T</mi> <mi> </mi> <msub> <mi>cos&amp;upsi;l</mi> <mi>z</mi> </msub> <mo>-</mo> <mi>T</mi> <mi> </mi> <msub> <mi>sin&amp;upsi;l</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>N</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>N</mi> <mi>u</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>v</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>w</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>p</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>q</mi> </msub> <mo>,</mo> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
其中:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>u</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mi>v</mi> <mi>r</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>33</mn> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mi>q</mi> <mo>+</mo> <mi>m</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>y</mi> <mi>G</mi> </msub> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>G</mi> </msub> <mi>p</mi> <mi>r</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msup> <mi>QV</mi> <mrow> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>C</mi> <mi>X</mi> </msub> <mi>cos</mi> <mi>&amp;alpha;</mi> <mi>cos</mi> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>C</mi> <mi>Y</mi> </msub> <mi>cos</mi> <mi>&amp;alpha;</mi> <mi>sin</mi> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>C</mi> <mi>Z</mi> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>v</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>33</mn> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mi>p</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mi>u</mi> <mi>r</mi> <mo>-</mo> <mi>m</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>G</mi> </msub> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mi>G</mi> </msub> <mi>q</mi> <mi>r</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msup> <mi>QV</mi> <mrow> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>X</mi> </msub> <mi>sin</mi> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>C</mi> <mi>Y</mi> </msub> <mi>cos</mi> <mi>&amp;beta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>w</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mi>v</mi> <mi>p</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mi>u</mi> <mi>q</mi> <mo>-</mo> <mi>m</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>G</mi> </msub> <mi>p</mi> <mi>r</mi> <mo>+</mo> <msub> <mi>y</mi> <mi>G</mi> </msub> <mi>q</mi> <mi>r</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msup> <mi>QV</mi> <mrow> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>C</mi> <mi>X</mi> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> <mi>sin</mi> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>C</mi> <mi>Y</mi> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> <mi>cos</mi> <mi>&amp;beta;</mi> <mo>-</mo> <msub> <mi>C</mi> <mi>Z</mi> </msub> <mi>cos</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>p</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>z</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>33</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>q</mi> <mi>r</mi> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mi>p</mi> <mi>r</mi> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>mz</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mi>r</mi> <mo>-</mo> <mi>w</mi> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>y</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mi>q</mi> <mo>-</mo> <mi>v</mi> <mi>p</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>QVC</mi> <mi>l</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>q</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>z</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>33</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>p</mi> <mi>r</mi> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mi>q</mi> <mi>r</mi> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>m</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mi>p</mi> <mo>-</mo> <mi>u</mi> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>w</mi> <mi>p</mi> <mo>-</mo> <mi>v</mi> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>QVC</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mi>q</mi> <mi>r</mi> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> <mi>p</mi> <mi>r</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>m</mi> <mo>&amp;lsqb;</mo> <msub> <mi>y</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>w</mi> <mi>q</mi> <mo>-</mo> <mi>v</mi> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mi>r</mi> <mo>-</mo> <mi>w</mi> <mi>p</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>QVC</mi> <mi>n</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
式中,m为飞艇质量,m11、m22、m33为附加质量,I11、I22、I33为附加惯量;Q为动压,α为迎角,β为侧滑角,CX、CY、CZ、Cl、Cm、Cn为气动系数;Ix、Iy、Iz分别为绕obxb、obyb、obzb的主惯量;Ixy、Ixz、Iyz分别为关于平面obxbyb、obxbzb、obybzb的惯量积;T为推力大小,μ为推力矢量与obxbzb面之间的夹角,规定其在obxbzb面之左为正,υ为推力矢量在obxbzb面的投影与obxb轴之间的夹角,规定其投影在obxb轴之下为正;lx、ly、lz表示推力作用点距原点ob的距离,
式(5)为关于广义速度V的表达式,需要将其变换为关于广义坐标η的表达式,
由式(4)可得:
<mrow> <mi>V</mi> <mo>=</mo> <msup> <mi>J</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mi>B</mi> </mtd> </mtr> </mtable> </mfenced> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
式中,J-1(η)为J(η)的逆矩阵,
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>-</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>-</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
对式(18)微分,可得
<mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>R</mi> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
式中
<mrow> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>A</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mover> <mi>B</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
式(21)左乘可得
<mrow> <msup> <mi>R</mi> <mi>T</mi> </msup> <mi>M</mi> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mi>R</mi> <mi>T</mi> </msup> <mi>M</mi> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <mi>R</mi> <mi>T</mi> </msup> <mi>M</mi> <mi>R</mi> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
综合式(5)、式(21)以及式(24)可得:
<mrow> <msub> <mi>M</mi> <mi>&amp;eta;</mi> </msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>N</mi> <mi>&amp;eta;</mi> </msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>G</mi> <mi>&amp;eta;</mi> </msub> <mo>=</mo> <mi>u</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
式中
Mη=RTMR (25)
<mrow> <msub> <mi>N</mi> <mi>&amp;eta;</mi> </msub> <mo>=</mo> <msup> <mi>R</mi> <mi>T</mi> </msup> <mi>M</mi> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>G</mi> <mi>&amp;eta;</mi> </msub> <mo>=</mo> <mo>-</mo> <msup> <mi>R</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mover> <mi>N</mi> <mo>&amp;OverBar;</mo> </mover> <mo>+</mo> <mover> <mi>G</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
u=RTτ (28)
其中,u=[u1,u2,u3,u4,u5,u6]T,τ=[τ123456]T
3.根据权利要求1所述的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,其特征在于,按下式计算所述指令航迹与所述实际航迹之间的误差量:
e=η-ηd=[x-xd,y-yd,z-zd,θ-θd,ψ-ψd,φ-φd]T(29)
其中,η=[x,y,z,θ,ψ,φ]T为实际航迹,x、y、z、θ、ψ、φ分别为实际航迹的x坐标、y坐标、z坐标、俯仰角、偏航角和滚转角。
4.根据权利要求3所述的飞艇航迹跟踪的指定时间非奇异终端滑模控制方法,其特征在于,按下式计算所述指令航迹与实际航迹之间的误差量的导数:
<mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>,</mo> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>,</mo> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>,</mo> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>,</mo> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>,</mo> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> 4
CN201710731297.2A 2017-08-23 2017-08-23 一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法 Active CN107450319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710731297.2A CN107450319B (zh) 2017-08-23 2017-08-23 一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710731297.2A CN107450319B (zh) 2017-08-23 2017-08-23 一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法

Publications (2)

Publication Number Publication Date
CN107450319A true CN107450319A (zh) 2017-12-08
CN107450319B CN107450319B (zh) 2020-10-30

Family

ID=60493838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710731297.2A Active CN107450319B (zh) 2017-08-23 2017-08-23 一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法

Country Status (1)

Country Link
CN (1) CN107450319B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781828A (zh) * 2020-06-17 2020-10-16 中国人民解放军军事科学院国防科技创新研究院 基于自适应非奇异终端滑膜控制的航天器集群控制方法
CN115268503A (zh) * 2022-09-28 2022-11-01 中国人民解放军国防科技大学 一种去奇异化的多飞行器三维协同制导方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360686A (zh) * 2014-11-07 2015-02-18 中国人民解放军国防科学技术大学 一种飞艇非奇异终端滑模航迹控制方法
CN105242683A (zh) * 2015-11-04 2016-01-13 中国人民解放军国防科学技术大学 一种飞艇神经网络终端滑模航迹控制方法
JP2016057909A (ja) * 2014-09-10 2016-04-21 日産自動車株式会社 スライディングモード制御装置及び制御方法並びに車両位置決め制御装置
CN105700542A (zh) * 2016-03-30 2016-06-22 北京航空航天大学 一种基于矢量场制导和最小二乘法的平流层飞艇控制分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057909A (ja) * 2014-09-10 2016-04-21 日産自動車株式会社 スライディングモード制御装置及び制御方法並びに車両位置決め制御装置
CN104360686A (zh) * 2014-11-07 2015-02-18 中国人民解放军国防科学技术大学 一种飞艇非奇异终端滑模航迹控制方法
CN105242683A (zh) * 2015-11-04 2016-01-13 中国人民解放军国防科学技术大学 一种飞艇神经网络终端滑模航迹控制方法
CN105700542A (zh) * 2016-03-30 2016-06-22 北京航空航天大学 一种基于矢量场制导和最小二乘法的平流层飞艇控制分配方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUENENG YANG,ET AL.: "Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic airships", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *
杨跃能 等: "自主飞艇姿态跟踪的终端滑模控制", 《中国空间科学技术》 *
杨跃能: "平流层飞艇动力学建模与控制方法研究", 《CNKI中国博士学位论文全文数据库(电子期刊)工程科技II辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781828A (zh) * 2020-06-17 2020-10-16 中国人民解放军军事科学院国防科技创新研究院 基于自适应非奇异终端滑膜控制的航天器集群控制方法
CN111781828B (zh) * 2020-06-17 2022-05-10 中国人民解放军军事科学院国防科技创新研究院 基于自适应非奇异终端滑模控制的航天器集群控制方法
CN115268503A (zh) * 2022-09-28 2022-11-01 中国人民解放军国防科技大学 一种去奇异化的多飞行器三维协同制导方法

Also Published As

Publication number Publication date
CN107450319B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN107491088B (zh) 一种输入饱和的飞艇航迹控制方法
CN106842912B (zh) 高超声速机动飞行抗舵面饱和鲁棒控制方法
CN104360686B (zh) 一种飞艇非奇异终端滑模航迹控制方法
CN104793629B (zh) 一种飞艇三维航迹跟踪的反步神经网络控制方法
CN103558857A (zh) 一种btt飞行器的分布式复合抗干扰姿态控制方法
CN105116914B (zh) 一种平流层飞艇解析模型预测路径跟踪控制方法
CN109703768B (zh) 一种基于姿态/轨迹复合控制的软式空中加油对接方法
CN108663936B (zh) 模型不确定航天器无退绕姿态跟踪有限时间控制方法
CN105242683B (zh) 一种飞艇神经网络终端滑模航迹控制方法
CN106444822A (zh) 一种基于空间矢量场制导的平流层飞艇路径跟踪控制方法
Zhu et al. Approximate trajectory tracking of input‐disturbed PVTOL aircraft with delayed attitude measurements
Chen et al. Adaptive path following control of a stratospheric airship with full-state constraint and actuator saturation
CN104536448B (zh) 一种基于Backstepping法的无人机姿态系统控制方法
CN107817818B (zh) 一种模型不确定飞艇航迹跟踪有限时间控制方法
CN114815888B (zh) 一种仿射形式的制导控制一体化控制方法
Cheng et al. Robust three-dimensional path-following control for an under-actuated stratospheric airship
Prach et al. Development of a state dependent riccati equation based tracking flight controller for an unmanned aircraft
CN107450319A (zh) 一种飞艇航迹跟踪的指定时间非奇异终端滑模控制方法
CN114721266A (zh) 飞机舵面结构性缺失故障情况下的自适应重构控制方法
Cao et al. Passive fault tolerant control approach for hypersonic vehicle with actuator loss of effectiveness faults
CN107703967B (zh) 一种控制受限飞艇航迹控制方法
Saeed et al. Modeling and control of unmanned finless airship with robotic arms
CN106125757B (zh) 一种欠驱动飞艇航迹跟踪控制方法
Wang et al. Nonlinear disturbance observer-based sliding backstepping hovering control of a quadrotor
Cho et al. Lyapunov-based three-dimensional nonlinear path-following guidance law

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant