CN107437583A - 电阻式内存 - Google Patents

电阻式内存 Download PDF

Info

Publication number
CN107437583A
CN107437583A CN201710089853.0A CN201710089853A CN107437583A CN 107437583 A CN107437583 A CN 107437583A CN 201710089853 A CN201710089853 A CN 201710089853A CN 107437583 A CN107437583 A CN 107437583A
Authority
CN
China
Prior art keywords
resistive memory
layer
doped region
electrode layer
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710089853.0A
Other languages
English (en)
Inventor
张鼎张
张冠张
蔡宗鸣
潘致宏
陈柏勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Publication of CN107437583A publication Critical patent/CN107437583A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明公开一种电阻式内存,用于解决现有技术中电阻式内存的可靠度不佳的问题,本发明的电阻式内存包括:一个变阻层;及两个电极层,分别结合于该变阻层,各电极层设有一个掺杂区域,该掺杂区域含有重金属元素。借此,可确实解决上述问题。

Description

电阻式内存
技术领域
本发明关于一种电阻式内存;特别是关于一种在电极掺杂重金属元素的电阻式内存。
背景技术
内存(Memory)广泛的使用在各种电子产品上,随着数据储存需求与日俱增,对于内存容量以及性能的要求也越来越高,在各种内存组件中,电阻式内存(RRAM)具有极低的操作电压、极快的读写速度以及高度的组件尺寸可微缩性等优点,有机会取代传统的闪存(Flash Memory)以及动态随机存取内存(DRAM),成为下个时代的内存组件主流。
现有技术中电阻式内存具有两个电极层及一个电阻切换层,该电阻切换层设置于该两个电极层之间,以形成金属/介电/金属(MIM)结构,该电阻切换层内部金属丝可由电场控制氧化(oxidation)/还原(reduction)反应过程,切换该电阻切换层为低阻态(LRS)/高阻态(HRS),用以储存两种逻辑状态(如:0或1)。
但是,现有技术的电阻式内存在操作过程中,该电阻切换层的氧离子会移动,随着操作次数增加,移动后的氧离子会逐渐对内存组件结构造成破坏,导致电阻式内存组件的可靠度不佳。
有鉴于此,上述先前技术在实际使用时确有不便之处,亟需进一步改良,以提升其实用性。
发明内容
本发明提供一种可提升组件可靠度的电阻式内存。
本发明公开一种电阻式内存,可包括:一个变阻层;及两个电极层,分别结合于该变阻层,各电极层设有一个掺杂区域,该掺杂区域含有重金属元素。
所述掺杂区域可邻近该电极层与该变阻层的界面;所述该掺杂区域形成层状;所述重金属元素可为镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、铪(Hf)、钽(Ta)、钨(W)、铼(Re)、锇(Os)、铱(Ir)、铂(Pt)、金(Au)、汞(Hg)、铊(Tl)、铅(Pb)或其组合的群组;所述电极层可形成一个多层结构。借此,可利用该掺杂区域中的重金属元素防范该变阻层中的氧离子破坏组件结构,以提高组件可靠度及延长使用寿命。
上述电阻式内存的电极层含有重金属元素构成的掺杂区域,用以防范该变阻层中的氧离子破坏组件结构,可确保阻态判读正确,达到“提升组件可靠度”的目的,可以改善现有技术电阻式内存的可靠度不佳的问题。
附图说明
图1:本发明的电阻式内存实施例的组合剖视图;
图2:本发明的电阻式内存实施例与现有技术电阻式内存的电性曲线比较图。
附图标记说明
1 变阻层 2 电极层
21 掺杂区域
C1 现有技术电阻式内存的电性曲线
C2 本发明电阻式内存的电性曲线
具体实施方式
为使本发明的上述及其他目的、特征及优点能更明显易懂,下文特根据本发明的较佳实施例,并配合所附附图,作详细说明如下:
本发明全文所述的方向性用语,例如“前”、“后”、“左”、“右”、“上(顶)”、“下(底”、“内”、“外”、“侧”等,主要参考附加附图的方向,各方向性用语仅用以辅助说明及理解本发明的各实施例,并非用以限制本发明。
本发明全文所述的“重金属元素”,是指原子序大于镧(La,原子序数为57)的元素,是本发明所属技术领域中的技术人员可以理解的。
请参阅图1所示,其是本发明电阻式内存实施例的立体组合图。其中,该电阻式内存实施例可包括一个变阻层1及两个电极层2,该两个电极层2分别结合于该变阻层1。
在此实施例中,该变阻层1可由二氧化硅(SiO2)或氧化铪(HfO)等含氧绝缘材料构成,但是不以此为限;各电极层2可由导电材料制成,如:铟锡氧化物(ITO)或氮化钛(TiN)等,各电极层2可构成单层或多层构造,各电极层2可设一个掺杂区域21,该掺杂区域21可含有重金属元素,如:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、铪(Hf)、钽(Ta)、钨(W)、铼(Re)、锇(Os)、铱(Ir)、铂(Pt)、金(Au)、汞(Hg)、铊(Tl)、铅(Pb)或其组合的群组,使该电极层2形成布置有重金属元素的三维空间范围,用以防范该变阻层1中的氧离子破坏组件结构,该掺杂区域21可邻近该电极层2与该变阻层1的接口,该掺杂区域21的重金属元素更可集中形成层状,以提高阻隔氧离子的效果,以下仅以该掺杂区域21含有钆(Gd)为例说明,但是不以此为限。
请再参阅图1所示,本发明的电阻式内存实施例使用时,可于该两个电极层2施加一个外在电场(图未绘示),用以驱动该变阻层1中的氧离子产生氧化/还原反应,使该变阻层1切换成不同阻态,如:高阻态(HRS)及低阻态(LRS)。值得注意的是,由于各电极层2含有重金属元素构成的掺杂区域21,随着操作次数增加,若该变阻层1中的氧离子朝向该电极层2移动,则可通过该掺杂区域21所含重金属元素的质量远大于氧离子的质量的特性,利用完全非弹性碰撞的原理,若被碰撞元素(重金属元素)的质量远大于碰撞元素(氧离子)的质量,则重金属元素可吸收氧离子的动能,使电阻式内存组件结构不因氧离子的长期碰撞而损坏,进而提升组件可靠度及延长使用寿命。
请参阅图2所示,其是本发明电阻式内存实施例与现有技术电阻式内存的电性曲线比较图。其中,现有技术电阻式内存(变阻层仅含氧化物)的电性曲线为C1,本发明电阻式内存实施例(变阻层1含氧化物,电极层含重金属元素Gd)的电性曲线为C2,参酌曲线C1、C2可知,经过一定次数操作后,现有技术电阻式内存的C1曲线的高、低阻态的电流值过于接近,容易造成阻态判读错误,导致可靠度不佳;相比较之下,本发明电阻式内存实施例的C2曲线的高、低阻态的电流值大幅分开,可确保阻态判读正确,达到“提升组件可靠度”及“延长使用寿命”等目的,可以改善现有技术电阻式内存的可靠度不佳问题。
并且,本发明电阻式内存实施例的电极层含有重金属元素构成的掺杂区域,用以防范该变阻层中的氧离子破坏组件结构,可确保阻态判读正确,达到“提升组件可靠度”的目的,可以改善现有技术电阻式内存的可靠度不佳问题。

Claims (5)

1.一种电阻式内存,其特征在于,包括:
一个变阻层;及
两个电极层,分别结合于该变阻层,各电极层设有一个掺杂区域,该掺杂区域含有重金属元素。
2.根据权利要求1所述的电阻式内存,其特征在于,该掺杂区域邻近该电极层与该变阻层的界面。
3.根据权利要求1所述的电阻式内存,其特征在于,该掺杂区域形成层状。
4.根据权利要求1所述的电阻式内存,其特征在于,该重金属元素为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、铪、钽、钨、铼、锇、铱、铂、金、汞、铊、铅或其组合的群组。
5.根据权利要求1所述的电阻式内存,其特征在于,该电极层形成一个多层结构。
CN201710089853.0A 2016-05-27 2017-02-20 电阻式内存 Pending CN107437583A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105116649A TWI651852B (zh) 2016-05-27 2016-05-27 電阻式記憶體
TW105116649 2016-05-27

Publications (1)

Publication Number Publication Date
CN107437583A true CN107437583A (zh) 2017-12-05

Family

ID=60418291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710089853.0A Pending CN107437583A (zh) 2016-05-27 2017-02-20 电阻式内存

Country Status (3)

Country Link
US (1) US9935265B2 (zh)
CN (1) CN107437583A (zh)
TW (1) TWI651852B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205238B2 (en) * 2004-10-21 2007-04-17 Sharp Laboratories Of America, Inc. Chemical mechanical polish of PCMO thin films for RRAM applications
US7208372B2 (en) * 2005-01-19 2007-04-24 Sharp Laboratories Of America, Inc. Non-volatile memory resistor cell with nanotip electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935957B2 (en) * 2005-08-12 2011-05-03 Semiconductor Energy Laboratory Co., Ltd. Memory device and a semiconductor device
US8817524B2 (en) * 2011-07-29 2014-08-26 Intermolecular, Inc. Resistive random access memory cells having metal alloy current limiting layers
US8890109B2 (en) * 2012-12-20 2014-11-18 Intermolecular, Inc. Resistive random access memory access cells having thermally isolating structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205238B2 (en) * 2004-10-21 2007-04-17 Sharp Laboratories Of America, Inc. Chemical mechanical polish of PCMO thin films for RRAM applications
US7208372B2 (en) * 2005-01-19 2007-04-24 Sharp Laboratories Of America, Inc. Non-volatile memory resistor cell with nanotip electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIE SHANG ET AL.: ""Thermally Stable Transparent Resistive Random Access Memory based on All-Oxide Heterostructures"", 《ADVANCED FUNCTIONAL MATERIALS》 *
PO-HSUN CHEN ET AL.: ""Improving Performance by Doping Gadolinium Into the Indium-Tin–Oxide Electrode in HfO2-Based Resistive Random Access Memory"", 《IEEE ELECTRON DEVICE LETTERS》 *

Also Published As

Publication number Publication date
US9935265B2 (en) 2018-04-03
TWI651852B (zh) 2019-02-21
US20170346004A1 (en) 2017-11-30
TW201742248A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US9099639B2 (en) Resistance switching material element and device employing the same
US8274065B2 (en) Memory and method of fabricating the same
CN105431906B (zh) 存储器单元、数据存储装置以及形成存储器单元的方法
US8031509B2 (en) Conductive metal oxide structures in non-volatile re-writable memory devices
US9269902B2 (en) Embedded resistors for resistive random access memory cells
WO2014110331A1 (en) Three or more resistive state random access memory cell
JP4959578B2 (ja) 保持時間及び書き込み速度の改善したイオン導電体物質メモリ及びそのマトリックス
US20110149634A1 (en) Non-volatile memory device ion barrier
US20140175360A1 (en) Bilayered Oxide Structures for ReRAM Cells
CN102610263A (zh) 存储器装置和操作这些存储器装置的方法
CN102956822A (zh) 非易失性存储元件及包括该非易失性存储元件的存储装置
US20140175362A1 (en) Limited Maximum Fields of Electrode-Switching Layer Interfaces in Re-RAM Cells
CN1638125B (zh) 半导体器件的非易失性电容器、半导体存储器及工作方法
CN103682093A (zh) 电阻式存储单元、电阻式存储阵列及其形成方法
CN103500797A (zh) 阻变存储器单元及其制造方法
US9153778B2 (en) Resistive switching devices and memory devices including the same
JP5406782B2 (ja) 不揮発性半導体記憶装置
US8995171B2 (en) Designing method of non-volatile memory device, manufacturing method of non-volatile memory device, and non-volatile memory device
CN107437583A (zh) 电阻式内存
CN110854266A (zh) 阻变存储器及其形成方法
CN103236497A (zh) 一种基于钛酸铋的阻变存储器及其制备方法
CN106169534B (zh) 一种适用于交叉阵列的自选择阻变存储器及其读取方法
US11848039B2 (en) Cross-point MRAM including self-compliance selector
CN111640862B (zh) 一种集成电路器件和其形成方法及电子设备
US9786368B2 (en) Two stage forming of resistive random access memory cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171205