CN107417911B - 一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺 - Google Patents

一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺 Download PDF

Info

Publication number
CN107417911B
CN107417911B CN201710578196.6A CN201710578196A CN107417911B CN 107417911 B CN107417911 B CN 107417911B CN 201710578196 A CN201710578196 A CN 201710578196A CN 107417911 B CN107417911 B CN 107417911B
Authority
CN
China
Prior art keywords
attapulgite
composite material
conductive polymer
preparation process
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710578196.6A
Other languages
English (en)
Other versions
CN107417911A (zh
Inventor
姚超
左士祥
陈群
刘文杰
李霞章
卓仲标
周铭
郭小平
钱大庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710578196.6A priority Critical patent/CN107417911B/zh
Publication of CN107417911A publication Critical patent/CN107417911A/zh
Application granted granted Critical
Publication of CN107417911B publication Critical patent/CN107417911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于粘土矿物的深加工与高值化利用领域,特别涉及一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺。将天然凹凸棒石粘土分散到去离子水中,接着向其中加入导电聚合物单体并长时间浸渍后,加入无机酸溶液,继续浸渍反应,超声分散,过滤、洗涤滤饼并干燥,得到凹凸棒石/导电聚合物复合材料。

Description

一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺
技术领域
本发明属于粘土矿物的深加工与高值化利用领域,特别涉及一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺。
背景技术
纤维状导电材料已被广泛用于塑料、涂料(层)和胶黏剂等领域,与球状导电颗粒材料相比,具有用量少、补强性能好等优点。
凹凸棒石是一种具有纤维状形貌的含水富镁铝和铁(III)、锰等金属离子的硅酸盐粘土矿物,棒晶长约1-5μm,直径约20-50nm,可被用于纤维状导电材料的核体,在我国储量丰富,价格低廉。然而天然凹凸棒石棒晶大多以鸟巢状或柴垛状聚集体形式存在,成为制约凹凸棒石产业乃至纤维状导电材料产业发展的关键技术瓶颈。
为此,采用高速搅拌、超声、碾磨等传统处理方式对凹凸棒石棒晶束进行了一系列解离研究,但结果表明,传统方法只能部分解离棒晶束,同时还会损伤凹凸棒石晶体,减小其固有的长径比,从而极大地影响了凹凸棒石纳米结构特性及其应用性能。
因此,如何实现凹凸棒石棒晶束的无损解离来制备纤维状导电材料已成为其发展的关键技术问题。
发明内容
本发明提供了一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺:
(1)将天然凹凸棒石粘土分散到去离子水中,接着向其中加入导电聚合物单体,充分分散后浸渍5~10天,得到稠状的凹凸棒石和导电聚合物单体的复合浆体,
其中,凹凸棒石粘土与去离子水质量之比为0.15~0.3:1,
导电聚合物单体与凹凸棒石质量之比为0.3~1.0:1,
导电聚合物单体为苯胺、吡咯中的一种或两种的组合;
(2)向步骤(1)中得到的复合浆体中加入无机酸溶液,浸渍反应6~12天后,超声分散,过滤、洗涤滤饼并干燥,得到凹凸棒石/导电聚合物复合材料,
其中,无机酸为盐酸、硫酸、硝酸中的一种或几种的组合,无机酸溶液的摩尔浓度为5.0~12.0摩尔/升,
无机酸与凹凸棒石质量之比为1~2:1,
洗涤滤饼至洗涤液pH值为6~7。
本发明的有益效果在于:
天然凹凸棒石棒晶束间距很小,远小于二维片状材料(如氧化石墨)的片层间距,且天然凹凸棒石的棒晶束间有含量可观的碳酸盐等杂质所占据,因此聚合物单体分子无法顺利渗透到其棒晶束间,而本发明采用软化学方法,通过长时间浸渍,发现导电聚合物单体分子可以逐渐取代掉棒晶束间的碳酸盐等杂质,从而实现了渗透到凹凸棒石棒晶束间并吸附至其表面的目的;
后续加入的无机酸可以置换或溶解出凹凸棒石晶体中的杂质金属离子(如Fe3+),这些金属离子具有强氧化性,一方面,可与吸附在凹凸棒石棒晶表面的单体分子发生缓慢的氧化聚合反应而形成导电膜层并均匀包裹在凹凸棒石的单晶表面,无需再另外加入氧化剂,加入的无机酸还可作为导电聚合物的掺杂剂,从而制得了纤维状导电复合材料;另一方面,棒晶束间的单体分子发生氧化聚合反应会同时产生一种柔性作用力将凹凸棒石棒晶束缓慢崩解成凹凸棒石单晶,实现了凹凸棒石棒晶束的无损解离。
附图说明
图1为本发明的工艺路线图。
图2(a)为天然凹凸棒石粘土的透射电镜照片,图2(b)为实施例4所制得的凹凸棒石/聚苯胺复合材料的透射电镜照片。
具体实施方式
以下各实施例所制得的纤维状导电复合材料的导电性能通过体积电阻率来评价,体积电阻率测试方法:在带刻度的聚丙烯酸酯玻璃管内放入5.00g导电复合材料粉体,用9.81×105Pa的压力把导电复合材料粉体压在2个金属片之间,用扬子直流低电阻测试仪(YD2511A型,深圳市源恒通科技有限公司)测出2个金属片间的电阻,根据Rsp=R×A/L(其中:Rsp为体积电阻率,Ω·cm;R为实测电阻,Ω;A为玻璃管的内径截面积,cm2;L为粉体层的高度,cm)计算体积电阻率。
实施例1
(1)将1.0千克天然凹凸棒石粘土充分分散到6.7千克去离子水中,接着向其中加入0.3千克吡咯单体,充分分散后浸渍5天,得到稠状的凹凸棒石和吡咯单体的复合浆体;
(2)向步骤(1)中得到的复合浆体中加入1.7升摩尔浓度为12.0摩尔/升的硫酸溶液,浸渍反应12天后,超声分散30分钟,过滤、洗涤滤饼洗涤液pH值为6并干燥,得到凹凸棒石/聚吡咯复合材料。测得其体积电阻率为2.7Ω·cm。
实施例2
(1)将1.0千克天然凹凸棒石粘土充分分散到3.3千克去离子水中,接着向其中加入1.0千克苯胺单体,充分分散后浸渍10天,得到稠状的凹凸棒石和苯胺单体的复合浆体;
(2)向步骤(1)中得到的复合浆体中加入5.5升摩尔浓度为5.0摩尔/升的盐酸溶液,浸渍反应6天后,超声分散60分钟,过滤、洗涤滤饼洗涤液pH值为7并干燥,得到凹凸棒石/聚苯胺复合材料。测得其体积电阻率为0.9Ω·cm。
实施例3
(1)将1.0千克天然凹凸棒石粘土充分分散到4.5千克去离子水中,接着向其中加入0.65千克吡咯单体,充分分散后浸渍7.5天,得到稠状的凹凸棒石和吡咯单体的复合浆体;
(2)向步骤(1)中得到的复合浆体中加入2.8升摩尔浓度为8.5摩尔/升的硝酸溶液,浸渍反应9天后,超声分散45分钟,过滤、洗涤滤饼洗涤液pH值为6.5并干燥,得到凹凸棒石/聚吡咯复合材料。测得其体积电阻率为1.5Ω·cm。
实施例4
(1)将1.0千克天然凹凸棒石粘土充分分散到5千克去离子水中,接着向其中加入0.5千克苯胺单体,充分分散后浸渍7天,得到稠状的凹凸棒石和苯胺单体的复合浆体;
(2)向步骤(1)中得到的复合浆体中加入9.0升摩尔浓度为6.0摩尔/升的盐酸溶液,浸渍反应10天后,超声分散30分钟,过滤、洗涤滤饼洗涤液pH值为6并干燥,得到凹凸棒石/聚苯胺复合材料。测得其体积电阻率为0.6Ω·cm。

Claims (2)

1.一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺,其特征在于:所述的制备工艺为,
(1)将天然凹凸棒石粘土分散到去离子水中,接着向其中加入导电聚合物单体,充分分散后浸渍5~10天,得到稠状的凹凸棒石和导电聚合物单体的复合浆体;其中,凹凸棒石粘土与去离子水质量之比为0.15~0.3:1;导电聚合物单体与凹凸棒石质量之比为0.3~1.0:1;导电聚合物单体为苯胺、吡咯中的一种或两种的组合;
(2)向步骤(1)中得到的复合浆体中加入无机酸溶液,浸渍反应6~12天后,超声分散,过滤、洗涤滤饼并干燥,得到凹凸棒石/导电聚合物复合材料;所述无机酸为盐酸、硫酸、硝酸中的一种或几种的组合,无机酸溶液的摩尔浓度为5.0~12.0摩尔/升;无机酸与凹凸棒石质量之比为1~2:1。
2.如权利要求1所述的凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺,其特征在于:步骤(2)中,洗涤滤饼至洗涤液pH值为6~7。
CN201710578196.6A 2017-07-16 2017-07-16 一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺 Active CN107417911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710578196.6A CN107417911B (zh) 2017-07-16 2017-07-16 一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710578196.6A CN107417911B (zh) 2017-07-16 2017-07-16 一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺

Publications (2)

Publication Number Publication Date
CN107417911A CN107417911A (zh) 2017-12-01
CN107417911B true CN107417911B (zh) 2020-05-26

Family

ID=60426540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710578196.6A Active CN107417911B (zh) 2017-07-16 2017-07-16 一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺

Country Status (1)

Country Link
CN (1) CN107417911B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115349529B (zh) * 2022-09-22 2023-03-14 中国科学院兰州化学物理研究所 一种以棒晶束解离凹凸棒石稳定植物精油制备Pickering抗菌乳液的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822648A (en) * 1956-01-27 1959-10-28 Bataafsche Petroleum Process for the preparation of grease-forming compositions and lubricating grease compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191016A (zh) * 2007-04-19 2008-06-04 兰州理工大学 聚苯胺/凹凸棒石纳米复合材料及其制备方法
CN101418122B (zh) * 2008-12-09 2010-12-08 江苏工业学院 一种制备聚吡咯/凹凸棒土纳米导电复合材料的方法
CN104085964A (zh) * 2014-07-07 2014-10-08 常州大学 一种采用聚苯胺/凹凸棒土纸电极去除水中铅离子的电化学处理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822648A (en) * 1956-01-27 1959-10-28 Bataafsche Petroleum Process for the preparation of grease-forming compositions and lubricating grease compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
In Situ Preparation of Polypyrrole Nanorod Composite in the Presence of Phosphorylated Polyvinyl Alcohol;LIMIN ZANG et al;《Advances in Polymer Technology》;20151231;第34卷(第3期);21497(1-7) *

Also Published As

Publication number Publication date
CN107417911A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Chen et al. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength
Chen et al. Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application
Lu et al. Steric stabilization of graphene oxide in alkaline cementitious solutions: Mechanical enhancement of cement composite
CN110183688B (zh) 基于纳米纤维素-碳纳米管/聚丙烯酰胺导电水凝胶的柔性应变传感器的制备方法
Chen et al. Carbon nanotube and polypyrrole composites: coating and doping
CN107522269B (zh) 多孔石墨烯/聚吡咯电极材料的制备方法
Peng et al. Synthesis and enhancement of electroactive biomass/polypyrrole hydrogels for high performance flexible all‐solid‐state supercapacitors
CN113121887B (zh) 一种纳米纤维素导热复合薄膜及其制备方法
CN104403275A (zh) 一种改性石墨烯/热固性树脂复合材料及其制备方法
CN113845756A (zh) 一种玄武岩纤维复合材料的制备方法
CN107759809A (zh) 一种可拉伸有机/无机复合水凝胶的制备方法
CN104479424A (zh) 一种石墨烯-聚苯胺修饰的碳纳米管复合物及其制备方法
CN108624043A (zh) 一种聚吡咯包覆铜纳米线的气凝胶复合材料及其制备方法
CN107417911B (zh) 一种凹凸棒石棒晶束解离及其导电复合材料一体化制备工艺
Pradhan et al. Oxygen barrier of multiwalled carbon nanotube/polymethyl methacrylate nanocomposites prepared by in situ method
Jia et al. Reduction–coagulation preparation of hybrid nanoparticles of graphene and halloysite nanotubes for use in anticorrosive waterborne polymer coatings
Chen et al. Preparation and properties of graphene/carbon nanotube hybrid reinforced mortar composites
Zhan et al. Effect of aromatic amine modified graphene aerogel on the curing kinetics and interfacial interaction of epoxy composites
CN104874813A (zh) 一种超细超长银纳米线的制备方法
CN102558553B (zh) 一种一维导电聚苯胺/凹凸棒纳米复合材料的制备方法
CN102532539A (zh) 一种一维导电聚吡咯/凹凸棒纳米复合材料的制备方法
CN110628215A (zh) 一种聚苯胺/芳纶纳米纤维导电复合薄膜及其制备方法
Wang et al. Toward explicit anion transport nanochannels for osmotic power energy using positive charged MXene membrane via amination strategy
Ye et al. Super-flexible and highly conductive H-Ti3C2Tx MXene composite films with 3D macro-assemblies for electromagnetic interference shielding
US20230407015A1 (en) Method for preparing anisotropic cellulose-based hydrogel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant