CN107400888B - 一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法 - Google Patents

一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法 Download PDF

Info

Publication number
CN107400888B
CN107400888B CN201610339119.0A CN201610339119A CN107400888B CN 107400888 B CN107400888 B CN 107400888B CN 201610339119 A CN201610339119 A CN 201610339119A CN 107400888 B CN107400888 B CN 107400888B
Authority
CN
China
Prior art keywords
stainless steel
sio
high temperature
coating
composite coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610339119.0A
Other languages
English (en)
Other versions
CN107400888A (zh
Inventor
王田禾
刘思雨
俞佳杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610339119.0A priority Critical patent/CN107400888B/zh
Publication of CN107400888A publication Critical patent/CN107400888A/zh
Application granted granted Critical
Publication of CN107400888B publication Critical patent/CN107400888B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法。本发明采用勃姆石为前驱体,用浸渍提拉法和热处理先在不锈钢基底上制备多孔Al2O3涂层,再将所得基片浸泡于硅酸钠溶液中,采用浸渍提拉的方法负载Na2SiO3,取出干燥后高温烧结制备Na2SiO3/Al2O3复合涂层。本发明方法制备的涂层为致密的无孔结构,该复合涂层具有与基底结合牢固,化学性能稳定,涂层结构致密,耐高温氧化和抗海水腐蚀等特点。本发明的制备方法简单,成本低廉,能够有效解决不锈钢在高温氧化和海水腐蚀的问题。

Description

一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层 制备方法
技术领域
本发明涉及一种在不锈钢上利用浸渍提拉的方法快速制备Na2SiO3/Al2O3复合涂层的方法,属于不锈钢耐高温氧化和抗海水腐蚀等领域。
背景技术
由于不锈钢具有相对成本低,易加工,良好的机械用途和抗腐蚀性,其在化学工程、生物医学、建筑领域和航空航天等领域有很重要的应用。不锈钢的耐腐蚀能力来自于其表面形成了一层柔软连续的Cr2O3膜,将不锈钢与外界腐蚀相隔开。虽然不锈钢的耐腐蚀能力通过表面Cr2O3膜有所提高,但当其暴露于高温环境和海水溶液中时,不锈钢仍然会受到腐蚀并造成其结构损坏从而造成巨大的经济损失。
Al2O3作为最有代表性的陶瓷涂层,是一种经济、耐热、化学耐用材料,在高温催化剂载体,金属纳米粒子基底,高温或海洋环境下不锈钢保护涂层等方面有非常广泛的应用。Al2O3涂层有很多种制备方法,溶胶凝胶法是其中最简单最经济的方法。由于Al2O3的气孔可以使氧气或水介质渗透,因此限制了Al2O3陶瓷涂层材料的应用。同单一相陶瓷材料相比,复合物涂层如:金属-陶瓷涂层、陶瓷-陶瓷涂层和玻璃-陶瓷涂层,有着更好的微观结构和机械性能,能起更好的保护作用。
硅酸类玻璃材料如硅酸铝,硅酸镁,硼硅酸等对不锈钢的抗腐蚀具有保护作用,硅酸钠水玻璃也用来保护锌,钛,铝合金等,但尚未有硅酸钠水玻璃作为不锈钢的保护层。
专利CN 105084762 A公开了一种用于不锈钢和耐热钢的高温抗热震和抗热腐蚀的涂层及其制备方法,在不锈钢和耐热钢基体表面烧制了一层微晶玻璃涂层。然而该方法需要的原料种类繁多,操作复杂,且微晶玻璃原料需要经过破碎、干燥、球磨等多种工序处理,费时耗力。
专利CN 101265372 A公开了一种不锈钢高温抗氧化涂料及其应用。利用无机矿粉、无机粘结剂、悬浮剂等多种物质,高温涂覆在不锈钢基体上再经高温热处理得到涂层。然而该方法不仅所需原料多,操作困难性大,还不能提升不锈钢的耐腐蚀能力。
发明内容
本发明的目的在于提供一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法。
本发明解决上述技术问题提供了一种不锈钢表面复合物涂层的制备方法。
本发明采用勃姆石为前驱体,用浸渍提拉和热处理等在不锈钢基底上制备 Al2O3涂层,再将所得基片浸泡于硅酸钠溶液浸渍提拉,干燥后,高温烧结,制得Na2SiO3/Al2O3复合涂层。
不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法具体制备方法步骤为:
步骤a)将不锈钢基底表面清洗;
步骤b)将勃姆石与去离子水按质量比以1:10混合,将不锈钢基底浸泡在勃姆石胶体中,以1cm/min~6cm/min的速度浸渍提拉,在60℃下干燥30min后以5℃/min在保护气氛下加热到550℃,保温2h后自然冷却,制得多孔γ-Al2O3涂层;
步骤c)将硅酸钠与去离子水按质量比以1:100~1:4混合,将步骤b)所得的不锈钢片浸入在此溶液中0.5h~2h,通过浸渍提拉法以1cm/min~6cm/min的速度提拉,在60℃下干燥30min后以5℃/min在保护气氛下加热到450~550℃,保温30min后自然冷却,制得Na2SiO3/Al2O3复合涂层。
优选的,步骤a)中将勃姆石与去离子水按质量比以1:10混合。
优选的,步骤a)中不锈钢基底为304,304L,316或316L的不锈钢。
优选的,步骤b)、步骤c)中采用的保护气体为氮气或者氩气。
本发明与现有技术相比,其显著优点是:(1)本发明为不锈钢表面的 Na2SiO3/Al2O3复合涂层制备方法简单,可重复性高,与基底材料结合能力强,化学性能稳定的优点。(2)采用本发明制备方法制备的不锈钢Na2SiO3/Al2O3复合涂层能够承受1050℃的高温氧化。(3)采用本发明制备方法制备的不锈钢 Na2SiO3/Al2O3复合涂层抗氯离子腐蚀能好。
附图说明
图1为所制备的Na2SiO3/Al2O3复合涂层的表面形貌SEM图。
图2为所制备的Al2O3(2a)-(2c)和Na2SiO3/Al2O3复合涂层(2d)-(2f)的的AFM的3D模型(2a,2d),表面拓扑图(2b,2e)和高度分析图(2c,2f)。
图3为1050℃热处理2h后所制备的Na2SiO3/Al2O3涂层的不锈钢(3a)、Al2O3涂层的不锈钢(3b)及未涂层的不锈钢(3c)的SEM图。
图4为在质量分数3.5%的NaCl溶液浸泡1h后不锈钢、含有Al2O3涂层不锈钢及含有Na2SiO3/Al2O3涂层的不锈钢的极化曲线(4a)、尼奎斯特图(4b)、相位角博德图(4c)及伯德图(4d)。
具体实施方式
下面结合附图及实施例对本发明做进一步详述:
实施例1
将勃姆石粉末与去离子水按质量比以1:10混合,室温下磁力搅拌1h得到溶胶。将用洗涤剂,去离子水和乙醇依次清洗过后的洁净干燥的304不锈钢基底,浸泡在勃姆石胶体中,以1cm/min的速度浸渍提拉,在60℃下干燥30min后以 5℃/min的升温速率在氮气保护下加热到550℃,保温2h后自然冷却,制得多孔γ-Al2O3涂层。将硅酸钠与去离子水按质量比以1:4混合,将刚制备的304不锈钢片浸入在此溶液中2h,在60℃下干燥30min后以5℃/min升温速率在管式炉中氮气保护下加热到450℃,保温30min后自然冷却,制得Na2SiO3/Al2O3复合涂层。本发明将硅酸钠水溶液浸泡在多孔Al2O3的纳米孔道中,通过高温热处理使其在纳米孔道中玻璃化,从而填充Al2O3的纳米孔道,使得硅酸钠水玻璃性粘结剂对不锈钢有明显的保护作用。
图1为所制备的Na2SiO3/Al2O3复合涂层的表面形貌SEM图。
实施例2
将勃姆石粉末与去离子水按质量比以1:10混合,室温下磁力搅拌1h得到溶胶。将用洗涤剂,去离子水和乙醇依次清洗过后的洁净干燥的316不锈钢基底,浸泡在勃姆石胶体中,以1.5cm/min的速度浸渍提拉,在60℃下干燥30min后以5℃/min的升温速率在氩气保护下加热到550℃,保温2h后自然冷却,制得多孔γ-Al2O3涂层。将硅酸钠与去离子水按质量比以1:100混合,将刚制备的 316不锈钢片浸入在此溶液中0.5h,在60℃下干燥30min后以5℃/min升温速率在管式炉中氩气保护下加热到550℃,保温30min后自然冷却,制得Na2SiO3/Al2O3复合涂层。
图2为Al2O3和Na2SiO3/Al2O3复合涂层的的AFM的3D模型(2a,2d),表面拓扑图(2b,2e)和高度分析图(2c,2f)。
实施例3
将勃姆石粉末与去离子水按质量比以1:10混合,室温下磁力搅拌1h得到溶胶。将用洗涤剂,去离子水和乙醇依次清洗过后的洁净干燥的316L不锈钢基底,浸泡在勃姆石胶体中,以1.5cm/min的速度浸渍提拉,在60℃下干燥30min后以5℃/min的升温速率在氩气保护下加热到550℃,保温2h后自然冷却,制得多孔γ-Al2O3涂层。将硅酸钠与去离子水按质量比以3:17混合,将刚制备的316L 不锈钢片浸入在此溶液中2h,在60℃下干燥30min后以5℃/min升温速率在管式炉中氩气保护下加热到550℃,保温30min后自然冷却,制得Na2SiO3/Al2O3复合涂层。将制备的复合涂层用于高温氧化实验,具体为将其置于1050℃煅烧2 h,观察期高温氧化后的表面形貌。
图3为1050℃热处理2h后Na2SiO3/Al2O3涂层的不锈钢(3a)、Al2O3涂层的不锈钢(3b)及未涂层的不锈钢(3c)的SEM图。
实施例4
将勃姆石粉末与去离子水按质量比以1:10混合,室温下磁力搅拌1h得到溶胶。将用洗涤剂,去离子水和乙醇依次清洗过后的洁净干燥的304L不锈钢基底,浸泡在勃姆石胶体中,以1.5cm/min的速度浸渍提拉,在60℃下干燥30min后以5℃/min的升温速率在氮气保护下加热到550℃,保温2h后自然冷却,制得多孔γ-Al2O3涂层。将硅酸钠与去离子水按质量比以3:17混合,将刚制备的304L 不锈钢片浸入在此溶液中2h,在60℃下干燥30min后以5℃/min升温速率在管式炉中氮气保护下加热到500℃,保温30min后自然冷却,制得Na2SiO3/Al2O3复合涂层。25℃下,利用传统的三电极系统在电化学工作中测试涂层的耐腐蚀性能。用饱和甘汞电极作为参比电极,铂电极作为对电极,涂覆涂层的不锈钢作为工作电极,质量分数3.5%的氯化钠溶液作为耐腐蚀测试的电解液,在 -500mV-500mV的偏振测量范围以0.5mV/s的扫描速度进行。电化学阻抗测试在开路电压下频率从100KHz到0.01Hz振幅10mV下测试。所有测试样品在测试前在3.5%的NaCl溶液中浸泡1h,平衡系统中的电解质,测试时将1cm2不锈钢暴露于溶液中。
图4为在质量分数3.5%的NaCl溶液浸泡1h后不锈钢、含有Al2O3涂层不锈钢及含Na2SiO3/Al2O3涂层的不锈钢的极化曲线(4a)、尼奎斯特图(4b)、相位角博德图(4c)及伯德图(4d)。

Claims (7)

1.一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,采用勃姆石为前驱体,用浸渍提拉和热处理在不锈钢基底上制备Al2O3涂层,再将Al2O3涂层浸泡于硅酸钠溶液中,高温烧结制备Na2SiO3/Al2O3复合涂层。
2.根据权利要求1所述的不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,具体制备方法步骤为:
步骤a),将不锈钢基底表面清洗;
步骤b),将勃姆石与去离子水混合,制得勃姆石胶体,再将步骤a)中的不锈钢基底浸泡在勃姆石胶体中,以1cm/min~6cm/min的速度浸渍提拉,干燥后,在保护气体气氛中加热到550℃,保温2h后自然冷却,制得γ-Al2O3涂层;
步骤c),将硅酸钠与去离子水按质量比以1:100~1:4混合,制得硅酸钠水溶液,再将步骤b)制得的涂覆γ-Al2O3涂层的不锈钢基底浸入在硅酸钠水溶液中0.5h~2h,通过浸渍提拉法以1cm/min~6cm/min的速度提拉,干燥后,在保护气体气氛中加热到450~550℃,保温30min后自然冷却,制得Na2SiO3/Al2O3复合涂层。
3.根据权利要求2所述的不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,步骤a)中的不锈钢基底为304,304L,316,316L不锈钢中的一种。
4.根据权利要求2所述的不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,步骤b)中,勃姆石与去离子水按质量比以1:10混合。
5.根据权利要求2所述的不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,步骤b)、步骤c)中,所述的干燥在60℃下加热30min。
6.根据权利要求2所述的不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,步骤b)、步骤c)中,在保护气体气氛中加热的速率为5℃/min。
7.根据权利要求2所述的不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法,其特征在于,步骤b)、步骤c)中采用的保护气体为氮气或者氩气。
CN201610339119.0A 2016-05-19 2016-05-19 一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法 Expired - Fee Related CN107400888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610339119.0A CN107400888B (zh) 2016-05-19 2016-05-19 一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610339119.0A CN107400888B (zh) 2016-05-19 2016-05-19 一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法

Publications (2)

Publication Number Publication Date
CN107400888A CN107400888A (zh) 2017-11-28
CN107400888B true CN107400888B (zh) 2019-08-30

Family

ID=60389654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610339119.0A Expired - Fee Related CN107400888B (zh) 2016-05-19 2016-05-19 一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法

Country Status (1)

Country Link
CN (1) CN107400888B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613871A1 (en) * 2018-08-23 2020-02-26 Ceranovis GmbH Method for protecting a component used in aerospace technology from damage by electromagnetic radiation and/or particle bombardment and component obtainable according to said method
CN110863166B (zh) * 2019-11-18 2022-09-13 和县科嘉阀门铸造有限公司 一种提高奥氏体不锈钢阀门抗应力腐蚀的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171883A (ja) * 1987-01-12 1988-07-15 Nisshin Steel Co Ltd 耐熱性に優れた絶縁性ステンレス鋼板およびその製造方法
JPH01156496A (ja) * 1987-12-11 1989-06-20 Shinku Zairyo Kk 耐蝕被覆方法
CN1397751A (zh) * 2001-07-16 2003-02-19 日本里可雷斯工业株式会社 金属衬垫原料板及其生产方法
CN1900360A (zh) * 2006-07-14 2007-01-24 西南大学 镁合金表面功能梯度膜制备方法
CN101270476A (zh) * 2008-04-25 2008-09-24 浙江大学 溶胶-凝胶制备高结合强度碳素钢基Al2O3陶瓷涂层方法
TW201246564A (en) * 2011-04-05 2012-11-16 Fujifilm Corp Metal substrate with insulating layer and manufacturing method thereof and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171883A (ja) * 1987-01-12 1988-07-15 Nisshin Steel Co Ltd 耐熱性に優れた絶縁性ステンレス鋼板およびその製造方法
JPH01156496A (ja) * 1987-12-11 1989-06-20 Shinku Zairyo Kk 耐蝕被覆方法
CN1397751A (zh) * 2001-07-16 2003-02-19 日本里可雷斯工业株式会社 金属衬垫原料板及其生产方法
CN1900360A (zh) * 2006-07-14 2007-01-24 西南大学 镁合金表面功能梯度膜制备方法
CN101270476A (zh) * 2008-04-25 2008-09-24 浙江大学 溶胶-凝胶制备高结合强度碳素钢基Al2O3陶瓷涂层方法
TW201246564A (en) * 2011-04-05 2012-11-16 Fujifilm Corp Metal substrate with insulating layer and manufacturing method thereof and semiconductor device

Also Published As

Publication number Publication date
CN107400888A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
Manasa et al. Effect of inhibitor loading into nanocontainer additives of self-healing corrosion protection coatings on aluminum alloy A356. 0
Thim et al. Sol–gel silica film preparation from aqueous solutions for corrosion protection
CN104651908B (zh) 一种镁合金表面陶瓷膜层的制备方法及封孔方法
Tang et al. High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes
CN104324726B (zh) 一种金属载体整体式催化剂的制备方法
CN103484857B (zh) 在金属基体陶瓷涂层上制备纳米改性非晶陶瓷涂层的方法
CN101191248A (zh) 在钛基底材料表面制备二氧化钛纳米管阵列层的方法
Khosravi et al. Effect of processing conditions on the structural properties and corrosion behavior of TiO2–SiO2 multilayer coatings derived via the sol-gel method
CN103993341B (zh) 一种铝合金阳极氧化膜的封闭方法
CN107400888B (zh) 一种不锈钢抗高温氧化和耐海水腐蚀Na2SiO3/Al2O3复合涂层制备方法
Roy et al. Solgel‐processed mullite coating—a review
CN106756968A (zh) 用纳米改性硅系复合钝化膜进行铝合金表面防护处理方法
CN101844936A (zh) 一种碳/碳复合材料纳米碳化硅-莫来石-二硅化钼复合外涂层的制备方法
CN104998697A (zh) 一种整体式催化剂活性涂层的涂敷方法
CN113578706A (zh) 一种利用层层自组装技术制备耐腐蚀复合涂层的方法
Javanpour et al. Effect of chemical composition of Tetraethoxysilane and Trimethoxy (propyl) Silane hybrid sol on hydrophobicity and corrosion resistance of anodized aluminum
CN106631161A (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
CN105296918B (zh) 一种金属钨表面Al2O3-SiO2高温绝缘涂层及其制备方法
CN105714294A (zh) 一种钛基合金抗高温氧化复合涂层的制备方法
Castro et al. Silica sol-gel coatings on metals produced by EPD
Guo et al. Preparation and corrosion behavior of chemically bonded ceramic coatings reinforced with ZnO-MWCNTs composite
CN104120454B (zh) 预焙阳极抗氧化性陶瓷基涂层及其涂覆方法
Li et al. Effect of pore content and pH on the corrosion behavior of hydrophobic ceramic coatings
CN104630771B (zh) 一种在金属载体表面制备多孔氧化物薄膜的方法
Feil et al. Purely inorganic coatings based on nanoparticles for magnesium alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190830

Termination date: 20210519

CF01 Termination of patent right due to non-payment of annual fee