CN107376965A - 一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用 - Google Patents

一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用 Download PDF

Info

Publication number
CN107376965A
CN107376965A CN201710588447.9A CN201710588447A CN107376965A CN 107376965 A CN107376965 A CN 107376965A CN 201710588447 A CN201710588447 A CN 201710588447A CN 107376965 A CN107376965 A CN 107376965A
Authority
CN
China
Prior art keywords
phosphato
support type
silicon material
earth silicon
molybdic heteropolyacid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710588447.9A
Other languages
English (en)
Other versions
CN107376965B (zh
Inventor
魏延臣
张铭
朱文帅
李华明
王苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710588447.9A priority Critical patent/CN107376965B/zh
Publication of CN107376965A publication Critical patent/CN107376965A/zh
Application granted granted Critical
Publication of CN107376965B publication Critical patent/CN107376965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/285Regeneration or reactivation of catalysts comprising compounds of phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于多相催化剂领域,涉及一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法以及其在燃油氧化脱硫中的应用。制备过程分为水热合成、索氏萃取以及等体积浸渍三部分。水热合成部分包括将模板剂、金属源、硅源同盐酸混合持续搅拌,并水热处理得到样品;索氏萃取部分是将所得样品用乙醇在索氏提取器中萃取回流,得到介孔样品;等体积浸渍部分是将介孔样品同磁性物质的水相分散液混合并超声,干燥处理,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。本发明工艺简单,该材料对燃油中硫化物脱除具有较高持久的催化活性,能够有效地提高油品脱硫率,无需使用有机溶剂,降低生产成本,提高油品品质,并可回收重复使用,降低环境污染。

Description

一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及 其应用
技术领域
本发明属于多相催化剂领域,特指一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法以及其在燃油脱硫中的应用。
背景技术
近些年以来,汽车工业快速发展,由此也带来了人们对燃油的巨大需求,而燃油中的硫化物的燃烧所产生的废气却会对大气环境造成破坏,因此限制燃油的硫含量就显得尤为必要;氧化脱硫技术因具有较高脱硫效率,反应条件温和,操作成本低以及工艺流程简单等特点而备受瞩目;目前氧化脱硫所涉及的催化剂包括有机酸,离子液体,多金属氧酸盐,金属氧化物和分子筛等。
介孔材料因其较大的比表面积、可调节的孔型和孔径等特性在催化剂领域备受关注;通过在介孔材料的结构中加入催化活性中心,可开发出优良的多相负载型介孔材料催化剂。通常的负载型介孔材料催化剂的合成方法大致可分为以下两种:一是先合成介孔二氧化硅,在用浸渍法负载活性中心;另一种是将无机金属盐在介孔材料合成前加入到模板剂当中,由此合成得到的介孔材料。这两种方法所合成的催化剂通常会出现由于活性中心分散不均所导致的催化活性不佳的问题;本发明以聚氧乙烯聚氧丙烯醚嵌段共聚物为模板剂,具有表面活性功能的阳离子和含钼的多酸阴离子匹配形成金属基离子液体为金属源,成功实现磷钼杂多酸负载的介孔二氧化硅材料的原位可控合成。
纳米介孔材料因其具有纳米尺寸效应,相较于传统材料,其具有更大的比表面积以及更多的活性位点,从而在催化剂领域备受关注。然而,由于纳米材料的尺寸较小,作为多相催化剂来说,通常其与催化底物的分离性能较差,在实际生产中易造成催化剂损失以及对产物的污染问题;本发明以磁性氧化铁为磁性来源,将其负载于杂多酸负载的介孔二氧化硅材料的表面,使该材料能够响应外界磁场,从而使其具有易分离的特性,更加符合工业生产的需求。
发明内容
本发明在于提供一种磷钼杂多酸负载型磁性介孔二氧化硅材料及其制备方法。
本发明的另一个目的在于提供了上述催化剂的应用,并有着优异的催化性能。
为实现上述实验目的,制备方法分为水热合成、索氏萃取以及等体积浸渍三部分,以得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
具体的制备方法,包括如下步骤:
(1)将模板剂聚氧乙烯聚氧丙烯醚嵌段共聚物EO20PO70EO20(简写为P123)加入到稀盐酸中,搅拌6~10h;然后再加入金属源[C16mim]3PMo12O40的乙腈溶液,硅源,共搅拌18~30h;
(2)将步骤(1)所得产物置于水热反应釜中于95~105℃下水热反应22~26h,之后过滤固体并洗涤干燥后,在索氏提取器中使用乙醇将其萃取72~96h;
(3)将步骤(2)所得产物和磁性物质水相分散液混合,超声60~70min后取出,干燥,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
步骤(1)中,所述的稀盐酸浓度为2.0mol/L;稀盐酸与模板剂的质量比为23.6:1。
步骤(1)中,所述的金属源[C16mim]3PMo12O40的乙腈溶液的浓度为0.025mol/L。
步骤(1)中,所述的的硅源为正硅酸四乙酯。
步骤(1)中,所述的金属源[C16mim]3PMo12O40的乙腈溶液、硅源和稀盐酸的体积比为0.06:0.06:1。
步骤(3)中,所述的磁性物质为磁性氧化铁γ-Fe2O3,且颗粒大小为20~30nm,其水相分散液的浓度为250~2000ppm。
步骤(3)中,所述的磁性物质水相分散液与步骤(2)产物的吸水量是等体积的;所述吸水量是由单位质量干燥产物与完全湿润产物质量差得到的。
步骤(3)中,所述的干燥步骤为依次在50℃和200℃下分别干燥0.5h和8h。
本发明制得的一种磷钼杂多酸负载型磁性介孔二氧化硅材料,具有介孔结构,其比表面积达700~800m2/g,孔径分布为3~7nm,且带有磁性,能够感应到外界磁场的作用,从而使其具有易分离特性。
本发明所述的磷钼杂多酸负载型磁性介孔二氧化硅材料在催化氧化脱除燃油中芳香族硫化物方面具有一定的应用价值,例如二苯并噻吩(DBT)的氧化反应,该反应过程可用下式表示:
本发明的磷钼杂多酸负载型磁性介孔二氧化硅材料对脱除油品中硫化物显示出较高的催化活性,其优良活性主要归因于下列因素:
(1)磷钼杂多酸负载型磁性介孔二氧化硅材料具有介孔结构和较大的比表面积,这些特点首先保证了催化剂活性位点的均匀高度分散,其次保证了含硫底物与活性中心的充分接触。
(2)该磷钼杂多酸负载型磁性介孔二氧化硅材料中磷钼杂多酸颗粒较小,因而具有较高的活性。
本发明的磷钼杂多酸负载型磁性介孔二氧化硅材料能够感应到外界磁场,从而使其能够借助磁场实现与反应底物的快速分离,这主要归因于下列因素:
(1)磷钼杂多酸负载型磁性介孔二氧化硅材料表面负载有磁性氧化铁纳米颗粒,这些纳米颗粒保证了该材料的磁化性能。
(2)该磁性氧化铁颗粒尺寸为20~30nm,这使得该磷钼杂多酸负载型磁性介孔二氧化硅材料表现出了超顺磁性。
磷钼杂多酸负载型磁性介孔二氧化硅材料对油品中的不同含硫底物均有较高的脱除率,对芳香族硫化物:苯并噻吩(BT),3-甲基苯并噻吩(3-MBT),4-甲基二苯并噻吩(4-MDBT),4,6-二甲基二苯并噻吩(4,6-DMDBT)在50分钟内脱硫率分别可达到66.0%、95.7%、100%和96.3%,对二苯并噻吩(DBT)在30分钟内脱硫率即可达到100%(初始硫含量为500ppm)。
本发明制备的磷钼杂多酸负载型磁性介孔二氧化硅材料在合成步骤分为水热合成、索氏萃取以及等体积浸渍三部分,为合成负载型磁性介孔二氧化硅材料提供了新思路;具有介孔结构,较大比表面,活性位高分散,催化活性高,催化剂易分离等优点,可克服现有技术中的不足;既能实现催化活性位点的高分散性,使含硫底物与活性中心的充分接触,又能实现催化剂的简易回收和循环使用,最终实现深度脱除燃油中含硫化合物的目标。而且在催化氧化脱除燃油中含硫底物的过程中,均无需额外使用有机溶剂。
附图说明
图1为实例1所得磷钼杂多酸负载型磁性介孔二氧化硅材料的透射电子显微镜照片;
图2为实例1所得磷钼杂多酸负载型磁性介孔二氧化硅材料的N2吸附脱附等温线(A)以及DFT孔道分析结果(B);
图3为实例1所得磷钼杂多酸负载型磁性介孔二氧化硅材料在外界磁场作用下从反应底物中分离照片;
图4为实例1所得磷钼杂多酸负载型磁性介孔二氧化硅材料在对不同含硫底物的催化活性结果;
图5为实例1所得磷钼杂多酸负载型磁性介孔二氧化硅材料脱除DBT的循环效果图。
具体实施方式
下面结合说明书附图及具体实施例对本发明的内容进一步说明。
实施例1
一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,包括以下步骤:
1)将2.668g的P123溶解于63g 2.0mol/L的HCl水溶液中,并搅拌8h;
2)向1)中加入4mL含有0.1mmol的[C16mim]3PMo12O40乙腈溶液,并继续搅拌一段时间;
3)将4mL的正硅酸四乙酯缓慢逐滴滴加至2)中,并搅拌24h;
4)将3)所得液体转移至水热反应釜中,并于100℃加热24h,之后过滤出沉淀并洗涤干燥;
5)将4)所得固体置于索氏提取器中,并用乙醇萃取回流72h,之后将固体干燥;
6)取0.4g的5)所得固体,加入到4mL浓度为500ppm的磁性氧化铁的水相分散液中,并持续超声1h;
7)将6)所得产物依次在50℃和200℃下干燥0.5h以及8h,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
该磷钼杂多酸负载型磁性介孔二氧化硅材料的透射电镜照片如图1所示,N2吸附脱附等温线以及DFT孔道分析结果如图2所示,在外界磁场作用下从反应底物分离照片如图3所示。
用BET法测定上述实例1得到的磷钼杂多酸负载型磁性介孔二氧化硅材料,比表面积为698m2/g;用DFT分析测定上述实例1得到的磷钼杂多酸负载型磁性介孔二氧化硅材料,孔容为1.47cm3/g,主要孔径为6.5nm。
由图1和图2所示的透射电镜照片、N2吸附脱附等温线以及DFT孔道分析结果可以得出,所制得的磷钼杂多酸负载型磁性介孔二氧化硅材料具有介孔结构,具有较大的比表面积和孔容。
由图3所示的该磷钼杂多酸负载型磁性介孔二氧化硅材料在外界磁场作用下从反应底物分离照片可以看出,该材料具有易分离的特性。
实施例2
一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,包括以下步骤:
1)将2.668g的P123溶解于63g 2.0mol/L的HCl水溶液中,并搅拌8h;
2)向1)中加入4mL含有0.1mmol的[C16mim]3PMo12O40乙腈溶液,并继续搅拌一段时间;
3)将4mL的正硅酸四乙酯缓慢逐滴滴加至2)中,并搅拌24h;
4)将3)所得液体转移至水热反应釜中,并于100℃加热24h,之后过滤出沉淀并洗涤干燥;
5)将4)所得固体置于索氏提取器中,并用乙醇萃取回流72h,之后将固体干燥;
6)取0.4g的5)所得固体,加入到4mL浓度为250ppm的磁性氧化铁的水相分散液中,并持续超声1h;
7)将6)所得产物依次在50℃和200℃下干燥0.5h以及8h,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
实施例3
一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,包括以下步骤:
1)将2.668g的P123溶解于63g 2.0mol/L的HCl水溶液中,并搅拌6h;
2)向1)中加入4mL含有0.1mmol的[C16mim]3PMo12O40乙腈溶液,并继续搅拌一段时间;
3)将4mL的正硅酸四乙酯缓慢逐滴滴加至2)中,并搅拌18h;
4)将3)所得液体转移至水热反应釜中,并于95℃加热22h,之后过滤出沉淀并洗涤干燥;
5)将4)所得固体置于索氏提取器中,并用乙醇萃取回流84h,之后将固体干燥;
6)取0.4g的5)所得固体,加入到4mL浓度为1000ppm的磁性氧化铁的水相分散液中,并持续超声70min;
7)将6)所得产物依次在50℃和200℃下干燥0.5h以及8h,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
实施例4
一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,包括以下步骤:
1)将2.668g的P123溶解于63g 2.0mol/L的HCl水溶液中,并搅拌8h;
2)向1)中加入4mL含有0.1mmol的[C16mim]3PMo12O40乙腈溶液,并继续搅拌一段时间;
3)将4mL的正硅酸四乙酯缓慢逐滴滴加至2)中,并搅拌24h;
4)将3)所得液体转移至水热反应釜中,并于100℃加热24h,之后过滤出沉淀并洗涤干燥;
5)将4)所得固体置于索氏提取器中,并用乙醇萃取回流72h,之后将固体干燥;
6)取0.4g的5)所得固体,加入到4mL浓度为2000ppm的磁性氧化铁的水相分散液中,并持续超声1h;
7)将6)所得产物依次在50℃和200℃下干燥0.5h以及8h,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
实施例5
一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,包括以下步骤:
1)将2.668g的P123溶解于63g 2.0mol/L的HCl水溶液中,并搅拌10h;
2)向1)中加入4mL含有0.1mmol的[C16mim]3PMo12O40乙腈溶液,并继续搅拌一段时间;
3)将4mL的正硅酸四乙酯缓慢逐滴滴加至2)中,并搅拌30h;
4)将3)所得液体转移至水热反应釜中,并于105℃加热26h,之后过滤出沉淀并洗涤干燥;
5)将4)所得固体置于索氏提取器中,并用乙醇萃取回流96h,之后将固体干燥;
6)取0.4g的5)所得固体,加入到4mL水中,并持续超声1h;
7)将6)所得产物依次在50℃和200℃下干燥0.5h以及8h,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
实施例5
将实施例1所得到的磷钼杂多酸负载型磁性介孔二氧化硅材料(MPMS)用于催化氧化脱除油品中含硫化合物,具体过程如下,在一个带有回流冷凝管的自制双颈套瓶中加入10mg MPMS,32μL H2O2(30%),5mL硫含量为500ppm的模拟油,使用加热控温磁力搅拌器设定在70℃下进行油浴加热搅拌反应。反应结束后,静置,分层,取出上层油样,经过离心分离后由GC进行硫含量的分析。
以DBT为例,反应式为:
表1.不同条件下合成的磷钼杂多酸负载型磁性介孔二氧化硅材料对氧化DBT的催化活性
对不同含硫底物的催化活性结果如图4,可以看出磷钼杂多酸负载型磁性介孔二氧化硅材料在不使用有机溶剂,较少的催化剂及H2O2用量情况下对不同含硫底物均有较高的脱除效率。
在氧化脱硫反应结束后,利用外界磁场可使磷钼杂多酸负载型磁性介孔二氧化硅材料从反应相中快速分离出来,并回收重新利用然后,在反应器中加入新鲜的H2O2和模型油品进行下一次的循环实验。其循环活性考察结果见图5,结果表明,催化剂循环使用10次后,脱硫率仍然高达94%。

Claims (8)

1.一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,其特征在于,包括如下步骤:
(1)将模板剂聚氧乙烯聚氧丙烯醚嵌段共聚物EO20PO70EO20加入到稀盐酸中,搅拌6~10h;然后再加入金属源[C16mim]3PMo12O40的乙腈溶液,硅源,共搅拌18~30h;
(2)将步骤(1)所得产物置于水热反应釜中于95~105℃下水热反应22~26h,之后过滤固体并洗涤干燥后,在索氏提取器中使用乙醇将其萃取72~96h;
(3)将步骤(2)所得产物和磁性物质水相分散液混合,超声60~70min后取出,干燥,得到磷钼杂多酸负载型磁性介孔二氧化硅材料。
2.根据权利要求1所述的一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,其特征在于,步骤(1)中,所述的稀盐酸浓度为2.0mol/L;稀盐酸与模板剂的质量比为23.6:1。
3.根据权利要求1所述的一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,其特征在于,步骤(1)中,所述的金属源[C16mim]3PMo12O40的乙腈溶液的浓度为0.025mol/L;所述的的硅源为正硅酸四乙酯;所述的金属源[C16mim]3PMo12O40的乙腈溶液、硅源和稀盐酸的体积比为0.06:0.06:1。
4.根据权利要求1所述的一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,其特征在于,步骤(3)中,所述的磁性物质为磁性氧化铁γ-Fe2O3,且颗粒大小为20~30nm,其水相分散液的浓度为250~2000ppm。
5.根据权利要求1所述的一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,其特征在于,步骤(3)中,所述的磁性物质水相分散液与步骤(2)产物的吸水量是等体积的;所述吸水量是由单位质量干燥产物与完全湿润产物质量差得到的。
6.根据权利要求1所述的一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法,其特征在于,步骤(3)中,所述的干燥步骤为依次在50℃和200℃下分别干燥0.5h和8h。
7.一种磷钼杂多酸负载型磁性介孔二氧化硅材料,是通过权利要求1~6中任一项所述制备方法得到的,具有介孔结构,其比表面积达700~800m2/g,孔径分布为3~7nm,且带有磁性。
8.将权利要求7所述的磷钼杂多酸负载型磁性介孔二氧化硅材料用于催化氧化脱除燃油中芳香族硫化物的用途。
CN201710588447.9A 2017-07-19 2017-07-19 一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用 Active CN107376965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710588447.9A CN107376965B (zh) 2017-07-19 2017-07-19 一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710588447.9A CN107376965B (zh) 2017-07-19 2017-07-19 一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107376965A true CN107376965A (zh) 2017-11-24
CN107376965B CN107376965B (zh) 2019-12-31

Family

ID=60340964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710588447.9A Active CN107376965B (zh) 2017-07-19 2017-07-19 一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107376965B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174111A (zh) * 2018-08-08 2019-01-11 江苏大学 一种磁性核壳介孔催化剂的制备方法及在氧化脱硫的用途
CN109225288A (zh) * 2018-08-30 2019-01-18 江苏大学 磁性纳米磷钨杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
CN110302832A (zh) * 2019-06-20 2019-10-08 江苏大学 纳米磷钼杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
CN115739176A (zh) * 2022-09-26 2023-03-07 南京工业大学 一种缺位多酸基离子液体负载型催化剂的制备方法和产品及其应用
CN116159569A (zh) * 2023-01-03 2023-05-26 武汉科林化工集团有限公司 一种废润滑油临氢脱硅剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947840A (zh) * 2006-11-02 2007-04-18 武汉理工大学 杂多酸/有序介孔氧化硅催化剂的制备方法及应用
CN103464140A (zh) * 2013-09-06 2013-12-25 江苏大学 一种介孔硅材料以及制备方法和应用
US20160151767A1 (en) * 2013-05-13 2016-06-02 University Of Connecticut Mesoporous materials and processes for preparation thereof
CN106362788A (zh) * 2016-09-28 2017-02-01 重庆理工大学 用于有机废水处理的磁性介孔材料的制备方法
CN106669841A (zh) * 2015-11-06 2017-05-17 长春工业大学 一种具有介孔结构的基于磷钨酸及磺酸功能化的有机硅复合材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947840A (zh) * 2006-11-02 2007-04-18 武汉理工大学 杂多酸/有序介孔氧化硅催化剂的制备方法及应用
US20160151767A1 (en) * 2013-05-13 2016-06-02 University Of Connecticut Mesoporous materials and processes for preparation thereof
CN103464140A (zh) * 2013-09-06 2013-12-25 江苏大学 一种介孔硅材料以及制备方法和应用
CN106669841A (zh) * 2015-11-06 2017-05-17 长春工业大学 一种具有介孔结构的基于磷钨酸及磺酸功能化的有机硅复合材料及制备方法
CN106362788A (zh) * 2016-09-28 2017-02-01 重庆理工大学 用于有机废水处理的磁性介孔材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘峥等: "Fe3O4-SiO2负载型磷钼杂多酸催化剂制备生物柴油", 《工业催化》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174111A (zh) * 2018-08-08 2019-01-11 江苏大学 一种磁性核壳介孔催化剂的制备方法及在氧化脱硫的用途
CN109225288A (zh) * 2018-08-30 2019-01-18 江苏大学 磁性纳米磷钨杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
CN110302832A (zh) * 2019-06-20 2019-10-08 江苏大学 纳米磷钼杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
CN110302832B (zh) * 2019-06-20 2022-06-21 江苏大学 纳米磷钼杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
CN115739176A (zh) * 2022-09-26 2023-03-07 南京工业大学 一种缺位多酸基离子液体负载型催化剂的制备方法和产品及其应用
CN116159569A (zh) * 2023-01-03 2023-05-26 武汉科林化工集团有限公司 一种废润滑油临氢脱硅剂
CN116159569B (zh) * 2023-01-03 2024-01-26 武汉科林化工集团有限公司 一种废润滑油临氢脱硅剂

Also Published As

Publication number Publication date
CN107376965B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN107376965A (zh) 一种磷钼杂多酸负载型磁性介孔二氧化硅材料的制备方法及其应用
Li et al. Heteropolyacid supported MOF fibers for oxidative desulfurization of fuel
Dizaji et al. Complete oxidative desulfurization using graphene oxide-based phosphomolybdic acid catalyst: Process optimization by two phase mass balance approach
Zhang et al. One-pot synthesis, characterization and desulfurization of functional mesoporous W-MCM-41 from POM-based ionic liquids
Li et al. Facile synthesis of amphiphilic polyoxometalate-based ionic liquid supported silica induced efficient performance in oxidative desulfurization
Sun et al. A PTA@ MIL-101 (Cr)-diatomite composite as catalyst for efficient oxidative desulfurization
CN105251523B (zh) 类石墨烯型氮化硼负载磷钨酸催化剂及其制备方法和应用
Tian et al. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by phosphomolybdic acid supported on silica
CN109225288A (zh) 磁性纳米磷钨杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
Krishnan et al. Kinetic and equilibrium modeling of liquid‐phase adsorption of lead and lead chelates on activated carbons
Tamoradi et al. Synthesis of new zirconium complex supported on MCM‐41 and its application as an efficient catalyst for synthesis of sulfides and the oxidation of sulfur containing compounds
Rezvani et al. Deep oxidative desulfurization of gas oil based on sandwich-type polysilicotungstate supported β-cyclodextrin composite as an efficient heterogeneous catalyst
Mostafa et al. New conduct in the adsorptive removal of sulfur compounds by new nickel–molybdenum adsorbent
Andevary et al. Towards a room temperature oxidative desulfurization of refractory compounds over 1-octyl-3-methylimidazolium tetrachloroferrates/silica gel: The beneficial effects of immobilization
Duan et al. Copper (II)-β-cyclodextrin and CuO functionalized graphene oxide composite for fast removal of thiophenic sulfides with high efficiency
CN103464141B (zh) 一种含高分散性钨的介孔材料及其制备方法和应用
Rafiee et al. Synthesis and characterization of PMoV/Fe3O4/g-C3N4 from melamine: An industrial green nanocatalyst for deep oxidative desulfurization
Santhamoorthy et al. Synthesis of dithiol-modified mesoporous silica adsorbent for selective adsorption of mercury ions from wastewater
CN102146296B (zh) 一种基于可磁分离负载型磷钨酸铯盐催化剂的氧化脱硫方法
Mohammadi-Nejati et al. Covalent immobilization of POM-based ILs on magnetic graphene oxide for efficient catalytic oxidative desulfurization of model fuel under solvent-free and moderate reaction conditions
Xu et al. Preparation of cobalt-containing polyvinylimidazole ionic liquid catalyst and coupling with persulfate for room-temperature ultra-deep desulfurization
Ma et al. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine
Li et al. Three-layer coated composite materials PMoV2@ UiO-66-X@ mSiO2: Efficient oxidative desulfurization catalysts
CN110302833A (zh) 纳米磷钼钒杂多酸离子液体负载二氧化硅复合材料的制备方法及其应用
CN106311219B (zh) 一种碳掺杂二氧化硅复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant