CN107359220A - 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器 - Google Patents

一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器 Download PDF

Info

Publication number
CN107359220A
CN107359220A CN201710733463.2A CN201710733463A CN107359220A CN 107359220 A CN107359220 A CN 107359220A CN 201710733463 A CN201710733463 A CN 201710733463A CN 107359220 A CN107359220 A CN 107359220A
Authority
CN
China
Prior art keywords
algan
electron gas
dimensional electron
gan
snowslide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710733463.2A
Other languages
English (en)
Other versions
CN107359220B (zh
Inventor
袁俊
倪炜江
黄兴
张敬伟
牛喜平
李明山
徐妙玲
窦娟娟
胡羽中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xingyun Lianzhong Technology Co ltd
Original Assignee
BEIJING HUAJIN CHUANGWEI ELECTRONICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING HUAJIN CHUANGWEI ELECTRONICS Co Ltd filed Critical BEIJING HUAJIN CHUANGWEI ELECTRONICS Co Ltd
Priority to CN201710733463.2A priority Critical patent/CN107359220B/zh
Publication of CN107359220A publication Critical patent/CN107359220A/zh
Application granted granted Critical
Publication of CN107359220B publication Critical patent/CN107359220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器,该探测器从下至上包括衬底、GaN或AlN缓冲层、GaN高掺杂背面导电层、非掺杂GaN层、n型AlGaN有源耗尽区以及p型AlGaN雪崩结;非掺杂GaN层与n型AlGaN有源耗尽区之间构成二维电子气沟道屏蔽结构;p型AlGaN雪崩结的上方设置有雪崩结阳极;探测器还包括各电极结构。本申请可以大幅降低有源区外围及背底产生的暗电流,提高探测器的信噪比和探测效率。器件采用GaN/AlGaN二维结构形成2DEG沟道等电势面作为漏电流和噪声的屏蔽结构,通过2DEG沟道等电势面接地滤除有源区周边和背面衬底的噪声电流,有助于实现低噪声高增益,高信噪比和探测效率的紫外探测器。

Description

一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器
技术领域
本发明属于半导体器件领域,具体涉及一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器。
背景技术
紫外探测技术是继红外探测和激光探测技术之后的又一军民两用光电探测技术。AlGaN材料以独特的物理、化学、电学特性成为紫外材料的领军者。AlGaN属于直接带隙半导体,随着合金材料中Al组分的变化,带隙在3.4eV–6.2eV之间连续变化,其带隙对应的峰值响应波长范围是200nm–365nm,因此AlGaN是制作紫外探测器的理想材料之一。AlGaN材料制作的紫外探测器件量子效率高、灵敏度高、紫外可见抑制比大,可完全工作于低背景的日盲波段(240-280nm)。AlGaN紫外探测器可应用于弹预警、精确制导、紫外保密通信、生化分析、明火探测、生物医药分析、海上油监、臭氧浓度监测、太阳紫外指数监测、紫外成像等领域,可对尾焰或者羽烟中释放出大量紫外辐射的飞行目标进行实时探测或有效追踪,在微弱的背景下探测出目标。
低噪声、高增益是高性能紫外雪崩光电探测器的两个关键指标。雪崩光电探测器的噪声和增益可以通过对载流子—电子、空穴碰撞电离率的有效比例的调控来实现,简称碰撞电离工程。研究发现,单载流子(电子或空穴)触发的雪崩击穿过程具有较低过剩噪声因子;而采用碰撞电离系数大的载流子作为触发载流子则可以获得更高的增益。对于GaN材料,空穴碰撞电离系数大于电子碰撞电离系数,因此由空穴触发的GaN雪崩光电探测器具有更高的雪崩增益。但现有的APD结构和PIN结构的雪崩光电探测器都存在器件有源区外围及衬底带来的漏电流和暗激发电流导致的噪声,影响了探测器的信噪比和探测效率。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器,其可以大幅降低有源区外围及背底产生的暗电流,提高探测器的信噪比和探测效率。
为实现上述目的,本发明采用以下技术方案:
一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器,所述探测器从下至上包括衬底、GaN或AlN缓冲层、GaN高掺杂背面导电层、非掺杂GaN层、嵌入所述非掺杂GaN层上部中心的n型AlGaN有源耗尽区以及嵌入所述n型AlGaN有源耗尽区上部中心的p型AlGaN雪崩结;非掺杂GaN层与n型AlGaN有源耗尽区之间构成二维电子气沟道屏蔽结构;p型AlGaN雪崩结的上方设置有雪崩结阳极;非掺杂GaN层与n型AlGaN有源耗尽区的接触位置、跨越所述二维电子气沟道屏蔽结构设置有屏蔽面接地环;所述GaN高掺杂背面导电层的上方、非掺杂GaN层的周向设置有掩埋高掺杂GaN背面噪声吸收电极。
进一步,所述衬底为Si、SiC或者蓝宝石衬底。
进一步,所述探测器中所有电极的引出均采用Ti、Al、Ni、Au合金;或Ti、Al、Ti、Au合金;或Ti、Al、Mo、Au合金制作的欧姆接触形成。
本发明具有以下有益技术效果:
本申请可以大幅降低有源区外围及背底产生的暗电流,提高探测器的信噪比和探测效率。器件采用GaN/AlGaN二维结构形成2DEG沟道等电势面作为漏电流和噪声的屏蔽结构,通过2DEG沟道等电势面接地滤除有源区周边和背面衬底的噪声电流,有助于实现低噪声高增益,高信噪比和探测效率的紫外探测器。
附图说明
图1为本发明具有二维电子气去噪屏蔽环的AlGaN紫外探测器结构示意图;
图2为本发明具有二维电子气去噪屏蔽环的AlGaN紫外探测器中GaN/AlGaN有源区结构工艺制作流程图。
具体实施方式
下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
如图1-2所示,本发明提供了一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器,该探测器从下至上包括衬底1、GaN或AlN缓冲层2、GaN高掺杂背面导电层3、非掺杂GaN层4、嵌入非掺杂GaN层4上部中心的n型AlGaN有源耗尽区5以及嵌入n型AlGaN有源耗尽区5上部中心的p型AlGaN雪崩结6;非掺杂GaN层4与n型AlGaN有源耗尽区5之间构成二维电子气沟道屏蔽结构7;p型AlGaN雪崩结6的上方设置有雪崩结阳极8;非掺杂GaN层4与n型AlGaN有源耗尽区5的接触位置、跨越二维电子气沟道屏蔽结构7设置有屏蔽面接地环9;GaN高掺杂背面导电层3的上方、非掺杂GaN层4的周向设置有掩埋高掺杂GaN背面噪声吸收电极10。
衬底1为Si、SiC或者蓝宝石衬底。
探测器中所有电极的引出均采用Ti、Al、Ni、Au合金;或Ti、Al、Ti、Au合金;或Ti、Al、Mo、Au合金制作的欧姆接触形成。
本发明的器件制作时在衬底1上首先外延一层GaN或AlN缓冲层2,以使其上的沟道层受到的晶格失配影响减小,并在GaN或AlN缓冲层2上外延一层高掺杂背面GaN导电层3(后续工艺中通过在器件有源区周边通过台阶刻蚀并制作欧姆接触作为背面噪声吸收电极的引出),然后生长一层厚的非掺杂GaN层4,按图2所示工艺步骤(深槽蚀刻-AlGaN外延-CMP平坦化)刻蚀出深槽结构并外延生长n型AlGaN构造2DEG导电沟道包围的有源区,然后在n型AlGaN有源区中制作雪崩结构和引出电极。
本发明的器件工作时,2DEG屏蔽沟道环接地,掩埋高掺杂GaN背面噪声吸收电极10外加一小的负偏压,而雪崩结阳极8接一合适的负雪崩偏压,使整个n型AlGaN有源区耗尽作为紫外光的吸收区。整个有源吸收区被2DEG沟道面构成的等电势接地面屏蔽,器件除去有源区之外的部分以及整个衬底产生的漏电流将通过2DEG屏蔽沟道和掩埋高掺杂GaN背面噪声吸收电极10滤除,光子入射后,在n型AlGaN有源耗尽区被吸收并形成电子-空穴对,电子漂移到2DEG屏蔽层被导走,而具有高碰撞电离系数的空穴继续漂移至雪崩结区引发雪崩倍增信号,从而实现低噪声高增益的紫外探测信号。
上面所述只是为了说明本发明,应该理解为本发明并不局限于以上实施例,符合本发明思想的各种变通形式均在本发明的保护范围之内。

Claims (3)

1.一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器,其特征在于,所述探测器从下至上包括衬底、GaN或AlN缓冲层、GaN高掺杂背面导电层、非掺杂GaN层、嵌入所述非掺杂GaN层上部中心的n型AlGaN有源耗尽区以及嵌入所述n型AlGaN有源耗尽区上部中心的p型AlGaN雪崩结;非掺杂GaN层与n型AlGaN有源耗尽区之间构成二维电子气沟道屏蔽结构;p型AlGaN雪崩结的上方设置有雪崩结阳极;非掺杂GaN层与n型AlGaN有源耗尽区的接触位置、跨越所述二维电子气沟道屏蔽结构设置有屏蔽面接地环;所述GaN高掺杂背面导电层的上方、非掺杂GaN层的周向设置有掩埋高掺杂GaN背面噪声吸收电极。
2.根据权利要求1所述的具有二维电子气去噪屏蔽环的AlGaN紫外探测器,其特征在于,所述衬底为Si、SiC或者蓝宝石衬底。
3.根据权利要求1所述的具有二维电子气去噪屏蔽环的AlGaN紫外探测器,其特征在于,所述探测器中所有电极的引出均采用Ti、Al、Ni、Au合金;或Ti、Al、Ti、Au合金;或Ti、Al、Mo、Au合金制作的欧姆接触形成。
CN201710733463.2A 2017-08-24 2017-08-24 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器 Active CN107359220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710733463.2A CN107359220B (zh) 2017-08-24 2017-08-24 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710733463.2A CN107359220B (zh) 2017-08-24 2017-08-24 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器

Publications (2)

Publication Number Publication Date
CN107359220A true CN107359220A (zh) 2017-11-17
CN107359220B CN107359220B (zh) 2023-09-08

Family

ID=60288357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710733463.2A Active CN107359220B (zh) 2017-08-24 2017-08-24 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器

Country Status (1)

Country Link
CN (1) CN107359220B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989027A (zh) * 2019-12-02 2020-04-10 安瑞创新半导体(深圳)有限公司 一种用于紫外红外双色探测的紫外光电探测器
CN114613802A (zh) * 2022-01-27 2022-06-10 南京邮电大学 一种基于saw的紫外光电探测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326654B1 (en) * 1999-02-05 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Hybrid ultraviolet detector
CN102244135A (zh) * 2011-07-05 2011-11-16 中山大学 一种pin倒置结构紫外雪崩光电探测器及其制备方法
CN103489937A (zh) * 2013-10-11 2014-01-01 中国科学院半导体研究所 一种非对称沟道量子点场效应光子探测器
WO2014174550A1 (ja) * 2013-04-23 2014-10-30 パナソニックIpマネジメント株式会社 窒化物半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326654B1 (en) * 1999-02-05 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Hybrid ultraviolet detector
CN102244135A (zh) * 2011-07-05 2011-11-16 中山大学 一种pin倒置结构紫外雪崩光电探测器及其制备方法
WO2014174550A1 (ja) * 2013-04-23 2014-10-30 パナソニックIpマネジメント株式会社 窒化物半導体装置
CN103489937A (zh) * 2013-10-11 2014-01-01 中国科学院半导体研究所 一种非对称沟道量子点场效应光子探测器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989027A (zh) * 2019-12-02 2020-04-10 安瑞创新半导体(深圳)有限公司 一种用于紫外红外双色探测的紫外光电探测器
CN114613802A (zh) * 2022-01-27 2022-06-10 南京邮电大学 一种基于saw的紫外光电探测器
CN114613802B (zh) * 2022-01-27 2024-04-19 南京邮电大学 一种基于saw的紫外光电探测器

Also Published As

Publication number Publication date
CN107359220B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN105810775B (zh) 一种基于cmos图像传感器工艺的np型单光子雪崩二极管
EP3399552B1 (en) Coplanar electrode photodiode array and manufacturing method therefor
CN104576805A (zh) 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN111684610B (zh) 单光子雪崩二极管和用于操作单光子雪崩二极管的方法
CN109891605B (zh) 雪崩光电二极管
CN108550592B (zh) 一种低暗计数率cmos spad光电器件
WO2009107568A1 (ja) 光電界効果トランジスタ,及びその製造方法
TWI647858B (zh) 具有降低暗計數率之單光子雪崩光電二極體探測器的裝置和方法
JP2010135360A (ja) アバランシェフォトダイオード
CN107026212A (zh) 一种基于标准工艺的双pn结型单光子雪崩二极管结构
CN207320147U (zh) 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器
TW200421603A (en) Infrared photodetector
JP2006237610A (ja) アバランシェフォトダイオードの製造方法
CN106057958A (zh) 单光子雪崩光电二极管及其制作方法
CN107359220A (zh) 一种具有二维电子气去噪屏蔽环的AlGaN紫外探测器
CN108807567A (zh) 一种可调制表面能带的碲镉汞雪崩二极管探测器
CN110197859B (zh) 一种工作在可见光波段的高带宽cmos apd光电器件
US4129878A (en) Multi-element avalanche photodiode having reduced electrical noise
US20080230862A1 (en) Method, Apparatus, Material, and System of Using a High Gain Avalanche Photodetector Transistor
JP2008544496A (ja) 高感度高分解能検出装置及びアレイ
EP2175497B1 (en) Avalanche photodiode for ultraviolet photon detection
CN207572377U (zh) 一种多漂移环结构的紫外雪崩漂移探测器
CN110676272A (zh) 一种半导体紫外光电探测器
CN110660878B (zh) 一种平面碲镉汞雪崩二极管探测器及其制备方法
US8742543B2 (en) Microchannel avalanche photodiode (variants)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231025

Address after: Room JZ2467, Yard 2, Junzhuang Road, Junzhuang Town, Mentougou District, Beijing, 102399 (cluster registration)

Patentee after: Beijing Xingyun Lianzhong Technology Co.,Ltd.

Address before: 100176 courtyard 17, Tonghui Ganqu Road, Daxing Economic and Technological Development Zone, Beijing

Patentee before: BEIJING HUAJINCHUANGWEI ELECTRONICS Co.,Ltd.

TR01 Transfer of patent right