CN107352588A - 一种椭球型Fe2O3/NiO纳米复合材料的制备方法 - Google Patents
一种椭球型Fe2O3/NiO纳米复合材料的制备方法 Download PDFInfo
- Publication number
- CN107352588A CN107352588A CN201710516079.7A CN201710516079A CN107352588A CN 107352588 A CN107352588 A CN 107352588A CN 201710516079 A CN201710516079 A CN 201710516079A CN 107352588 A CN107352588 A CN 107352588A
- Authority
- CN
- China
- Prior art keywords
- mol
- spheroid shape
- concentration
- nitrate hexahydrate
- nickelous nitrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 27
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 51
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 48
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 22
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 22
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 20
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001509 sodium citrate Substances 0.000 claims abstract description 17
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 claims abstract description 12
- 229940038773 trisodium citrate Drugs 0.000 claims abstract description 12
- 239000004312 hexamethylene tetramine Substances 0.000 claims abstract description 10
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 10
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 10
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005119 centrifugation Methods 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 239000003643 water by type Substances 0.000 claims description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 14
- 239000008367 deionised water Substances 0.000 abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 239000002086 nanomaterial Substances 0.000 abstract description 4
- 238000001354 calcination Methods 0.000 abstract description 2
- 239000008236 heating water Substances 0.000 abstract description 2
- 230000001699 photocatalysis Effects 0.000 abstract 1
- 238000007146 photocatalysis Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- -1 nanometer rods Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000002127 nanobelt Substances 0.000 description 1
- 239000002063 nanoring Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明主要介绍一种椭球型Fe2O3/NiO纳米复合材料的制备方法,属于无机先进纳米材料制备工艺技术领域。将一定量的氢氧化钠溶液滴加到氯化铁溶液中,再加入草酸溶液,采用水热法制备出椭球型Fe2O3纳米材料;将椭球型氧化铁分散于去离子水中,加入六水合硝酸镍,六次甲基四胺以及柠檬酸三钠,水浴加热、煅烧后即可制备出椭球型Fe2O3/NiO纳米复合材料。本发明所讲述的椭球型Fe2O3/NiO纳米复合材料制备方法工艺简单,产率高,成本比较低,得到的纳米材料具有较小的晶粒尺寸。可用于光催化及气敏传感等领域。
Description
技术领域
本发明属于纳米复合材料的生产领域,具体来说,本发明涉及一种一种椭球型Fe2O3/NiO纳米复合材料的制备方法。
背景技术
氧化铁是一种n型半导体,具有较好的耐热性、耐光性、磁性、耐腐蚀性,并且无毒、分散性好、色泽鲜艳、对紫外光的屏蔽性好,因此有着广泛的应用。纳米氧化铁具有纳米材料的基本特性,例如表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等。纳米氧化铁的应用范围很广,例如涂料、皮革、电子、磁性记录材料,传感器等。纳米氧化铁具有半导体特性,其导电对温度、湿度、气体等都比较敏感,是一种很有发展潜力的敏感材料。现阶段已经制备出不同形貌的纳米氧化铁,去纳米球、纳米棒、纳米线、纳米管、纳米环、纳米带、立方体和椭球体。其中,椭球体氧化铁形貌较为新颖,相对研究较少,值得深入探究。叶兴福等(叶兴福, 江林, 戴曛晔.椭球形粒径可控α-Fe2O3纳米颗粒的制备方法[P].中国专利:CN201210507407.4)制备出一种椭球形粒径可控的α-Fe2O3纳米材料,有望实现工业化。
NiO是一种催化作用较好的氧化催化剂,对还原气体具有活化作用,并对还原气体的氧化起催化作用。在有机物的分解、合成、转化过程中,如汽油氢化裂化,石化处理中烃类转化,制取氯代甲烷,氢化精炼原油,重油氢化过程中,NiO是良好的催化剂。纳米氧化镍具有良好的催化性能及在各种材料中的加工性能。它是一类广泛应用于电池电极、催化剂、磁性材料与陶瓷着色料等领域的重要无机材料,纳米氧化镍还可以提高催化剂效率和传感器灵敏度等。纳米级NiO具有更好的性能使其在催化剂、玻璃、陶瓷、电极、涂料、气敏元件、电子元件及其它功能材料方面的应用领域将不断扩大和优化。谷长栋等(谷长栋, 葛翔, 王秀丽, 涂江平.一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍[P].中国专利: CN201310326357.4)研究制备出一种纳米氧化镍,可应用于超级电容器。
发明内容
本发明在于提供一种椭球型Fe2O3/NiO纳米复合材料的制备方法。本方法成本低廉,工艺简单,无污染。
本发明的技术方案是:将一定量的氢氧化钠溶液滴加到氯化铁溶液中,再加入草酸溶液,采用水热法制备出椭球型Fe2O3纳米材料;将椭球型氧化铁分散于去离子水中,加入六水合硝酸镍,六次甲基四胺以及柠檬酸三钠,水浴加热、煅烧后即可制备出椭球型Fe2O3/NiO纳米复合材料。具体的实施方案如下:
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为1-2 mol/L,FeCl3·6H2O的浓度为0.5-1 mol/L,草酸的浓度为0.5-1 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:(1-2),FeCl3·6H2O与草酸的摩尔比为(2-10):1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在100-200 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3;
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50-100 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01-0.03mol/L,六次甲基四胺的浓度为0.01-0.03 mol/L,柠檬酸三钠的浓度为0.001-0.003 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为(0.5-2):1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:(1-2),控制六水合硝酸镍与柠檬酸三钠的摩尔比为(5-10):1;
(4)将步骤(3)所得粉末在300-500 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
附图说明
图1为实施例1中椭球型Fe2O3的FESEM图片。
图2为实施例1中椭球型Fe2O3/NiO纳米复合材料的FESEM图片。
图3为实施例1中椭球型Fe2O3/NiO纳米复合材料的X射线衍射图谱。
下面结合附图和具体实施例对本发明作进一步详细说明。
具体实施方式
实施例1
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为1 mol/L,FeCl3·6H2O的浓度为0.5 mol/L,草酸的浓度为1 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:1,FeCl3·6H2O与草酸的摩尔比为4:1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在120 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3;
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50-100 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.015 mol/L,六次甲基四胺的浓度为0.015 mol/L,柠檬酸三钠的浓度为0.0015 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为1:1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:1,控制六水合硝酸镍与柠檬酸三钠的摩尔比为10:1;
(4)将步骤(3)所得粉末在400 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
实施例2
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为2 mol/L,FeCl3·6H2O的浓度为1 mol/L,草酸的浓度为0.5 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:1,FeCl3·6H2O与草酸的摩尔比为8:1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在200 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3;
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01 mol/L,六次甲基四胺的浓度为0.01 mol/L,柠檬酸三钠的浓度为0.001 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为0.67:1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:1,控制六水合硝酸镍与柠檬酸三钠的摩尔比为10:1;
(4)将步骤(3)所得粉末在350 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
实施例3
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为2 mol/L,FeCl3·6H2O的浓度为0.5 mol/L,草酸的浓度为0.5 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:2,FeCl3·6H2O与草酸的摩尔比为4:1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在160 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3;
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于80 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01 mol/L,六次甲基四胺的浓度为0.02 mol/L,柠檬酸三钠的浓度为0.002 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为0.67:1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:2,控制六水合硝酸镍与柠檬酸三钠的摩尔比为5:1;
(4)将步骤(3)所得粉末在300 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
Claims (1)
1.一种椭球型Fe2O3/NiO纳米复合材料的制备方法,其特征在于:
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2ml草酸溶液,其中NaOH的浓度为1-2 mol/L,FeCl3·6H2O的浓度为0.5-1 mol/L,草酸的浓度为0.5-1 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:(1-2),FeCl3·6H2O与草酸的摩尔比为(2-10):1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在100-200 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3;
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50-100 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01-0.03 mol/L,六次甲基四胺的浓度为0.01-0.03 mol/L,柠檬酸三钠的浓度为0.001-0.003 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为(0.5-2):1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:(1-2),控制六水合硝酸镍与柠檬酸三钠的摩尔比为(5-10):1;
(4)将步骤(3)所得粉末在300-500 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710516079.7A CN107352588A (zh) | 2017-06-29 | 2017-06-29 | 一种椭球型Fe2O3/NiO纳米复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710516079.7A CN107352588A (zh) | 2017-06-29 | 2017-06-29 | 一种椭球型Fe2O3/NiO纳米复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107352588A true CN107352588A (zh) | 2017-11-17 |
Family
ID=60274092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710516079.7A Pending CN107352588A (zh) | 2017-06-29 | 2017-06-29 | 一种椭球型Fe2O3/NiO纳米复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107352588A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103043726A (zh) * | 2012-12-03 | 2013-04-17 | 云南云天化股份有限公司 | 椭球形粒径可控α-Fe2O3纳米颗粒的制备方法 |
CN104391012A (zh) * | 2014-12-12 | 2015-03-04 | 吉林大学 | 一种基于α-Fe2O3/NiO异质结构纳米管的甲苯传感器及其制备方法 |
-
2017
- 2017-06-29 CN CN201710516079.7A patent/CN107352588A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103043726A (zh) * | 2012-12-03 | 2013-04-17 | 云南云天化股份有限公司 | 椭球形粒径可控α-Fe2O3纳米颗粒的制备方法 |
CN104391012A (zh) * | 2014-12-12 | 2015-03-04 | 吉林大学 | 一种基于α-Fe2O3/NiO异质结构纳米管的甲苯传感器及其制备方法 |
Non-Patent Citations (3)
Title |
---|
ALI FAKHRI ET AL.: "Improved uptake of steroid hormone from aqueous solution using γ-Fe2O3/NiO nanocomposites", 《JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY》 * |
LEI LI ET AL.: "Nickel Oxide Nanosheets for Enhanced Photoelectrochemical Water Splitting by Hematite (a-Fe2O3) Nanowire Arrays", 《ENERGY TECHNOL.》 * |
SUYUAN ZENG ET AL.: "Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment", 《J. PHYS. CHEM. C》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cai et al. | Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process | |
Tan et al. | Construction of Bi2O2CO3/Ti3C2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation | |
Zhou et al. | A novel PN heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation | |
Li et al. | Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction | |
Pradhan et al. | Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods | |
Rong et al. | N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production | |
Yin et al. | Enhanced photocatalytic activities of g-C3N4 via hybridization with a Bi–Fe–Nb-containing ferroelectric pyrochlore | |
Bai et al. | WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine | |
Yan et al. | Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline | |
Zeng et al. | Interfacial optimization of Z-scheme Ag3PO4/MoS2 nanoflower sphere heterojunction toward synergistic enhancement of visible-light-driven photocatalytic oxygen evolution and degradation of organic pollutant | |
Yuan et al. | Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2 | |
CN111517444A (zh) | 一种内嵌碳化铁的硼氮共掺杂碳纳米管催化剂降解有机污染物的方法 | |
CN107262113A (zh) | 核壳结构NiO/Au/Fe2O3纳米复合材料的制备 | |
CN107876064A (zh) | 一种Au/rGO/Fe2O3三元复合材料的制备方法 | |
Sun et al. | Dual Z-scheme TCN/ZnS/ZnIn2S4 with efficient separation for photocatalytic nitrogen fixation | |
Fan et al. | Construct organic/inorganic heterojunction photocatalyst of benzene-ring-grafted g-C3N4/CdSe for photocatalytic H2 evolution | |
Ma et al. | Design and construction of an immobilized Z-scheme Fe2O3/CuFe2O4| Cu photocatalyst film for organic pollutant degradation with simultaneous hydrogen production | |
Syed et al. | Visible-light sensitization and recombination delay through coupling CaFe2O4 on Bi2O3 nanocomposite for high performance photocatalytic and antibacterial applications | |
Zhu et al. | A novel I-type 0D/0D ZnS/Ag6Si2O7 heterojunction for photocatalytic hydrogen evolution | |
Zhang et al. | α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity | |
Huang et al. | In-situ fabrication of AgI/AgnMoxO3x+ n/2/g-C3N4 ternary composite photocatalysts for benzotriazole degradation: Tuning the heterostructure, photocatalytic activity and photostability by the degree of molybdate polymerization | |
Li et al. | NiO-Ni foam supported Ag3PO4 for efficient photoelectrocatalytic degradation of oil pollutant in water | |
Ai et al. | One-pot preparation of Bi/BiOF/Bi2O2CO3 Z-scheme heterojunction with enhanced photocatalysis activity for ciprofloxacin degradation under simulated sunlight | |
Xiao et al. | CuO/ZnO hollow nanocages derived from metal− organic frameworks for ultra-high and rapid response H2S gas sensor | |
CN113603149B (zh) | 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171117 |