CN107352588A - 一种椭球型Fe2O3/NiO纳米复合材料的制备方法 - Google Patents

一种椭球型Fe2O3/NiO纳米复合材料的制备方法 Download PDF

Info

Publication number
CN107352588A
CN107352588A CN201710516079.7A CN201710516079A CN107352588A CN 107352588 A CN107352588 A CN 107352588A CN 201710516079 A CN201710516079 A CN 201710516079A CN 107352588 A CN107352588 A CN 107352588A
Authority
CN
China
Prior art keywords
mol
spheroid shape
concentration
nitrate hexahydrate
nickelous nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710516079.7A
Other languages
English (en)
Inventor
刘璐
赵悦彤
宋鹏
王�琦
杨中喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710516079.7A priority Critical patent/CN107352588A/zh
Publication of CN107352588A publication Critical patent/CN107352588A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明主要介绍一种椭球型Fe2O3/NiO纳米复合材料的制备方法,属于无机先进纳米材料制备工艺技术领域。将一定量的氢氧化钠溶液滴加到氯化铁溶液中,再加入草酸溶液,采用水热法制备出椭球型Fe2O3纳米材料;将椭球型氧化铁分散于去离子水中,加入六水合硝酸镍,六次甲基四胺以及柠檬酸三钠,水浴加热、煅烧后即可制备出椭球型Fe2O3/NiO纳米复合材料。本发明所讲述的椭球型Fe2O3/NiO纳米复合材料制备方法工艺简单,产率高,成本比较低,得到的纳米材料具有较小的晶粒尺寸。可用于光催化及气敏传感等领域。

Description

一种椭球型Fe2O3/NiO纳米复合材料的制备方法
技术领域
本发明属于纳米复合材料的生产领域,具体来说,本发明涉及一种一种椭球型Fe2O3/NiO纳米复合材料的制备方法。
背景技术
氧化铁是一种n型半导体,具有较好的耐热性、耐光性、磁性、耐腐蚀性,并且无毒、分散性好、色泽鲜艳、对紫外光的屏蔽性好,因此有着广泛的应用。纳米氧化铁具有纳米材料的基本特性,例如表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等。纳米氧化铁的应用范围很广,例如涂料、皮革、电子、磁性记录材料,传感器等。纳米氧化铁具有半导体特性,其导电对温度、湿度、气体等都比较敏感,是一种很有发展潜力的敏感材料。现阶段已经制备出不同形貌的纳米氧化铁,去纳米球、纳米棒、纳米线、纳米管、纳米环、纳米带、立方体和椭球体。其中,椭球体氧化铁形貌较为新颖,相对研究较少,值得深入探究。叶兴福等(叶兴福, 江林, 戴曛晔.椭球形粒径可控α-Fe2O3纳米颗粒的制备方法[P].中国专利:CN201210507407.4)制备出一种椭球形粒径可控的α-Fe2O3纳米材料,有望实现工业化。
NiO是一种催化作用较好的氧化催化剂,对还原气体具有活化作用,并对还原气体的氧化起催化作用。在有机物的分解、合成、转化过程中,如汽油氢化裂化,石化处理中烃类转化,制取氯代甲烷,氢化精炼原油,重油氢化过程中,NiO是良好的催化剂。纳米氧化镍具有良好的催化性能及在各种材料中的加工性能。它是一类广泛应用于电池电极、催化剂、磁性材料与陶瓷着色料等领域的重要无机材料,纳米氧化镍还可以提高催化剂效率和传感器灵敏度等。纳米级NiO具有更好的性能使其在催化剂、玻璃、陶瓷、电极、涂料、气敏元件、电子元件及其它功能材料方面的应用领域将不断扩大和优化。谷长栋等(谷长栋, 葛翔, 王秀丽, 涂江平.一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍[P].中国专利: CN201310326357.4)研究制备出一种纳米氧化镍,可应用于超级电容器。
发明内容
本发明在于提供一种椭球型Fe2O3/NiO纳米复合材料的制备方法。本方法成本低廉,工艺简单,无污染。
本发明的技术方案是:将一定量的氢氧化钠溶液滴加到氯化铁溶液中,再加入草酸溶液,采用水热法制备出椭球型Fe2O3纳米材料;将椭球型氧化铁分散于去离子水中,加入六水合硝酸镍,六次甲基四胺以及柠檬酸三钠,水浴加热、煅烧后即可制备出椭球型Fe2O3/NiO纳米复合材料。具体的实施方案如下:
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为1-2 mol/L,FeCl3·6H2O的浓度为0.5-1 mol/L,草酸的浓度为0.5-1 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:(1-2),FeCl3·6H2O与草酸的摩尔比为(2-10):1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在100-200 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50-100 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01-0.03mol/L,六次甲基四胺的浓度为0.01-0.03 mol/L,柠檬酸三钠的浓度为0.001-0.003 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为(0.5-2):1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:(1-2),控制六水合硝酸镍与柠檬酸三钠的摩尔比为(5-10):1;
(4)将步骤(3)所得粉末在300-500 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
附图说明
图1为实施例1中椭球型Fe2O3的FESEM图片。
图2为实施例1中椭球型Fe2O3/NiO纳米复合材料的FESEM图片。
图3为实施例1中椭球型Fe2O3/NiO纳米复合材料的X射线衍射图谱。
下面结合附图和具体实施例对本发明作进一步详细说明。
具体实施方式
实施例1
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为1 mol/L,FeCl3·6H2O的浓度为0.5 mol/L,草酸的浓度为1 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:1,FeCl3·6H2O与草酸的摩尔比为4:1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在120 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50-100 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.015 mol/L,六次甲基四胺的浓度为0.015 mol/L,柠檬酸三钠的浓度为0.0015 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为1:1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:1,控制六水合硝酸镍与柠檬酸三钠的摩尔比为10:1;
(4)将步骤(3)所得粉末在400 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
实施例2
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为2 mol/L,FeCl3·6H2O的浓度为1 mol/L,草酸的浓度为0.5 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:1,FeCl3·6H2O与草酸的摩尔比为8:1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在200 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01 mol/L,六次甲基四胺的浓度为0.01 mol/L,柠檬酸三钠的浓度为0.001 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为0.67:1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:1,控制六水合硝酸镍与柠檬酸三钠的摩尔比为10:1;
(4)将步骤(3)所得粉末在350 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
实施例3
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2 ml草酸溶液,其中NaOH的浓度为2 mol/L,FeCl3·6H2O的浓度为0.5 mol/L,草酸的浓度为0.5 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:2,FeCl3·6H2O与草酸的摩尔比为4:1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在160 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于80 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01 mol/L,六次甲基四胺的浓度为0.02 mol/L,柠檬酸三钠的浓度为0.002 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为0.67:1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:2,控制六水合硝酸镍与柠檬酸三钠的摩尔比为5:1;
(4)将步骤(3)所得粉末在300 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。

Claims (1)

1.一种椭球型Fe2O3/NiO纳米复合材料的制备方法,其特征在于:
(1)将FeCl3·6H2O溶解到8 ml水中形成溶液,向溶液中滴加4 ml NaOH溶液,然后加入2ml草酸溶液,其中NaOH的浓度为1-2 mol/L,FeCl3·6H2O的浓度为0.5-1 mol/L,草酸的浓度为0.5-1 mol/L,且控制FeCl3·6H2O与NaOH的摩尔比为1:(1-2),FeCl3·6H2O与草酸的摩尔比为(2-10):1;
(2)将步骤(1)所得混合溶液搅拌15 min,然后在100-200 ℃下水热反应12小时,将反应后的沉淀离心、洗涤、干燥,即得椭球型Fe2O3
(3)将步骤(2)所得的Fe2O3分散于40 mL去离子水中,加入一定量的六水合硝酸镍,六次甲基四胺和柠檬酸钠,将所得混合液置于50-100 ℃水浴中保温6 h,将反应后的产物用去离子水和乙醇进行多次洗涤,60 ℃干燥6 h,其中,六水合硝酸镍的浓度为0.01-0.03 mol/L,六次甲基四胺的浓度为0.01-0.03 mol/L,柠檬酸三钠的浓度为0.001-0.003 mol/L,且控制六水合硝酸镍与Fe2O3的摩尔比为(0.5-2):1,控制六水合硝酸镍与六次甲基四胺的摩尔比为1:(1-2),控制六水合硝酸镍与柠檬酸三钠的摩尔比为(5-10):1;
(4)将步骤(3)所得粉末在300-500 ℃下热处理2 h,即得椭球型Fe2O3/NiO纳米复合材料。
CN201710516079.7A 2017-06-29 2017-06-29 一种椭球型Fe2O3/NiO纳米复合材料的制备方法 Pending CN107352588A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710516079.7A CN107352588A (zh) 2017-06-29 2017-06-29 一种椭球型Fe2O3/NiO纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710516079.7A CN107352588A (zh) 2017-06-29 2017-06-29 一种椭球型Fe2O3/NiO纳米复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107352588A true CN107352588A (zh) 2017-11-17

Family

ID=60274092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710516079.7A Pending CN107352588A (zh) 2017-06-29 2017-06-29 一种椭球型Fe2O3/NiO纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107352588A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043726A (zh) * 2012-12-03 2013-04-17 云南云天化股份有限公司 椭球形粒径可控α-Fe2O3纳米颗粒的制备方法
CN104391012A (zh) * 2014-12-12 2015-03-04 吉林大学 一种基于α-Fe2O3/NiO异质结构纳米管的甲苯传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043726A (zh) * 2012-12-03 2013-04-17 云南云天化股份有限公司 椭球形粒径可控α-Fe2O3纳米颗粒的制备方法
CN104391012A (zh) * 2014-12-12 2015-03-04 吉林大学 一种基于α-Fe2O3/NiO异质结构纳米管的甲苯传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALI FAKHRI ET AL.: "Improved uptake of steroid hormone from aqueous solution using γ-Fe2O3/NiO nanocomposites", 《JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY》 *
LEI LI ET AL.: "Nickel Oxide Nanosheets for Enhanced Photoelectrochemical Water Splitting by Hematite (a-Fe2O3) Nanowire Arrays", 《ENERGY TECHNOL.》 *
SUYUAN ZENG ET AL.: "Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment", 《J. PHYS. CHEM. C》 *

Similar Documents

Publication Publication Date Title
Cai et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process
Tan et al. Construction of Bi2O2CO3/Ti3C2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation
Zhou et al. A novel PN heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation
Li et al. Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction
Pradhan et al. Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods
Rong et al. N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production
Yin et al. Enhanced photocatalytic activities of g-C3N4 via hybridization with a Bi–Fe–Nb-containing ferroelectric pyrochlore
Bai et al. WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine
Yan et al. Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline
Zeng et al. Interfacial optimization of Z-scheme Ag3PO4/MoS2 nanoflower sphere heterojunction toward synergistic enhancement of visible-light-driven photocatalytic oxygen evolution and degradation of organic pollutant
Yuan et al. Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2
CN111517444A (zh) 一种内嵌碳化铁的硼氮共掺杂碳纳米管催化剂降解有机污染物的方法
CN107262113A (zh) 核壳结构NiO/Au/Fe2O3纳米复合材料的制备
CN107876064A (zh) 一种Au/rGO/Fe2O3三元复合材料的制备方法
Sun et al. Dual Z-scheme TCN/ZnS/ZnIn2S4 with efficient separation for photocatalytic nitrogen fixation
Fan et al. Construct organic/inorganic heterojunction photocatalyst of benzene-ring-grafted g-C3N4/CdSe for photocatalytic H2 evolution
Ma et al. Design and construction of an immobilized Z-scheme Fe2O3/CuFe2O4| Cu photocatalyst film for organic pollutant degradation with simultaneous hydrogen production
Syed et al. Visible-light sensitization and recombination delay through coupling CaFe2O4 on Bi2O3 nanocomposite for high performance photocatalytic and antibacterial applications
Zhu et al. A novel I-type 0D/0D ZnS/Ag6Si2O7 heterojunction for photocatalytic hydrogen evolution
Zhang et al. α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity
Huang et al. In-situ fabrication of AgI/AgnMoxO3x+ n/2/g-C3N4 ternary composite photocatalysts for benzotriazole degradation: Tuning the heterostructure, photocatalytic activity and photostability by the degree of molybdate polymerization
Li et al. NiO-Ni foam supported Ag3PO4 for efficient photoelectrocatalytic degradation of oil pollutant in water
Ai et al. One-pot preparation of Bi/BiOF/Bi2O2CO3 Z-scheme heterojunction with enhanced photocatalysis activity for ciprofloxacin degradation under simulated sunlight
Xiao et al. CuO/ZnO hollow nanocages derived from metal− organic frameworks for ultra-high and rapid response H2S gas sensor
CN113603149B (zh) 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171117