CN107344094A - 一种两性纤维素吸附材料及其制备方法 - Google Patents

一种两性纤维素吸附材料及其制备方法 Download PDF

Info

Publication number
CN107344094A
CN107344094A CN201710836776.0A CN201710836776A CN107344094A CN 107344094 A CN107344094 A CN 107344094A CN 201710836776 A CN201710836776 A CN 201710836776A CN 107344094 A CN107344094 A CN 107344094A
Authority
CN
China
Prior art keywords
cellulose
deionized water
modified
amphoteric
konjaku
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710836776.0A
Other languages
English (en)
Inventor
赵兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710836776.0A priority Critical patent/CN107344094A/zh
Publication of CN107344094A publication Critical patent/CN107344094A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种两性纤维素吸附材料及其制备方法,将两性纤维素与端羟基超支化聚合物改性后的魔芋混合,80‑100℃匀速搅拌反应1‑24h,用去离子水反复洗涤、抽滤、干燥后得到两性纤维素吸附材料。本发明以两性纤维素为基材,与端羟基超支化聚合物改性后的魔芋进行反应,通过共价键、静电引力、氢键等相互作用力牢固结合,最终得到两性纤维素吸附材料。该复合材料具备绿色环保、可降解、机械性能好、组织结构规整、孔隙率高等诸多优点,对水体中的杂质、印染废水、带有正电荷或负电荷的污染物、重金属离子等均具有良好的吸附效果,在污水处理领域有重要的应用价值。

Description

一种两性纤维素吸附材料及其制备方法
技术领域
本发明涉及一种两性纤维素吸附材料,属复合材料领域。
背景技术
随着我国经济、社会的快速发展,人口数量的不断增长,工业化和城镇化的加快推进,涉及水污染的行业正保持着强劲的增长势头,水污染事件频发,给环境和人们的健康带来了严重的损害,治理水污染已经成为一项刻不容缓的任务。治理水污染的方法很多,传统的有化学沉淀法、氧化还原法、铁氧体法、电解法、蒸发浓缩法、离子交换树脂法等,但这些方法大多存在投资大、运行成本高、操作管理麻烦、并且会产生二次污染和不能很好地解决水资源再利用等问题。而天然吸附剂具有吸附量大、吸附速度快、成本低、操作简单、不产生二次污染等优点,越来越受到人们的青睐。
长期以来,纤维素一直是纺织、造纸的主要工业原料,以其可再生性、生物可降解性及成本优势日益受到人们的重视,在药物控制、释放技术、固定化技术、生物传感器、膜材料、功能化学品及添加剂等方面显示出良好的发展前景。由于耕地的减少和石油、天然气等化石资源的日益枯竭,合成纤维的产量将会受到越来越多的制约。而纤维素作为一种绿色、环保、可再生的资源,获得了一个空前的发展机遇。将纤维素材料应用于水处理中,制备高效环保的水处理剂无疑极具经济和社会价值。
两性纤维素是在纤维素主链上同时带有阴阳离子基团的一类水溶性的纤维素衍生物。除了具有与普通两性电解质一样的特殊的溶液性质和流变性能,如增稠、降阻、絮凝、悬浮等功能,还具有高分子多糖来源丰富、易生物降解等优点。它是一种高附加值的纤维素衍生物(纤维素科学与技术,2014,22(01):70-78),在水处理、油田开采、湍流减阻、造纸湿部化学、吸水材料、日用化工等领域有着广阔的应用前景。
两性纤维素根据引入基团分类,其阳离子基团通常可以分为叔胺盐和季铵盐类,常用的阳离子改性剂有3-氯-2-羟基-三甲基氯化铵(CHPTAC)(染整技术,2014,36(09):34-36+45)、2,3环氧丙基三甲基氯化铵(西南大学学报(自然科学版),2010,32(01):138-143)、聚环氧氯丙烷胺化物(PECH-amine)(印染,2009,35(05):14-17)、壳聚糖(印染助剂,2016,33(06):41-44)。阴离子基团可分为磺酸型、羧酸型、硫酸型以及磷酸型等。目前两性纤维素多以水溶性的阴离子型羧甲基纤维素(CMC)为原料与各种阳离子醚化剂反应,从而获得两性纤维素。
魔芋葡甘聚糖(Konjac glucomannan,简称KGM)是继淀粉和纤维素之后,一种较为丰富的可再生天然高分子资源,具有可生物降解性,其水溶胶具有很高的粘度和多种特性如增稠、凝胶和成膜等性能;也是一种优良的膳食纤维,可用于预防和治疗高血压、高血脂、心血管病等症,已成为重要的食品添加剂和保健食品原料。在化工、环保及石油钻探等领域也有重要用途(结构化学,2003,06:633-642)。
使用酸化改性、碱改性、接枝共聚改性、交联改性和醚化改性等方法可提高KGM的性能,比如加碱去乙酰基处理KGM,处理后其抗应变能力增强,力学性能得到提高,故天然的KGM及其改性产物,成为研究的热点之一(材料导报,2009,19:32-36)。
除了化学改性,还可以通过与其它合适的生物高聚物混合以改进KGM的性质(材料导报,2009,19:32-36)。例如武汉理工大学樊李红将魔芋经高碘酸钠氧化后制得氧化魔芋(OKGM),利用其醛基与羟丙基壳聚糖(HPCS)上的氨基交联制备水凝胶,同时将氧化石墨烯(GO)作为添加剂加入水凝胶中制备得到羟丙基壳聚糖/氧化魔芋/氧化石墨烯水凝胶(武汉大学学报(理学版),2016,04:361-367)。广州工商学院黄建初采用物理共混的方法,按照KGM:丝素肽=1:0,1:2,2:1,0:1的摩尔质量比制备共混溶胶,在搅拌的情况下将定量的丝素肽溶于去离子水中,完全溶解后,加入将定量的KGM粉末,在45℃水浴条件下,以450r·min-1搅拌1h,制备得到共混溶胶(浓度为 1.2%)(热带生物学报,2016,04:472-476)。福建农林大学谢丙清按照 KGM:蚕丝蛋白=1:1、1:2、1:3的质量比混合并搅拌使之混合均匀,研究了蚕丝蛋白对魔芋葡甘聚糖(KGM)结构与溶胶性质的影响(现代食品科技,2016,10:125-130+27)。
此外,还有大量关于KGM与羟基磷灰石、蒙脱土、胶原、壳聚糖、碳纳米管、凹凸棒土、淀粉、大豆蛋白、石墨烯等材料复合的文献报道(硅酸盐通报,2011,01:162-166+171;于金超.浙江理工大学,2012;塑料工业,2010,07:18-20+33;材料科学与工程学报,2009,06:870-875+884;武汉大学学报(理学版),2008,02:139-142;材料导报,2009,19:32-36;CN201611262418.5热塑性魔芋葡甘聚糖纳米复合材料的制备方法;CN201210153668.0热塑性魔芋葡甘聚糖/氧化石墨烯复合材料及其制备方法)。但是目前还未见两性纤维素/KGM复合材料的公开文献报道。
发明内容
本发明针对上述不足,提供一种两性纤维素吸附材料及其制备方法。
本发明通过下述技术方案予以实现:
(1)将纤维素置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性纤维素;然后将氢氧化钠改性纤维素重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性纤维素的质量比为1:5-1:10,60-80℃反应1-24h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性纤维素;将三甲基烯丙基氯化铵改性纤维素重新分散于去离子水中,浴比1:50,缓慢加入1-100g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性纤维素水溶液的体积比为1:5-1:10,75-95℃反应60-120min,取出后清洗烘干得到阳离子化纤维素;将上述阳离子化纤维素重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化纤维素的质量比为1:10-1:30,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化纤维素与二丁酸二辛酯磺酸钠的质量比为5:1-1:5,混合搅拌均匀后,缓慢升温至80-90℃并磁力搅拌1-12h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性纤维素;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入1-100g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:1-1:10,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)将步骤一中的两性纤维素和步骤二中的端羟基超支化聚合物改性魔芋先后分散于去离子水中,所述两性纤维素与端羟基超支化聚合物改性魔芋的质量比为1:10-10:1,浴比1:50,80-100℃匀速搅拌反应1-24h,用去离子水反复洗涤、抽滤、干燥后得到两性纤维素吸附材料。
作为优选方案,所述纤维素包括天然纤维素和再生纤维素。天然纤维素包括但不限于棉纤维、麻纤维、秸秆、竹原纤维,再生纤维素包括但不限于粘胶、竹浆纤维、天丝、铜氨纤维、莫代尔。
与现有技术相比,本发明的优点在于:
本发明具有如下有益效果:纤维素的大分子链间通过氢键作用紧密结合,结晶程度较高,因此纤维素材料通常具有水溶性差,反应活性差等不足之处。两性纤维素引进了阴离子基团、阳离子基团,提高了反应性。本发明以两性纤维素为基材,与端羟基超支化聚合物改性后的魔芋进行反应,通过共价键、静电引力、氢键等相互作用力牢固结合,最终得到两性纤维素吸附材料。该复合材料具备绿色环保、可降解、机械性能好、组织结构规整、孔隙率高等诸多优点,对水体中的杂质、印染废水、带有正电荷或负电荷的污染物、重金属离子等均具有良好的吸附效果,污水处理适用范围广,在污水处理领域有重要的应用价值。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。
实施例1:
(1)将棉置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性棉;然后将氢氧化钠改性棉重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性棉的质量比为1:5,60℃反应1h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性棉;将三甲基烯丙基氯化铵改性棉重新分散于去离子水中,浴比1:50,缓慢加入1g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性棉水溶液的体积比为1:5,75℃反应60min,取出后清洗烘干得到阳离子化棉;将上述阳离子化棉重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化棉的质量比为1:10,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化棉与二丁酸二辛酯磺酸钠的质量比为1:1,混合搅拌均匀后,缓慢升温至80℃并磁力搅拌1h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性棉;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入1g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:1,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)将步骤一中的两性棉和步骤二中的端羟基超支化聚合物改性魔芋先后分散于去离子水中,两性棉与端羟基超支化聚合物改性魔芋的质量比为1:1,浴比1:50,80℃匀速搅拌反应1h,用去离子水反复洗涤、抽滤、干燥后得到两性棉纤维素复合材料。
实施例2:
(1)将亚麻置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性亚麻;然后将氢氧化钠改性亚麻重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性亚麻的质量比为1:8,70℃反应12h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性亚麻;将三甲基烯丙基氯化铵改性亚麻重新分散于去离子水中,浴比1:50,缓慢加入50g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性亚麻水溶液的体积比为1:6,85℃反应100min,取出后清洗烘干得到阳离子化亚麻;将上述阳离子化亚麻重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化亚麻的质量比为1:15,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化亚麻与二丁酸二辛酯磺酸钠的质量比为1:2,混合搅拌均匀后,缓慢升温至90℃并磁力搅拌6h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性亚麻;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入10g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:2,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)将步骤一中的两性亚麻和步骤二中的端羟基超支化聚合物改性魔芋先后分散于去离子水中,两性亚麻与端羟基超支化聚合物改性魔芋的质量比为1:8,浴比1:50,90℃匀速搅拌反应5h,用去离子水反复洗涤、抽滤、干燥后得到两性亚麻纤维素复合材料。
实施例3:
(1)将粘胶置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性粘胶;然后将氢氧化钠改性粘胶重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性粘胶的质量比为1:10,80℃反应24h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性粘胶;将三甲基烯丙基氯化铵改性粘胶重新分散于去离子水中,浴比1:50,缓慢加入100g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性粘胶水溶液的体积比为1:10,90℃反应120min,取出后清洗烘干得到阳离子化粘胶;将上述阳离子化粘胶重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化粘胶的质量比为1:30,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,阳离子化粘胶与二丁酸二辛酯磺酸钠的质量比为5:1,混合搅拌均匀后,缓慢升温至90℃并磁力搅拌12h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性粘胶;(2)常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入100g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:10,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;(3)将步骤一中的两性粘胶和步骤二中的端羟基超支化聚合物改性魔芋先后分散于去离子水中,两性粘胶与端羟基超支化聚合物改性魔芋的质量比为6:1,浴比1:50,100℃匀速搅拌反应24h,用去离子水反复洗涤、抽滤、干燥后得到两性粘胶纤维素复合材料。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

1.一种两性纤维素吸附材料的制备方法,其特征在于:
步骤一:将纤维素置于质量分数为20%的氢氧化钠溶液中,浴比1:50,90℃反应120min,用去离子水反复洗至中性,烘干后得到氢氧化钠改性纤维素;然后将氢氧化钠改性纤维素重新分散于去离子水中,浴比1:50,加入三甲基烯丙基氯化铵,其中三甲基烯丙基氯化铵和氢氧化钠改性纤维素的质量比为1:5-1:10,60-80℃反应1-24h,用去离子水反复清洗,烘干后得到三甲基烯丙基氯化铵改性纤维素;将三甲基烯丙基氯化铵改性纤维素重新分散于去离子水中,浴比1:50,缓慢加入1-100g/L的聚酰胺-胺PAMAM水溶液,其中PAMAM水溶液与三甲基烯丙基氯化铵改性纤维素水溶液的体积比为1:5-1:10,75-95℃反应60-120min,取出后清洗烘干得到阳离子化纤维素;将上述阳离子化纤维素重新分散于去离子水中,浴比1:50,加入引发剂硝酸铈铵,其中硝酸铈铵与阳离子化纤维素的质量比为1:10-1:30,混合搅拌120min,持续通入氮气保护,然后缓慢加入二丁酸二辛酯磺酸钠,混合搅拌均匀后,缓慢升温至80-90℃并磁力搅拌1-12h,自然冷却到室温,用去离子水和乙醇反复洗涤、抽滤、干燥后得到两性纤维素;
步骤二:常温下将魔芋粉分散于去离子水中,浴比1:50,加入戊二醛,其中戊二醛与魔芋粉水溶液的体积比为1:10,混合搅拌均匀后,缓慢加入1-100g/L的端羟基超支化聚合物水溶液,其中端羟基超支化聚合物水溶液与魔芋粉水溶液的体积比为1:1-1:10,反应24h后,用去离子水和乙醇反复洗涤、干燥后得到端羟基超支化聚合物改性魔芋;
步骤三:将步骤一中的两性纤维素和步骤二中的端羟基超支化聚合物改性魔芋先后分散于去离子水中,浴比1:50,80-100℃匀速搅拌反应1-24h,用去离子水反复洗涤、抽滤、干燥后得到两性纤维素吸附材料。
2.根据权利要求1所述的一种两性纤维素吸附材料的制备方法,其特征在于,所述纤维素包括天然纤维素和再生纤维素。
3.根据权利要求1所述的一种两性纤维素吸附材料的制备方法,其特征在于,步骤一中所述阳离子化纤维素与二丁酸二辛酯磺酸钠的质量比为5:1-1:5。
4.根据权利要求1所述的一种两性纤维素吸附材料的制备方法,其特征在于,步骤三中所述两性纤维素与端羟基超支化聚合物改性魔芋的质量比为1:10-10:1。
5.按权利要求1制备方法得到的一种两性纤维素吸附材料。
CN201710836776.0A 2017-09-17 2017-09-17 一种两性纤维素吸附材料及其制备方法 Withdrawn CN107344094A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710836776.0A CN107344094A (zh) 2017-09-17 2017-09-17 一种两性纤维素吸附材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710836776.0A CN107344094A (zh) 2017-09-17 2017-09-17 一种两性纤维素吸附材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107344094A true CN107344094A (zh) 2017-11-14

Family

ID=60256973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710836776.0A Withdrawn CN107344094A (zh) 2017-09-17 2017-09-17 一种两性纤维素吸附材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107344094A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914548A (zh) * 2018-06-15 2018-11-30 石家庄天略工业用布有限公司 一种具有超强吸附性的布及其制备方法与应用
CN114182363A (zh) * 2020-10-12 2022-03-15 青岛尼希米生物科技有限公司 一种吸附、快速深染的纤维素纤维及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626608A (zh) * 2012-04-16 2012-08-08 南京大学 一种改性成两性型吸附剂的秸秆及其制法
CN103480348A (zh) * 2013-10-16 2014-01-01 苏州大学 一种改性纤维素吸附剂的制备方法
CN103497279A (zh) * 2013-10-16 2014-01-08 苏州大学 一种两性纤维素材料的制备方法
CN106496655A (zh) * 2016-12-09 2017-03-15 彭雅龙 一种交联魔芋葡甘聚糖微球及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626608A (zh) * 2012-04-16 2012-08-08 南京大学 一种改性成两性型吸附剂的秸秆及其制法
CN103480348A (zh) * 2013-10-16 2014-01-01 苏州大学 一种改性纤维素吸附剂的制备方法
CN103497279A (zh) * 2013-10-16 2014-01-08 苏州大学 一种两性纤维素材料的制备方法
CN106496655A (zh) * 2016-12-09 2017-03-15 彭雅龙 一种交联魔芋葡甘聚糖微球及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914548A (zh) * 2018-06-15 2018-11-30 石家庄天略工业用布有限公司 一种具有超强吸附性的布及其制备方法与应用
CN114182363A (zh) * 2020-10-12 2022-03-15 青岛尼希米生物科技有限公司 一种吸附、快速深染的纤维素纤维及其制备方法和应用

Similar Documents

Publication Publication Date Title
Duan et al. Recent advances in chitin based materials constructed via physical methods
Peter et al. Chitin and chitosan based composites for energy and environmental applications: a review
CN103866487B (zh) 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法
CN101203615B (zh) 含有细菌纤维素的制剂以及生产含有有效细菌纤维素的制剂的方法
JP6055059B2 (ja) 凝集方法
CN106243282B (zh) 改性壳聚糖/纳米纤维素复合气凝胶及其制备方法和应用
JP3876497B2 (ja) 凝集剤及びこれを用いた凝集方法
CN110038529A (zh) 一种三维纤维基复合气凝胶型吸附剂的制备方法
CN102168323A (zh) 以离子液体为溶剂的壳聚糖、甲壳素功能材料的制备方法
CN105148868A (zh) 纳米纤维素基复合气凝胶型有机染料吸附材料的制备方法
CN105601764B (zh) 一种氨基酸改性的壳聚糖絮凝剂及其制备方法和应用
JPH11500482A (ja) セルロース粒子、その製造方法およびその使用
CN109487546B (zh) 一种高效环保的阳离子纳纤化纤维素制备方法
CN105754133A (zh) 一种纳米纤维素基生物气凝胶及其制备方法和应用
CN106699904B (zh) 一种混酸交替水解制备超支化纤维素钠米晶絮凝材料的方法
CN102926016B (zh) 一种静电纺丝制备改性魔芋葡甘露聚糖纤维的方法
CN106832425A (zh) 高性能的石墨烯复合纳米纤维素及其制备方法、应用
CN112920332B (zh) 一种多样废弃物交联制备绿色水凝胶的方法
CN107602931A (zh) 一种负载纳米银的两性纤维素复合材料及其制备方法
CN107602943A (zh) 负载纳米氧化锌的纤维素基三维多孔复合材料
CN107344094A (zh) 一种两性纤维素吸附材料及其制备方法
CN111205483A (zh) 一种纤维素纳米晶水/气凝胶及其制备方法
CN103865060A (zh) 一种含有苯硼酸官能团的高分子助留助滤剂的制备方法及其应用
CN103342826A (zh) 一种甲壳素纳米纤维/蒙脱土复合膜材料的制备方法
Özen et al. Properties of galactomannans and their textile-related applications—A concise review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20171114