CN107292053A - 一种时序同步方法 - Google Patents

一种时序同步方法 Download PDF

Info

Publication number
CN107292053A
CN107292053A CN201710561079.9A CN201710561079A CN107292053A CN 107292053 A CN107292053 A CN 107292053A CN 201710561079 A CN201710561079 A CN 201710561079A CN 107292053 A CN107292053 A CN 107292053A
Authority
CN
China
Prior art keywords
model
sequential
synchronous method
timing synchronization
calculating cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710561079.9A
Other languages
English (en)
Other versions
CN107292053B (zh
Inventor
任政焰
宗长富
万滢
赵伟强
郑宏宇
陈国迎
何磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710561079.9A priority Critical patent/CN107292053B/zh
Publication of CN107292053A publication Critical patent/CN107292053A/zh
Application granted granted Critical
Publication of CN107292053B publication Critical patent/CN107292053B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种时序同步方法,包括:在TruckSim中车辆模型,其为第一模型;在Fluent中液体模型,其为第二模型;以第一模型的计算周期为主导周期:当其与第二模型时序同步时,进行数据传递;当其与第二模型时序不同步时,进入等待状态直至时序同步;第二模型保持连续的运行,其内部设有时序判别方法:在每个第二模型的计算周期内,当所述第一模型的累计时长与所述第二模型的累计时长的偏差小于等于一设定阈值时,所述第一模型和第二模型的时序同步。本发明所述的时序同步方法,能够使得两个模型在联合使用时保证时序的同步。

Description

一种时序同步方法
技术领域
本发明涉及车辆动力学仿真与控制领域,更具体的是,本发明涉及一种时序同步方法。
背景技术
公路液罐车是液态化工产品运输的重要载体。对于液罐车,尤其是拖带挂车的液罐车,在极端工况下,由于罐体内部液体的晃动与车辆运动之间的耦合,很容易丧失稳定性,发生折叠、摆振以及侧翻事故。由于这种危险性的存在,研究人员难以通过实车试验对液罐车的稳定性进行研究。因此对液罐车动力学的性能测试以及稳定性控制策略的离线验证是十分必要的。
当前尚无专门用于建立液罐车动力学的模型,液罐车模型的建立主要是通过分别对车辆与液体进行建模并将两个模型耦合在一起实现的。目前绝大多数液罐车辆建模所采用的技术方案是:建立液体的线性等效模型,如单摆模型、弹簧-质子模型等,再建立车辆的简化模型或准确模型,这种技术方案不足之处是所建立的液罐车动力学模型不能充分考虑液体的晃动特性。或者是建立液体的非线性模型,而建立车辆的简化模型,将二者进行联合建立液罐车动力学模型,这种技术方案能够充分体现液体的非线性晃动特性,但车辆模型不够准确。人们想到,建立一个准确的车辆模型,再建立一个非线性的液体模型后,将二者联合来建立液罐车动力学模型。但是准确的车辆模型和非线性的液体模型并没有相同的计算周期,时序并不相同,因此有必要设计一种方法,使二者能够联合使用,控制二者的时序同步,从而建立较高精度的液罐车动力学模型。
发明内容
本发明的一个目的是设计开发了一种时序同步方法,在TruckSim中的车辆模型和在Fluent中的液体模型,能够使得两个模型在联合使用时保证时序的同步。
本发明提供的技术方案为:
一种时序同步方法,包括:
在TruckSim中车辆模型,其为第一模型;
在Fluent中液体模型,其为第二模型;
以第一模型的计算周期为主导周期:
当其与第二模型时序同步时,进行数据传递;
当其与第二模型时序不同步时,进入等待状态直至时序同步;
第二模型保持连续的运行,其内部设有时序判别方法:
在每个第二模型的计算周期内,当所述第一模型的累计时长tf与所述第二模型的累计时长tt的偏差Δ小于等于一设定阈值时,所述第一模型和第二模型的时序同步。
优选的是,当所述第一模型和所述第二模型的时序同步时,所述第二模型的计算周期内包括运行、判断、写入和读取四个状态,随后进入下一第二模型计算周期的运行状态。
优选的是,当所述第一模型和所述第二模型的时序不同步时,所述第二模型的计算周期内仅包括运行和判断两个状态,随后进入下一第二模型计算周期的运行状态。
优选的是,所述第一模型包括等待、读取、运行和写入四个状态,在其每个计算周期开始时即进入等待状态,直至所述第一模型和所述第二模型的时序同步时,进入读取、运行和写入状态,随后进入下一个所述第一模型的计算周期的等待状态。
优选的是,所述第二模型的单个计算周期为Tf,所述偏差Δ小于等于Tf/2。
优选的是,还包括一个中间同步源,其与所述第一模型的时序同步,用于联合所述第一模型和所述第二模型。
优选的是,所述中间同步源内设置有第一模块和第二模块,所述第一模块用于运行所述第一模型,所述第二模块用于数据读写,所述第一模块与所述第二模块之间进行数据传递,实现所述第一模型和第二模型的联合。
本发明所述的有益效果为:
本发明所述的时序同步方法,能够使得两个模型在联合使用时保证时序的同步。
附图说明
图1为本发明实施例所述的液罐车整车动力学测试模型仿真中Fluent 6.3与TruckSim 8.0联合仿真的流程图。
图2为本发明实施例所述的液罐车整车动力学测试模型仿真中第一模型的运行状态示意图。
图3为本发明实施例所述的液罐车整车动力学测试模型仿真中Fluent 6.3与TruckSim 8.0联合仿真过程中的时序同步方法示意图。
图4为本发明实施例所述的液罐车整车动力学测试模型仿真中Fluent 6.3与TruckSim 8.0联合仿真过程中时序同步判别标准示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供一种时序同步方法,包括:在TruckSim中车辆模型,其为第一模型;在Fluent中液体模型,其为第二模型;以第一模型的计算周期为主导周期:当其与第二模型时序同步时,进行数据传递;当其与第二模型时序不同步时,进入等待状态直至时序同步;第二模型保持连续的运行,其内部设有时序判别方法:在每个第二模型的计算周期内,当所述第一模型的累计时长tf与所述第二模型的累计时长tt的偏差Δ小于等于一设定阈值时,所述第一模型和第二模型的时序同步。当所述第一模型和所述第二模型的时序同步时,所述第二模型的计算周期内包括运行、判断、写入和读取四个状态,随后进入下一第二模型计算周期的运行状态。当所述第一模型和所述第二模型的时序不同步时,所述第二模型的计算周期内仅包括运行和判断两个状态,随后进入下一第二模型计算周期的运行状态。所述第一模型包括等待、读取、运行和写入四个状态,在其每个计算周期开始时即进入等待状态,直至所述第一模型和所述第二模型的时序同步时,进入读取、运行和写入状态,随后进入下一个所述第一模型的计算周期的等待状态。所述第二模型的单个计算周期为Tf,所述偏差Δ小于等于Tf/2。本实施例中,还包括一个中间同步源,其与所述第一模型的时序同步,用于联合所述第一模型和所述第二模型。所述中间同步源内设置有第一模块和第二模块,所述第一模块用于运行所述第一模型,所述第二模块用于数据读写,所述第一模块与所述第二模块之间进行数据传递,实现所述第一模型和第二模型的联合。
下面通过建立液罐车整车动力学测试模型仿真具体阐述所述时序同步方法的使用;所述第一软件为TruckSim8.0;第二软件为Fluent6.3;操作系统为Windows7;所述中间同步源的软件为Matlab/SimulinkR2015b。
如图1所示,在TruckSim8.0中建立车辆模型,在Matlab/SimulinkR2015b中建立CoSimulation.mdl文件,将车辆模型的联合仿真接口代码发送至CoSimulation.mdl中,建立TruckSim8.0与Matlab/SimulinkR2015b的联合仿真环境。车辆模型在CoSimulation.mdl中以S-Function的形式通过调用TruckSim8.0产生的DLL文件来运行,仿真结束后的车辆动力学响应可以在TruckSim8.0中查看。在CoSimulation.mdl中包含两个S-Function模块,一个用于运行车辆模型,另一个为数据读写S-Function,其用途如下:1.读取生成共享文件Force.txt中的液体晃动力及晃动力矩;2.将液罐侧向加速度及侧倾角速度写入共享文件Motion.txt;3.当TruckSim8.0与Fluent6.3时序不一致时循环等待。两个S-Function在CoSimulation.mdl中进行数据的传递从而实现液体模型与车辆模型之间的耦合,当然,还可以通过在CoSimulation.mdl中加入对车辆的稳定性控制策略以验证其有效性。液体晃动模型的运行步长、介质属性及边界条件等事先写入Fluent6.3的日志文件中,Fluent6.3运行前需要载入日志文件进行配置,在Fluent6.3中使用C语言编写用户自定义函数(UDF),UDF主要用于实现以下作用:1.读取共享文件Motion.txt中的液罐侧向加速度及侧倾角速度;2.将计算得到的液体晃动力及晃动力矩写入共享文件Force.txt;3.将读取的液罐侧向加速度及侧倾角速度施加与Fluent 6.3中的液体模型;4.计算液体模型的液体晃动力及晃动力矩;5.判断Fluent 6.3与TruckSim 8.0运行的时序是否一致。当与TruckSim 8.0运行的时序一致时,Fluent 6.3将计算得到的液体晃动力及晃动力矩写入共享文件Force.txt中,并读入共享文件Motion.txt中的液罐侧向加速度及侧倾角速度,随后对液体模型的液体晃动力及晃动力矩进行迭代计算。
如图2所示,所述TruckSim 8.0与Matlab/Simulink R2015b的运行状态是同步的,在程序运行过程中每个车辆模型计算周期包含等待、读取、运行、写入四个状态,每个车辆模型计算周期开始时进行等待,直到有新的共享文件Force.txt生成,此时进入读取状态,从共享文件Force.txt中读取液体晃动力及晃动力矩,读取后进入运行状态,计算车辆的运动状态,计算完毕后进入写入状态,将通过对车辆模型进行求解得到的液罐侧向加速度及侧倾角速度写入共享文件Motion.txt,随后转入下一个车辆模型计算周期的等待状态。程序运行过程中以TruckSim 8.0与Matlab/Simulink R2015b的运行周期为主导周期,与Fluent 6.3时序一致时进行数据的传递,否则进入等待状态直至时序一致,而Fluent 6.3保持连续的运行。当时序一致时,Fluent 6.3中的液体模型计算周期是一个完整的计算周期,包含运行、判断、写入、读取四个状态,首先进入该周期的运行状态,求解液体的晃动力及晃动力矩,求解完毕进入判断状态,判断时序是否一致,一致则进入写入状态,将液体晃动力及晃动力矩写入共享文件Force.txt,写入完毕后进入读取状态,从共享文件Motion.txt中读取液罐侧向加速度及侧倾角速度,随后进入下一液体模型计算周期的运行状态。当时序不一致时,Fluent 6.3中的液体模型计算周期只包含运行与判断两个状态,当判断结果为时序不一致时,不进行数据的读写操作,直接转入下一计算周期的运行。
如图3所示,TruckSim 8.0中的车辆模型计算步长与Fluent 6.3中的液体模型计算步长多数情况下是不一致的,即使步长一致,由于Fluent 6.3相对于TruckSim 8.0计算耗时较长,二者也难以保持时序上的同步,因此设计开发了时序同步方法,该机制的核心为TruckSim 8.0中的车辆模型计算周期的等待与Fluent 6.3中的液体模型计算周期中的判断。Fluent 6.3在每个液体模型计算周期中都会判断Fluent 6.3的累计时长与TruckSim8.0的累计时长的偏差Δ是否满足若满足,则认为此时时序一致,生成共享文件Force.txt,否则转入下一液体模型计算周期的运行。TruckSim 8.0在每个车辆模型计算周期开始时判断是否有共享文件Force.txt生成,若无共享文件Force.txt生成则进入循环等待,而当Fluent 6.3在时序一致时生成共享文件Force.txt,此时TruckSim 8.0结束等待,Matlab/Simulink R2015b中的数据读写S-Function在每个车辆模型计算周期结束时将当前共享文件Force.txt删除然后进入下一车辆模型计算周期的等待状态。以工作环境中共享文件Force.txt的生成作为时序同步的标志,通过这种方法使TruckSim 8.0与Fluent6.3保持运行时序上的同步。
如图4所示,设定Tf为Fluent 6.3的单个液体模型计算周期时长,Tt为TruckSim8.0的单个车辆模型计算周期时长,tt为TruckSim 8.0当前的累计时长,tf2、tf4为Fluent6.3当前液体模型计算周期结束时的累计时长,tf1、tf3为Fluent 6.3上一液体模型计算周期结束时的累计时长。图4中包括两组对比,前一组中Fluent上一计算周期结束时的累计时长与TruckSim当前的累计时长的偏差比Fluent当前计算周期结束时的累计时长与TruckSim当前的累计时长的偏差小,即
tt-tf3<tf4-tt
为保证时序一致的唯一性,此时应认为在tf3时刻时序是一致的,在Fluent6.3的上一液体模型计算周期结束时即将Fluent 6.3计算结果写入共享文件Force.txt中供TruckSim 8.0读取。而在后一组对比中,Fluent当前计算周期结束时的累计时长与TruckSim当前的累计时长的偏差比Fluent上一计算周期结束时的累计时长与TruckSim当前的累计时长的偏差小,即
tf2-tt<tt-tf1
为保证时序一致的唯一性,此时应认为在tf2时刻时序是一致的,在Fluent6.3的当前液体模型计算周期结束时将Fluent 6.3计算结果写入共享文件Force.txt中供TruckSim8.0读取。因此,时序一致判别标准所采用的偏差Δ应为:
本发明所述的时序同步方法,能够使得两个模型在联合使用时保证时序的同步。在液罐车整车动力学测试过程中,建立了准确的车辆模型和非线性液体模型,并通过上述时序同步方法使两者能够联合使用,较高精度的实现对液罐车整车动力学的测试。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (7)

1.一种时序同步方法,其特征在于,包括:
在TruckSim中车辆模型,其为第一模型;
在Fluent中液体模型,其为第二模型;
以第一模型的计算周期为主导周期:当其与第二模型时序同步时,进行数据传递;当其与第二模型时序不同步时,进入等待状态直至时序同步;
第二模型保持连续的运行,其内部设有时序判别方法:在每个第二模型的计算周期内,当所述第一模型的累计时长tf与所述第二模型的累计时长tt的偏差Δ小于等于一设定阈值时,所述第一模型和第二模型的时序同步。
2.如权利要求1所述的时序同步方法,其特征在于,当所述第一模型和所述第二模型的时序同步时,所述第二模型的计算周期内包括运行、判断、写入和读取四个状态,随后进入下一第二模型计算周期的运行状态。
3.如权利要求1所述的时序同步方法,其特征在于,当所述第一模型和所述第二模型的时序不同步时,所述第二模型的计算周期内仅包括运行和判断两个状态,随后进入下一第二模型计算周期的运行状态。
4.如权利要求1所述的时序同步方法,其特征在于,所述第一模型包括等待、读取、运行和写入四个状态,在其每个计算周期开始时即进入等待状态,直至所述第一模型和所述第二模型的时序同步时,进入读取、运行和写入状态,随后进入下一个所述第一模型的计算周期的等待状态。
5.如权利要求1所述的时序同步方法,其特征在于,所述第一模型如权利要求1所述的时序同步方法,其特征在于,所述第二模型的单个计算周期为Tf,所述偏差Δ小于等于Tf/2。
6.如权利要求1所述的时序同步方法,其特征在于,还包括一个中间同步源,其与所述第一模型的时序同步,用于联合所述第一模型和所述第二模型。
7.如权利要求6所述的时序同步方法,其特征在于,所述中间同步源内设置有第一模块和第二模块,所述第一模块用于运行所述第一模型,所述第二模块用于数据读写,所述第一模块与所述第二模块之间进行数据传递,实现所述第一模型和第二模型的联合。
CN201710561079.9A 2017-07-11 2017-07-11 一种时序同步方法 Expired - Fee Related CN107292053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710561079.9A CN107292053B (zh) 2017-07-11 2017-07-11 一种时序同步方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710561079.9A CN107292053B (zh) 2017-07-11 2017-07-11 一种时序同步方法

Publications (2)

Publication Number Publication Date
CN107292053A true CN107292053A (zh) 2017-10-24
CN107292053B CN107292053B (zh) 2019-10-11

Family

ID=60101616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710561079.9A Expired - Fee Related CN107292053B (zh) 2017-07-11 2017-07-11 一种时序同步方法

Country Status (1)

Country Link
CN (1) CN107292053B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213005A (zh) * 2019-05-17 2019-09-06 厦门网宿有限公司 一种时间同步方法、设备及系统
EP4369240A1 (de) * 2022-11-11 2024-05-15 dSPACE GmbH Simulationsvorrichtung zur ausgabe von bilddaten einer virtuellen umgebung eines fahrzeugs an ein steuergerät, testaufbau mit einer solchen simulationsvorrichtung und verfahren zur ausgabe von bilddaten einer virtuellen umge-bung eines fahrzeugs an ein steuergerät

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093494A (ja) * 2005-09-30 2007-04-12 Seiko Precision Inc 時刻同期システム、計時機器、および、送信タイミング制御方法
CN101523829A (zh) * 2006-10-12 2009-09-02 皇家飞利浦电子股份有限公司 用于传感器网络中的时间同步的方法和系统
CN104180984A (zh) * 2014-09-04 2014-12-03 吉林大学 液罐车辆液-固双向耦合实时模拟试验台
CN105342640A (zh) * 2015-11-26 2016-02-24 深圳市理邦精密仪器股份有限公司 无线探头超声波信号发射同步校准方法、装置及监护设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093494A (ja) * 2005-09-30 2007-04-12 Seiko Precision Inc 時刻同期システム、計時機器、および、送信タイミング制御方法
CN101523829A (zh) * 2006-10-12 2009-09-02 皇家飞利浦电子股份有限公司 用于传感器网络中的时间同步的方法和系统
CN104180984A (zh) * 2014-09-04 2014-12-03 吉林大学 液罐车辆液-固双向耦合实时模拟试验台
CN105342640A (zh) * 2015-11-26 2016-02-24 深圳市理邦精密仪器股份有限公司 无线探头超声波信号发射同步校准方法、装置及监护设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN YU 等: "Self-Configuring TDMA Protocols for Enhancing Vehicle Safety With DSRC Based Vehicle-to-Vehicle Communications", 《IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS》 *
史庆军: "一种设计同步时序逻辑电路的新方法", 《电子工程师》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213005A (zh) * 2019-05-17 2019-09-06 厦门网宿有限公司 一种时间同步方法、设备及系统
EP4369240A1 (de) * 2022-11-11 2024-05-15 dSPACE GmbH Simulationsvorrichtung zur ausgabe von bilddaten einer virtuellen umgebung eines fahrzeugs an ein steuergerät, testaufbau mit einer solchen simulationsvorrichtung und verfahren zur ausgabe von bilddaten einer virtuellen umge-bung eines fahrzeugs an ein steuergerät

Also Published As

Publication number Publication date
CN107292053B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
Yuan et al. Nonlinear MPC-based slip control for electric vehicles with vehicle safety constraints
Son et al. Simulation-based testing framework for autonomous driving development
CN103956045B (zh) 利用半实物仿真技术手段实现车队协同驾驶的方法
Beal Applications of model predictive control to vehicle dynamics for active safety and stability
CN107292053B (zh) 一种时序同步方法
CN108446463A (zh) 融合车辆动力学的微观交通流协同仿真平台、仿真方法及安全评价方法
CN108628169A (zh) 基于多智能体系统动车组停车一致性控制方法
CN106803226A (zh) 考虑最优速度记忆及后视效应的车辆跟驰建模方法
Yang et al. Longitudinal tracking control of vehicle platooning using DDPG-based PID
Siegler et al. Lap time simulation: Comparison of steady state, quasi-static and transient racing car cornering strategies
Pariota et al. Integrating tools for an effective testing of connected and automated vehicles technologies
Vo-Duy et al. A signal hardware-in-the-loop model for electric vehicles
Cao et al. An improved motion control with cyber-physical uncertainty tolerance for distributed drive electric vehicle
CN109445404B (zh) 智能驾驶规划决策控制系统增强在环测试方法
Jeong et al. Vehicle-in-the-loop workflow for the evaluation of energy-efficient automated driving controls in real vehicles
Lattarulo et al. Towards conformant models of automated electric vehicles
Kim et al. Simulation of heavy-duty vehicles in platooning scenarios
CN116449697A (zh) 一种重载列车的协同巡航控制方法
Wang et al. Active steering and driving/braking coupled control based on flatness theory and a novel reference calculation method
Khosravi et al. Virtual truck platooning implementation in Unity
Landolfi et al. Integration of a model predictive control with a fast energy management strategy for a hybrid powertrain of a connected and automated vehicle
CN109976188B (zh) 一种基于时间自动机的板球控制方法及系统
Hsu et al. Platoon lane change maneuvers for automated highway systems
Pariota et al. Motivating the need for an integrated software architecture for connected and automated vehicles technologies development and testing
Li et al. A cooperative control strategy for a hydraulic regenerative braking system based on chassis domain control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191011

Termination date: 20200711