CN103956045B - 利用半实物仿真技术手段实现车队协同驾驶的方法 - Google Patents

利用半实物仿真技术手段实现车队协同驾驶的方法 Download PDF

Info

Publication number
CN103956045B
CN103956045B CN201410198992.3A CN201410198992A CN103956045B CN 103956045 B CN103956045 B CN 103956045B CN 201410198992 A CN201410198992 A CN 201410198992A CN 103956045 B CN103956045 B CN 103956045B
Authority
CN
China
Prior art keywords
fleet
vehicle
driving
coordination
works
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410198992.3A
Other languages
English (en)
Other versions
CN103956045A (zh
Inventor
马育林
徐友春
袁一
李明喜
李华
贾鹏
张志超
李建市
朱增辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Military Transportation University of PLA
Original Assignee
Military Transportation University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Military Transportation University of PLA filed Critical Military Transportation University of PLA
Priority to CN201410198992.3A priority Critical patent/CN103956045B/zh
Publication of CN103956045A publication Critical patent/CN103956045A/zh
Application granted granted Critical
Publication of CN103956045B publication Critical patent/CN103956045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明涉及一种利用半实物仿真技术手段实现车队协同驾驶的方法,具体步骤如下:定义涵盖车辆状态与道路交通环境等信息的数据类型;设计车队协同驾驶分布式体系的软件架构;根据车队上层协作功能单元的软件需求,设计车队协同驾驶的混成自动机;根据底层控制功能单元的软件需求,建立车队控制系统的输入状态。有益效果:本发明可以实时有效地对车队协同驾驶过程中的动、静态信息进行分类和融合;提供的车队协同驾驶分布式体系的软件架构可以将系统整体功能分为上下两层的功能单元。协作层的车队协同驾驶混成自动机将车队有限的驾驶策略联系起来,通过车队位置、长度、速度、间隔等触发条件的设定完成各种车队协同驾驶策略的切换控制。

Description

利用半实物仿真技术手段实现车队协同驾驶的方法
技术领域
本发明涉及智能交通仿真与试验领域,尤其涉及一种利用半实物仿真技术手段实现车队协同驾驶的方法。
背景技术
智能交通系统已经从早期以先进车辆控制技术为本的自动公路系统发展到目前以车车、车路通信为导向的智能车路系统,车队协同驾驶正是智能车路系统研究的热点问题。车队协同驾驶可以将若干辆单车组成跨车道柔性车队,通过车辆和道路的协调与配合,可以改善交通容量、增强交通安全,并在此基础上节约能源、减少环境污染。尽管美国加州大学伯克利分校提出的PATH计划(1997-2004年,7辆车)、日本JSK协会提出的ASV计划(2000-2006年,5辆车)以及欧盟赞助、VOLVO汽车制造商开展的SARTRE计划(2009-2012年,4辆车)都已经开展多车协同驾驶演示试验,但是上述项目不仅耗时长、费用昂贵,而且危险系数高,因此,迫切需要一种安全有效的智能车路仿真与试验技术实现车队协同驾驶。
半实物仿真采用相似原理,按照一定比例,构建多尺度的智能车辆与道路交通系统,通过将价格昂贵或结构复杂的车辆动力系统嵌入到计算机仿真系统,而将易于实现的车辆底盘、道路交通设施等以实物形式出现,可以降低成本、简化计算复杂程度,并且在系统设计与测试的便捷性、复验性、适应性以及安全性方面具有实车道路试验无可比拟的优势。目前,众多高校与科研单位都建立了缩微智能车和道路交通仿真平台,可以为智能交通仿真与试验提供良好的实验平台。比如,车模缩微车的电器和机械集成平台(专利号201220286006.6)、一种微缩道路路面结构(专利号201220330502.7)、一种模块化缩微道路环境模型(专利号201220332295.9)、基于缩微智能车教学实验装置(专利号201310132532.6),缩微智能车群的智能交通硬件在线仿真系统(专利号201310320830.8)、用于智能交通硬件在线仿真系统的缩微智能车架构(专利号201310477168.7)。尽管上述专利都提供了类似的实验平台,并设计了缩微智能车的硬件结构和软件功能,但是大部分仅能实现某些特定的任务,如教学、比赛任务,或者为智能车路系统探索性研究提供系统整体架构。此外,面对车辆的高速移动性和道路交通环境的多样性,如何将半实物仿真运用到车队协同驾驶的建模与控制中,就成为本发明重点解决的关键技术问题。
发明内容
本发明的目的在于克服上述技术的不足,而提供一种利用半实物仿真技术手段实现车队协同驾驶的方法,可以便捷高效地利用缩微智能车硬件资源与道路交通环境的实物资源,为车队协同驾驶、车联网集群行驶等研究提供统一的自动化软件测试框架。
本发明为实现上述目的,采用以下技术方案:一种利用半实物仿真技术手段实现车队协同驾驶的方法,建立车辆与道路信息共享数据库和车队协同驾驶分布式体系的软件架构,将系统整体功能分为上下两层的功能单元,设定车队位置、长度、速度、间隔等触发条件,完成各种车队协同驾驶策略的切换控制;
具体步骤如下:
(1)定义涵盖车辆状态与道路交通环境等信息的数据类型,提供车辆与道路信息共享数据库,对车载多传感器采集的车辆动态信息与道路交通设施、位置等静态信息进行分类与融合;
(2)建立车队协同驾驶分布式体系的软件架构:包括车队上层协作功能单元与底层控制功能单元,所述车队上层协作功能单元根据不同道路交通场景设定车队巡航、跟随、组合与拆分、换道等策略,根据有限的道路资源完成车队不同策略的切换控制,所述底层控制功能单元根据车队上层协作功能单元发送的车队期望状态命令,控制各缩微智能车的电机转速与舵机偏转,实现车队的协同驾驶;
(3)根据步骤(2)中的车队上层协作功能单元的软件需求,设计车队协同驾驶的混成自动机;针对上述多种协同驾驶策略,建立不同的车队协作模态,借助车辆与道路信息共享数据库,构建基于事件流描述的动态驱动系统,采用直接、广播、绑定、隐藏等事件类型,设计车队协作模态的迁移动作,实现不同策略的切换控制;
(4)根据所述步骤(2)中的底层控制功能单元的软件需求,采用车辆动力学与运动学模型匹配的方式,建立车队控制系统的输入状态精确线性化关系式如下:
F i = m i u 1 , i - C f v y , i + l f ψ · i v x , i δ i + μ m i g δ i = - b - b 2 - 4 ac 2 a a = C f v y , i + l f ψ · i m i v x , i b = - ( u 1 , i + μ l r l f + l r g + μ l f m i ( l f + l r ) k L v x , i 2 + C f ) c = u 2 , i
式中,下标i表示车队中第i辆车,状态变量 x x 1 x 2 x 3 = v x v y ψ · 包含车辆的纵向速度、横向速度、横摆角速度,u1,i和u2,i分别表示第i辆车的纵向与横向控制输入。mi表示第i辆车的质量,Fi表示第i辆车的牵引力,δi表示第i辆车的前轮转角,lf和lr分别为车辆前后轴到质心的轴距,Cf为车辆前轮侧偏刚度,kL为车辆的空气垂向升力系数,将计算得到的纵向与横向控制输入u1和u2代入表达式a、b、c,得到车辆的前轮转角的值,进而得到牵引力的大小。
有益效果:(1)由于现有的缩微车与道路交通仿真平台具有多种数据接口,所提供的车辆与道路信息共享数据库,可以实时有效地对车队协同驾驶过程中的动、静态信息进行分类和融合,同时可借鉴ODBC、JDBC等数据库接口技术,增加数据处理的可操作性。(2)所提供的车队协同驾驶分布式体系的软件架构可以将系统整体功能分为上下两层的功能单元。协作层的车队协同驾驶混成自动机将车队有限的驾驶策略联系起来,通过车队位置、长度、速度、间隔等触发条件的设定完成各种车队协同驾驶策略的切换控制,并可借鉴Stateflow、SimEvents等建模工具,提高车队协同驾驶策略切换的效率,又能减少车队测试的风险。控制层的车辆纵向与横向控制律设计,可采用PID控制、滑模控制、最优控制、鲁棒控制等多种方法,且相关控制算法已在众多智能车实验平台上得到了有效验证。
附图说明
图1是本发明的整体示意图;
图2是本发明的协作层示意图;
图3是本发明的控制层示意图;
图4a是车间距变化曲线;
图4b是速度变化曲线;
图4c是加速度变化曲线;
图5a是车间距变化曲线;
图5b是纵向速度变化曲线;
图5c是纵向加速度变化曲线;
图5d是横向偏差变化曲线;
图5e是横向速度变化曲线;
图5f是横摆角速度变化曲线。
具体实施方式
下面结合较佳实施例详细说明本发明的具体实施方式。
如图1所示,该整体示意图可以将道路交通环境与车队实验平台组合成车队协同驾驶体系。该体系包括协作层、控制层的分层物理结构与图中列出的3种传输的信息结构。一般情况下,采集道路标线的摄像头使用USB总线,采集车间距离的超声波传感器使用SCI总线,测量车速的光电编码器使用I/O总线、加速度传感器可使用SPI或I2C总线,车辆与车辆、车辆与路侧设备的通信使用无线网卡或Zigbee无线通信模块。除此之外,协作单元与控制单元的命令发送与接收,可以在兼顾成本与功能实现的条件下,在USART接口(简单可靠、传输速率低)、USB接口(通用、传输速率适中)、PCI接口或以太网接口(标准、传输速率高)上自主选择。首先,控制层可以采集道路交通环境和车辆状态信息,并发送到协作层的车路信息共享数据库。协作层根据上述信息建立车队协同驾驶混成自动机,利用各种事件类型激活相应的协作模态,并将各车辆的期望状态发送到控制层。然后,控制层根据各车辆的期望状态采用相应的控制方法实现对车辆执行机构的精确控制。
如图2所示,车队中各车辆协作层主要针对车队协同驾驶策略的切换设计车队混成自动机。该自动机包括领航车、当前被控车辆以及其后跟随车辆的模态迁移。首先,领航车从初始状态被激活,跟车队其他车辆建立通信后,开始加速到达巡航模态。这时,其后跟随车辆开始进入协作过程。当前被控车辆一般是会直接进入“跟随”模态。如果请求改变,那么被控车辆必须先通过纵向控制进入“拆分”模态,然后才能达到“换道”模态。如果“换道”模态被激活,那么领航车就会被告知整个车队的序号就会发生改变。否则说明换道条件不允许或横向控制未能实现,被控车辆仍需通过“组合”模态与车队保持距离。这样,其他跟随车辆也必须根据被控车辆的模态变化执行各自的模态迁移动作。如果被控车辆请求改变,跟随车辆必须先与被控车辆分离。如果被控车辆没有实现换道,那么跟随车辆直接通过“组合”模态与被控车辆保持距离。如果被控车辆换道成功,领航车会把新的车队序号发送给跟随车辆,那么跟随车辆就会通过“组合”模态,与领航车组成新的车队。
如图3所示,车队中各车辆控制层包括控制器设计、精确线性化方法以及车辆实验平台。由于车辆实验平台具有丰富的传感器接口,各车辆控制器可选择合适的控制输入参数。一般地,纵向控制选用车间距误差、速度误差等参数;横向控制选用横向偏差、道路标线斜率等参数。针对车辆纵横向耦合效应,可采用权重分配法对纵横向控制进行补偿。采用不同控制方法得到的纵横向控制量通过精确线性化方法就可以对各车辆的电机与舵机进行控制。另外,利用零阶保持器可以把采样信号转换成连续信号,可以实时监测控制量的变化,在线调整控制参数。
如图4所示,车队跟随控制仿真的步骤是:选取由5辆车组成的一列车队,利用车辆和道路信息共享数据库,确定合适的道路场景、车队速度、车间距等类型的数据,并采用广播的事件类型,通过领航车将相应车速、车间距数值发送到其后跟随车辆,各个车辆采用Backstepping滑模控制方法对速度和车间距误差进行控制,实现整个车队的跟随行驶功能。假设领航车以2m/s2的加速度在长直道上从0增加到30m/s,接着再以-2m/s2的加速度从30m/s降低到10m/s,并设定期望车间距为12m,那么整个车队跟随行驶过程的车间距误差、速度以及加速度变化如图4所示。
如图5a-f所示,本发明选取的车队跟随与车道保持策略仿真示意图,车道保持控制仿真的步骤是:选取由2辆车组成的一列车队,利用车辆和道路信息共享数据库,确定合适的道路场景、车队速度、车间距、横向偏差、横摆角等类型的数据,并采用直接的事件类型,将上述信息存储在前后2车的控制系统中,各个车辆采用LQR最优控制方法对车队纵横向运动进行耦合控制,实现整个车队的车道保持功能。假设弯道曲率如下
C = 0 , 0 &le; x < 160 1 / 200 , 160 &le; x < 160 + 25 &pi; - 1 / 400 , 160 + 25 &pi; &le; x < 160 + 125 &pi; 1 / 200 , 160 + 125 &pi; &le; x < 160 + 150 &pi; 0 , 160 + 150 &pi; &le; x < 1000
领航车以25m/s的速度驶入弯道,且进弯的横向偏差设定为0.2m,那么整个车队在该弯道上保持车道的纵横向最优运动变化。
上述参照实施例对该一种利用半实物仿真技术手段实现车队协同驾驶的方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (1)

1.一种利用半实物仿真技术手段实现车队协同驾驶的方法,建立车辆与道路信息共享数据库和车队协同驾驶分布式体系的软件架构,将系统整体功能分为上下两层的功能单元,设定车队位置、长度、速度和间隔的触发条件,完成各种车队协同驾驶策略的切换控制;
具体步骤如下:
(1)定义涵盖车辆状态与道路交通环境信息的数据类型,提供车辆与道路信息共享数据库,对车载多传感器采集的车辆动态信息与道路交通设施及位置的静态信息进行分类与融合;
(2)建立车队协同驾驶分布式体系的软件架构:包括车队上层协作功能单元与底层控制功能单元,所述车队上层协作功能单元根据不同道路交通场景设定车队巡航、跟随、组合与拆分及换道的策略,根据有限的道路资源完成车队不同策略的切换控制,所述底层控制功能单元根据车队上层协作功能单元发送的车队期望状态命令,控制各缩微智能车的电机转速与舵机偏转,实现车队的协同驾驶;
(3)根据步骤(2)中的车队上层协作功能单元的软件需求,设计车队协同驾驶的混成自动机;针对上述多种协同驾驶策略,建立不同的车队协作模态,借助车辆与道路信息共享数据库,构建基于事件流描述的动态驱动系统,采用直接、广播、绑定和隐藏的事件类型,设计车队协作模态的迁移动作,实现不同策略的切换控制;
(4)根据所述步骤(2)中的底层控制功能单元的软件需求,采用车辆动力学与运动学模型匹配的方式,建立车队控制系统的输入状态精确线性化关系式如下:
F i = m i u 1 , i - C f v y , i + l f &psi; &CenterDot; i v x , i &delta; i + &mu;m i g &delta; i = - b - b 2 - 4 a c 2 a a = C f v y , i + l f &psi; &CenterDot; i m i v x , i b = - ( u 1 , i + &mu; l r l f + l r g + &mu; l f m i ( l f + l r ) k L v x , i 2 + C f ) c = u 2 , i
式中,下标i表示车队中第i辆车;
状态变量 x &lsqb; x 1 x 2 x 3 &rsqb; = &lsqb; v x v y &psi; &CenterDot; &rsqb; 包含车辆的纵向速度、横向速度、横摆角速度;
u1,i和u2,i分别表示第i辆车的纵向与横向控制输入;
mi表示第i辆车的质量;
Fi表示第i辆车的牵引力;
δi表示第i辆车的前轮转角;
lf和lr分别为车辆前后轴到质心的轴距;
Cf为车辆前轮侧偏刚度;
kL为车辆的空气垂向升力系数;
将计算得到的纵向与横向控制输入u1,i和u2,i代入表达式a、b、c,得到车辆的前轮转角的值,进而得到牵引力的大小。
CN201410198992.3A 2014-05-13 2014-05-13 利用半实物仿真技术手段实现车队协同驾驶的方法 Active CN103956045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410198992.3A CN103956045B (zh) 2014-05-13 2014-05-13 利用半实物仿真技术手段实现车队协同驾驶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410198992.3A CN103956045B (zh) 2014-05-13 2014-05-13 利用半实物仿真技术手段实现车队协同驾驶的方法

Publications (2)

Publication Number Publication Date
CN103956045A CN103956045A (zh) 2014-07-30
CN103956045B true CN103956045B (zh) 2015-12-02

Family

ID=51333314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410198992.3A Active CN103956045B (zh) 2014-05-13 2014-05-13 利用半实物仿真技术手段实现车队协同驾驶的方法

Country Status (1)

Country Link
CN (1) CN103956045B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3227876A1 (en) * 2014-12-05 2017-10-11 Audi AG Method for coordinating movements of vehicles forming a platoon
CN105644566B (zh) * 2016-03-02 2017-12-19 厦门大学 一种基于车联网的电动汽车辅助换道轨迹的跟踪方法
CN106652518A (zh) * 2016-12-01 2017-05-10 大连海事大学 一种基于车联网的车辆协调控制系统
CN106873397B (zh) * 2017-01-23 2020-02-14 同济大学 智能网联汽车“硬件在环”加速加载仿真测试系统
CN107944091B (zh) * 2017-10-30 2021-05-11 同济大学 一种虚实结合的车联网应用场景测试系统及方法
CN108216236B (zh) * 2017-12-25 2019-12-20 东软集团股份有限公司 车辆控制方法、装置、车辆及存储介质
CN108337647B (zh) * 2018-01-03 2021-03-23 仙童智行(北京)科技有限公司 轮椅集群管理方法、装置及计算机可读存储介质
US11011063B2 (en) * 2018-11-16 2021-05-18 Toyota Motor North America, Inc. Distributed data collection and processing among vehicle convoy members
CN111696338B (zh) * 2019-03-15 2022-12-27 北京图森智途科技有限公司 一种车队协同驾驶异常监控方法及系统
CN111696373B (zh) * 2019-03-15 2022-05-24 北京图森智途科技有限公司 车队协同感知方法、车队协同控制方法和系统
CN110456790B (zh) * 2019-07-31 2020-10-02 厦门大学 基于自适应权重的智能网联电动汽车队列优化控制方法
CN112037502A (zh) * 2020-08-05 2020-12-04 深圳技术大学 一种智巴车队控制方法、系统和计算机可读存储介质
WO2022027353A1 (zh) * 2020-08-05 2022-02-10 深圳技术大学 一种智巴车队控制方法、系统和计算机可读存储介质
CN112445229B (zh) * 2020-11-04 2021-10-26 清华大学 一种领航车队协同的单车道多队列分层控制方法
CN112233424B (zh) * 2020-12-17 2021-03-23 北京主线科技有限公司 一种车路协同的货车队列纵向控制方法、装置及系统
US20220219731A1 (en) * 2021-01-14 2022-07-14 Cavh Llc Intelligent information conversion for automatic driving
CN117496689B (zh) * 2023-12-29 2024-05-24 苏州观瑞汽车技术有限公司 混行交通环境下连续信号交叉口车队协同控制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533455A (zh) * 2009-04-24 2009-09-16 昆明理工大学 基于微观交通流仿真模型下的驾驶模拟综合仿真方法
CN102467589A (zh) * 2010-11-10 2012-05-23 上海日浦信息技术有限公司 交互式交通仿真系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472818B2 (ja) * 2000-11-24 2003-12-02 国土交通省国土技術政策総合研究所長 交通シミュレーション方法
JP4506663B2 (ja) * 2005-12-09 2010-07-21 株式会社豊田中央研究所 交通状況予測装置、方法及びプログラム、経路探索システム並びに交通状況提供システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533455A (zh) * 2009-04-24 2009-09-16 昆明理工大学 基于微观交通流仿真模型下的驾驶模拟综合仿真方法
CN102467589A (zh) * 2010-11-10 2012-05-23 上海日浦信息技术有限公司 交互式交通仿真系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
车队协同驾驶混成控制研究现状与展望;马育林等;《汽车工程学报》;20140131;第4卷(第1期);1-13 *

Also Published As

Publication number Publication date
CN103956045A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
CN103956045B (zh) 利用半实物仿真技术手段实现车队协同驾驶的方法
CN110160804A (zh) 一种自动驾驶车辆的测试方法、装置及系统
Ersal et al. Connected and automated road vehicles: state of the art and future challenges
EP3858697A1 (en) Obstacle avoidance method and device
CN106218638B (zh) 一种智能网联汽车协同换道控制方法
Li et al. Intelligent environment-friendly vehicles: Concept and case studies
CN107798861A (zh) 一种车辆协作式编队行驶方法及系统
CN108011947A (zh) 一种车辆协作式编队行驶系统
CN110187639A (zh) 一种基于参数决策框架的轨迹规划控制方法
CN109835375A (zh) 基于人工智能技术的高速铁路列车自动驾驶系统
CN104118430B (zh) 一种基于滑模自抗扰控制的平行泊车系统及泊车方法
Smith et al. Improving urban traffic throughput with vehicle platooning: Theory and experiments
CN110304074A (zh) 一种基于分层状态机的混合式驾驶方法
CN208393354U (zh) 基于bp神经网络和安全距离移线工况自动驾驶转向系统
CN113264059B (zh) 支持多驾驶行为的基于深度强化学习的无人车运动决策控制方法
CN106338998A (zh) 一种控制汽车以簇形式编队行驶的方法
CN106997675A (zh) 基于动态规划的目标车速预测方法
CN207943007U (zh) 一种基于线控底盘的新型智能网联电动汽车
Pi et al. Automotive platoon energy-saving: A review
Jeong et al. Vehicle-in-the-loop workflow for the evaluation of energy-efficient automated driving controls in real vehicles
CN109656242A (zh) 一种自动驾驶行车路径规划系统
CN106494388A (zh) 一种混合动力汽车能量管理及车速调整装置及方法
Kim et al. Simulation of heavy-duty vehicles in platooning scenarios
Zhu et al. Real-time co-optimization of vehicle route and speed using generic algorithm for improved fuel economy
Hollar et al. A new low cost, efficient, self-driving personal rapid transit system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant