CN107267864B - A kind of high-strength spring steel - Google Patents

A kind of high-strength spring steel Download PDF

Info

Publication number
CN107267864B
CN107267864B CN201710458224.0A CN201710458224A CN107267864B CN 107267864 B CN107267864 B CN 107267864B CN 201710458224 A CN201710458224 A CN 201710458224A CN 107267864 B CN107267864 B CN 107267864B
Authority
CN
China
Prior art keywords
spring steel
spring
strength spring
quenching
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710458224.0A
Other languages
Chinese (zh)
Other versions
CN107267864A (en
Inventor
孟宪芸
王治宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANDONG LEOPARD AUTOMOTIVE HOLDINGS Ltd
Original Assignee
SHANDONG LEOPARD AUTOMOTIVE HOLDINGS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANDONG LEOPARD AUTOMOTIVE HOLDINGS Ltd filed Critical SHANDONG LEOPARD AUTOMOTIVE HOLDINGS Ltd
Priority to CN201710458224.0A priority Critical patent/CN107267864B/en
Publication of CN107267864A publication Critical patent/CN107267864A/en
Application granted granted Critical
Publication of CN107267864B publication Critical patent/CN107267864B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The invention discloses a kind of high-strength spring steels, belong to thermal pressure processing purposes high-strength spring steel and preparation process field.It is characterized in that surplus is Fe and inevitable impurity according to quality very than including following component: C 0.47-0.53%, Si 0.15-0.35%, Mn 0.75-1.10%, Cr 0.90-1.20%, V 05-0.10%, Nb 0.02-0.10%, Mo 0.15-0.25%, Cu≤0.25%, Ni≤0.25%, P≤0.02%, S≤0.015%.The present invention has the good characteristic of low decarburization, high intensity, high-plasticity, low-alloy and low cost, can satisfy high stress, high fatigue property, high technology performance and high reliability request that leaf spring is lacked in lightweight.

Description

A kind of high-strength spring steel
Technical field
The invention belongs to thermal pressure processing purposes high-strength spring steel and preparation process field, in particular to a kind of novel height Chemical component, content and the preparation method of intensity spring material.
Background technique
Automotive light weight technology is the trend of development of automobile, wherein piece variable-section steel sheet spring (few leaf spring) this advanced steel plate less Spring technology is the light-weighted the main direction of development of truck, can reduce 30% of automotive dead weight or more.Few leaf spring domestic at present Since fatigue behaviour is low thus does not obtain widespread adoption, this is mainly that problem of materials is not solved effectively, therefore right Spring material proposes high intensity, low-alloy, high-plasticity, low decarburization and inexpensive requirement, lacks leaf spring to meet lightweight High stress, high fatigue property, high technology performance and high reliability request.
Currently on the market common spring material be difficult to meet simultaneously the low decarburization of few piece variable-section steel sheet spring, high intensity, The requirement of high-plasticity, low-alloy and low cost.For example, 51CrV4 spring steel can satisfy the requirement of low decarburization but be unsatisfactory for High-intensitive and high-plasticity requirement.54SiCr6 has high-intensitive and high-plasticity, but decarburization is serious.South Korea Pu spring steel (94191328.7 disclosure of Chinese patent) reduces Fully decarburized layer (ferrite lamellae) depth by the way that Ni is added, but adds dilute noble alloy member Element causes the cost of material very high and is difficult to be acceptable to the market.
In addition, being experimentally confirmed, in quenching process, if shortening steam blanket cooling stage, energy by design technology It cools down entire workpiece surface evenly and rapidly, the surface treatment quality of product is enabled to keep high evenness.And pass through extension Boiling cooling procedure, then be conducive to the cooling effect of large-scale part, improve harden ability while keeping evenness.Above-mentioned technique Optimization only realized by traditional means, be it is limited, in order to break through this limitation, the order of applicant's creativeness is quenched Stage especially applies high-voltage pulse current to spring steel in air film stage and boiling stage, can break through the office of traditional means It is sex-limited, realize the maximization of process advantage.
Summary of the invention
Technical problem to be solved by the invention is to provide a kind of high-strength spring steel, has low decarburization, high intensity, high-plastic The good characteristic of toughness, low-alloy and low cost can satisfy high stress, high fatigue property, high technology that leaf spring is lacked in lightweight Performance and high reliability request.Second technical problem that the present invention solves be can by air film stage and boiling stage to Spring steel applies high-voltage pulse current, can break through the limitation of traditional means, shortens steam blanket cooling stage duration, makes entire Workpiece surface is evenly and rapidly cooled down, and the surface treatment quality of product is enabled to keep high evenness;It is cooled by extending boiling Journey is then conducive to the cooling effect of large scale spring lever, improves harden ability while keeping evenness.
The technical solution adopted by the present invention to solve the technical problems is: providing a kind of high-strength spring steel, feature exists According to quality very than include following component:
C 0.47-0.53%,
Si 0.15-0.35%,
Mn 0.75-1.10%,
Cr 0.90-1.20%,
V 0.05-0.10%,
Nb 0.02-0.10%,
Mo 0.15-0.25%,
Cu≤0.25%,
Ni≤0.25%,
P≤0.02%,
S≤0.015%,
Its surplus is Fe and inevitable impurity.
A kind of high-strength spring steel of the present invention, it is characterised in that heat treatment procedure comprises the technical steps that: quenching Fiery heating temperature is 840-930 DEG C;Tempering temperature is 360-560 DEG C.
Preferably, high-voltage pulse current is passed to the both ends of spring steel in quenching process, energization gap is 1-3 seconds, is broken Electric gap is 0.1-1.5 seconds.
Preferably, the energization total duration of high-voltage pulse current is quench total duration 1/3, and wherein length dimension is 200- 2300mm, width dimensions 70-120mm, thickness are the spring steel plate of 6-45mm, and the air film stage is 1-5 seconds, boiling Stage is 5-10 seconds.Preferably, quenching liquid used in the heat treatment procedure is pure oil hardening liquid.
50 spring steel of novel high-strength LPD that the present invention is developed, solves thermal pressure by high temperature autoxidation process and adds The problem of work purposes high-strength spring material Fully decarburized layer.Its high temperature autoxidation process refers to the component and proportion by material Selection reduces the inoxidizability of material, is oxidized material easily at high operating temperatures and forms oxide skin (including in technical process Fully decarburized layer caused by decarburization is oxidized to oxide skin simultaneously), oxide skin is the frangible loose matter very low with material cohesion Matter has and prevents further decarburization and shield.Thus Fully decarburized layer caused by decarburization is eliminated naturally, is obtained without complete The significant technical effect of decarburized layer.
The high-strength spring steel that the present invention is developed, passes through middle carbon, composite alloying and dilute noble alloy element microalloying Technical thought solve the problems, such as spring material high intensity, high-ductility and low-alloy simultaneously again solve Fully decarburized layer.It is abundant in this way The beneficial effect of alloying element is played and strengthened, harm caused by alloying element is reduced, is obtaining obvious technical effect Under the premise of reduce alloying element content, not only reduce material cost and also be conducive to protect resource.
Composite alloying (including combined microalloying) is the key that of the invention and technical characterstic, possessed by alloying element Performance and behavior are each constituent element (including microelement) synergistic effects as a result, rather than a certain alloying element is simple, qualitative Effect or influence, be especially continuously improved in the intensity of material but in the case where require high-ductility.
The high-strength spring steel that the present invention is developed passes through the microalloy of V and Nb using Si as intensified element Composite alloying reduces the inoxidizability of material, and is obtained using the high-temperature oxydation effect in technical process without the low of Fully decarburized layer Decarburization effect improves the important function such as the strength of materials and refinement crystal grain moreover, having simultaneously.The high-intensitive bullet that the present invention is developed Spring steel, consumed surfacing is seldom in high temperature autoxidation, does not influence the dimension precision requirement of spring.Oxide skin it is attached Put forth effort very low, falls off naturally after quenching.
It is as follows that further explanation of the technical solution of the present invention:
The C content of technical solution of the present invention is 0.47~0.53%.Quenching structure is middle carbon martensite tissue, average tempering It is afterwards high-intensitive and high-ductility secondary troostite tissue, and without Fully decarburized layer.
In order to improve intensity and reduce inoxidizability and decarburizing tendency, Si content is 0.15~0.35%.
The effect of Cr, Mn and mutual compound action are to improve intensity, high-plasticity and harden ability.Therefore, Cr content is 0.90~1.20%, Mn content is 0.75~1.10%.
V, Mo, Ni, Cu and Nb must be added simultaneously, and effect caused by this composite alloying is that single-element is difficult to reach It arrives.In the present invention, each alloying element can not replace mutually, be added simultaneously using the amount of microalloy, invent compound micro- conjunction Golden spring material, function and significance are: 1) reducing inoxidizability, improve quenching temperature 2) Ni and V carbide is tiny more Dissipate and be uniformly distributed, there is apparent grain refining effect, improve grain coarsening temperature, 3) elements such as Mo, Ni, Cu be added improve it is strong Degree and plasticity and toughness, 4) 54SiCrV6 spring steel only contains a kind of strong carbide element of V, V content at least 0.10% or more, and this Invention makes V content that can lack 0.05% level, only the 20 of 51CrV4 or 54SiCrV6 steel point due to being added while V and Nb One of, this is the significant technical effect of V Yu Nb combined microalloying.The composite alloying of V and Nb that the present invention uses achieve The microalloying effect of dilute noble alloy constituent content is greatly reduced.It is worth noting that, when considering alloying element proportion, not only Consider that beneficial effect will more consider damaging effect.Comprehensively consider, C0.47-0.53% of the invention, Si 0.15-0.35%, Mn 0.75-1.10%, Cr 0.90-1.20%, V 05-0.10%, Nb 0.02-0.10%, Mo 0.15-0.25%, Cu≤ 0.25%, Ni≤0.25%.
S, P is harmful element, reduces the plasticity and toughness of material.It is controlled by amount commonly, P≤0.02%, S≤0.015%.
The present invention is only related to high temperature heat treatment step and condition is using high-strength spring steel metallurgical production process Match with the performance of the object of the formula and acquisition of spring material of the invention.The preparation method step of material of the present invention It is as follows with condition: the outer ladle refining of ingredient, electric furnace smelting, furnace and degassing processing, ingot casting or continuous casting, cogging, pickling, reconditioning, spy Wound, rolling;It is characterized in that heat treatment process are as follows: the oil hardening of quenching temperature 850 ± 10-920 ± 10 DEG C;Tempering temperature 370±10-550±10℃.It is of course also possible to other metallurgical technologies be selected, such as electroslag remelting
Beneficial effects of the present invention and significant technological progress effect are as follows:
1, develop a kind of novel high-strength spring steel LPD 50 (low decarburization, high intensity, high-plasticity, low-alloy and it is low at This), to meet high stress, high fatigue property, high technology performance and the high reliability request that leaf spring is lacked in lightweight.
2, the technical performance of 50 material of novel high-strength spring steel LPD of the present invention are as follows: Fully decarburized layer depth=0mm, tension 1650~1900MPa of intensity, the contraction percentage of area 44~48%, alloy content are lower than 51CrV4 or 54SiCrV6 spring steel, especially It is dilute noble alloy element.51CrV4 and 54SiCrV6 is thermal pressure processing purposes spring material technologically advanced in the world.Table 1 is The technical performance of spring material provided by the invention and 51CrV4 and 54SiCrV6 spring steel compares, it can be seen that acquired by the present invention The significant technical effect of substance and advanced technical level.
3, spring material provided by the invention is the high intensity and high-ductility spring material of a kind of thermal pressure processing purposes. There is unique technology feature on ingredient and proportion, see Table 2 for details.On common alloying elements, the present invention and 51CrV4 or 54SiCrV6 steel is suitable, but dilute noble alloy element is significantly lower than 51CrV4 or 54SiCrV6 steel.Dilute noble alloy is compound and microalloy Change is distinguishing feature of the invention, is significant technological progress for existing spring material technology.
4, spring material provided by the invention solves the problems, such as that thermal pressure processes purposes high-strength spring steel Fully decarburized layer. The spring material is suitable for high temperature autoxidation process, solves the problems, such as the Fully decarburized layer of high decarburizing tendency spring material.It has been generally acknowledged that High-temperature oxydation is harmful, but spring material provided by the invention, is exactly solved using this oxidation in technical process Industry insoluble Fully decarburized layer problem for a long time.
The material of the present invention of table 1 and existing spring material intensity, plasticity and decarburization compare
2 chemical analysis of table compares (Wt%)
In order to guarantee the high intensity and high-plasticity of spring, it is desirable that spring material has certain harden ability.Table 3 is this hair The spring material of bright offer and the Hardenability Technique data of EN10089 grade of steel 54SiCrV6,51CrV4 and 52CrMoV4 spring steel Comparison, by visible material of the present invention of table with compared with high-hardenability, oil hardening diameter is up to 50mm.
Table 3
Spring material provided by the invention, for manufacturing the bearing spring of medium-heavy automobile, it may also be used for car suspension spiral shell Revolve spring, automobile torsion bar spring, stabiliser bar, taper-leaf spring of middle thickness etc., and big-wire diameter suspension spiral provided by the invention Spring material, is the excellent material of high strength spring steel wire and oil tempered spring steel wires, and tool has been widely used.
5, optimization design heat treatment process of the present invention, using pure oily catalytic liquid, to prevent kindling or breakdown and electrolysis;Furthermore This technique applies high voltage pulse electric current to material by the first two stage in quenching, maintains last stage material by joule heating effect The temperature lowering curve of material is unlikely excessively steep, evaporates after quickly enabling surface air film shape, and by suitably maintaining high fever, extends boiling stage Duration.This technique can break through the limitation of traditional means as a result, by shortening steam blanket cooling stage duration, make entire Workpiece surface is evenly and rapidly cooled down, and the surface treatment quality of product is enabled to keep high evenness;It is cooled by extending boiling Journey is then conducive to the cooling effect of large scale spring lever, improves harden ability while keeping evenness.
Specific embodiment
A kind of high-strength spring steel of the present invention, according to quality very than including following component:
C 0.47-0.53%,
Si 0.15-0.35%,
Mn 0.75-1.10%,
Cr 0.90-1.20%,
V 0.05-0.10%,
Nb 0.02-0.10%,
Mo 0.15-0.25%,
Cu≤0.25%,
Ni≤0.25%,
P≤0.02%,
S≤0.015%,
Its surplus is Fe and inevitable impurity.
A kind of high-strength spring steel of the present invention, heat treatment procedure comprise the technical steps that: quenching temperature It is 840-930 DEG C;Tempering temperature is 360-560 DEG C.
High-voltage pulse current is passed to the both ends of spring steel in quenching process, energization gap is 1-3 seconds, and power-off gap is 0.1-1.5 seconds.
The energization total duration of high-voltage pulse current is quench total duration 1/3, and wherein length dimension is 200-2300mm, wide For degree having a size of 70-120mm, thickness is the spring steel plate of 6-45mm, and the air film stage is 1-5 seconds, boiling stage 5- 10 seconds.
Quenching liquid used in the heat treatment procedure is pure oil hardening liquid.
Embodiment 1
1) the chemical analysis proportion (Wt%) of 1 material of embodiment is shown in Table 4, and surplus is Fe and inevitable impurity.
Table 4
C Si Mn P S Cr V Nb Mo Ni Cu
0.49 0.26 0.85 0.012 0.003 0.99 0.06 0.03 0.20 0.05 0.12
2) metallurgical production process of 1 material of embodiment is: by material composition (Wt%) ingredient 1) as above, industrial production electricity Furnace smelting, the outer ladle refining of furnace and degassing processing, molding, cogging, pickling, reconditioning, rolling.Hot rolling material: 33x89mm band steel.
3) the Fully decarburized layer depth, grain size of 1 material of embodiment and nonmetal inclusion (metallographic method inspection):
Fully decarburized layer depth=0mm, 7 grades of grain size.900 DEG C of heat preservations (under air condition), Fully decarburized layer depth=0mm, 7 grades of grain size.
Nonmetal inclusion such as the following table 5.
Table 5
4) harden ability of 1 material of embodiment
Jominy test (900 DEG C of austenitizing temperature), test data such as the following table 6:
Table 6
33mm thickness sample, 900 DEG C of oil hardening, hardness HRC56.5 at subsurface hardness 58HRC, 1/2R, centre hardness HRC56。
5) mechanical performance of 1 material of embodiment.
Diameter 10mm, 5 times of ratio standard samples are tested by national standard.Heat treatment process and the following (table of mechanical performance 7):
Table 7
It should be pointed out that above embodiment is only the preferred embodiment of the invention, for the common of the art For technical staff, under the premise of meeting working principle of the present invention, any equivalent or similar replacement each falls within of the invention In protection scope.

Claims (3)

1. a kind of high-strength spring steel, it is characterised in that according to quality very than including following component:
Cu≤0.25%,
Ni≤0.25%,
P≤0.02%,
S≤0.015%,
Its surplus is Fe and inevitable impurity;
Heat treatment procedure comprises the technical steps that: quenching temperature is 840-930 DEG C;Tempering temperature is 360-560 DEG C;
High-voltage pulse current is passed to the both ends of spring steel in quenching process, energization gap is 1-3 seconds, and power-off gap is 0.1- 1.5 the second.
2. a kind of high-strength spring steel according to claim 1, it is characterised in that the energization total duration of high-voltage pulse current It is the 1/3 of quenching total duration, wherein length dimension is 200-2300mm, width dimensions 70-120mm, thickness 6- The spring steel plate of 45mm, air film stage are 1-5 seconds, and boiling stage is 5-10 seconds.
3. a kind of high-strength spring steel according to claim 2, it is characterised in that quench used in the heat treatment procedure Fiery liquid is pure oil hardening liquid.
CN201710458224.0A 2017-06-16 2017-06-16 A kind of high-strength spring steel Active CN107267864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710458224.0A CN107267864B (en) 2017-06-16 2017-06-16 A kind of high-strength spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710458224.0A CN107267864B (en) 2017-06-16 2017-06-16 A kind of high-strength spring steel

Publications (2)

Publication Number Publication Date
CN107267864A CN107267864A (en) 2017-10-20
CN107267864B true CN107267864B (en) 2019-01-04

Family

ID=60066902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710458224.0A Active CN107267864B (en) 2017-06-16 2017-06-16 A kind of high-strength spring steel

Country Status (1)

Country Link
CN (1) CN107267864B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557671B (en) * 2017-10-26 2019-05-14 山东汽车弹簧厂淄博有限公司 Microalloying spring steel and preparation method thereof
CN107587079B (en) * 2017-10-26 2019-05-14 山东汽车弹簧厂淄博有限公司 Nitrogenous microalloying spring steel and preparation method thereof
CN109797348B (en) * 2019-03-15 2020-05-19 四川丰元机械制造有限公司 Production process of high-strength plate spring
CN109735771A (en) * 2019-03-19 2019-05-10 马鞍山钢铁股份有限公司 A kind of high-strength spring steel and its production method with excellent fatigue behaviour and corrosion resisting property
CN111363976B (en) * 2020-04-27 2021-11-05 江苏利淮钢铁有限公司 Microalloyed steel with long service life, high strength and toughness for high-speed rail plate spring and production process thereof
CN111705261B (en) * 2020-05-25 2021-08-10 湖北神风汽车弹簧有限公司 High-stress spring steel and preparation process thereof
CN114410896B (en) * 2022-01-27 2022-10-21 北京科技大学 Ultrahigh-strength medium-carbon spring steel, heat treatment process and high-speed train bogie spring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711370B1 (en) * 2003-03-28 2007-05-02 가부시키가이샤 고베 세이코쇼 Steel wire for high strength spring excellent in workability and high strength spring
CN100344785C (en) * 2005-01-13 2007-10-24 孙心红 Large-size thick variable section taper-leaf spring material
CN102586687A (en) * 2012-01-09 2012-07-18 东风汽车悬架弹簧有限公司 Spring steel material with high strength and high hardenability
CN103725984B (en) * 2013-12-26 2016-06-29 浙江美力科技股份有限公司 High-toughness high-strength spring steel
CN106756513A (en) * 2017-01-16 2017-05-31 山东雷帕得汽车技术股份有限公司 A kind of spring steel for possessing low decarburization, high intensity and high-ductility performance

Also Published As

Publication number Publication date
CN107267864A (en) 2017-10-20

Similar Documents

Publication Publication Date Title
CN107267864B (en) A kind of high-strength spring steel
CN109280847B (en) High-carbon alloy chain tool steel and manufacturing method thereof
CN104032221B (en) A kind of Nb-microalloying high-carbon-chromium bearing steel and hot rolling production method thereof
CN103233161B (en) A kind of low yield strength ratio high-strength hot-rolled Q & P steel and manufacture method thereof
CN108220807B (en) Low-density high-aluminum ultrahigh-carbon bearing steel and preparation method thereof
CN104004968B (en) Wheel steel and wheel heat treatment method
CN106435367B (en) A kind of bainite rail and preparation method thereof
CN104451436A (en) Bainite-martensite-austenite multi-phase wear-resistant steel plate and manufacturing method thereof
CN108359892A (en) A kind of the used in nuclear power station steel and its manufacturing method of bending forming function admirable
CN104451421A (en) High-strength high-toughness bimetallic strip saw blade back steel and preparation method thereof
CN113862561A (en) Long-life high-carbon bearing steel pipe and preparation method and application thereof
CN101818236B (en) Method for manufacturing high carbon steel wheel
CN101619418A (en) Big-wire diameter suspension helical spring material and preparation method thereof
JPH0156124B2 (en)
CN107760992A (en) A kind of tungstenic brake disc of high-speed train steel
CN108998730B (en) Hypereutectoid tool steel and manufacturing method thereof
CN107794348A (en) A kind of Technology for Heating Processing of raising Cr12MoV steel combination properties
JPH039168B2 (en)
CN102212664A (en) Heat treatment method of stainless steel traction pin
CN106929756B (en) Bearing steel and preparation method thereof
CN106756513A (en) A kind of spring steel for possessing low decarburization, high intensity and high-ductility performance
CN104178691A (en) High-strength steel for metallurgical saw blades and heat treatment method thereof
CN107267865B (en) A kind of high-strength spring steel
CN112281053B (en) SiMnCrNiMo low-carbon martensitic steel, drilling machine hoisting ring and manufacturing method thereof
JP2013072105A (en) Method for manufacturing steel having excellent toughness and wear resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant