JP2013072105A - Method for manufacturing steel having excellent toughness and wear resistance - Google Patents

Method for manufacturing steel having excellent toughness and wear resistance Download PDF

Info

Publication number
JP2013072105A
JP2013072105A JP2011210794A JP2011210794A JP2013072105A JP 2013072105 A JP2013072105 A JP 2013072105A JP 2011210794 A JP2011210794 A JP 2011210794A JP 2011210794 A JP2011210794 A JP 2011210794A JP 2013072105 A JP2013072105 A JP 2013072105A
Authority
JP
Japan
Prior art keywords
steel
quenching
toughness
tempering
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011210794A
Other languages
Japanese (ja)
Other versions
JP5688742B2 (en
Inventor
Hiroaki Goto
洋昭 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011210794A priority Critical patent/JP5688742B2/en
Publication of JP2013072105A publication Critical patent/JP2013072105A/en
Application granted granted Critical
Publication of JP5688742B2 publication Critical patent/JP5688742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel product having high hardness and high toughness after quenching and low-temperature tempering.SOLUTION: Steel has a composition containing, by mass%, 0.30-0.65% C, 0.20-1.00% Si, 0.20-0.60% Mn, ≤0.030% P, ≤0.030% S, 1.00-3.00% Cr, 0.005-0.200% Al, ≤0.0200% N, ≤0.0030% O and further, one or more kinds of 0.50-2.00% Ni, 0.05-1.00% Mo, 0.0005-0.0050% B, 0.010-0.200% Ti and 0.010-0.100% Nb, and the balance Fe with inevitable impurities. In the method for manufacturing the high hardness and high toughness steel, the steel where 4Si+3Cr-Mn satisfies ≥6.00% is subjected to quenching at 800-900°C repeatedly two or more times and then is subjected to tempering at 400-650°C, and further, is subjected to quenching at 800-900°C and then is subjected to tempering at 100-250°C, and the high hardness and high toughness steel is produced.

Description

本発明は自動車や各種産業機械等の部品に用いられる機械構造用鋼の内、靭性および耐磨耗性に優れた鋼の製造方法に関する。   The present invention relates to a method for producing steel having excellent toughness and wear resistance among mechanical structural steels used for parts such as automobiles and various industrial machines.

自動車、各種産業機械の部品の内、特に耐磨耗性、疲労特性等を必要とする部品に用いられる鋼は、焼入れ処理によって高硬度化することが一般的である。焼入れ処理によってマルテンサイト組織を主体とした鋼材は、鋼成分中のCの含有量により硬度が決まり、Cの含有量を高めることで鋼材の硬度を上昇させることができる。しかし、鋼材の高硬度化は、その反面として靭性を低下させ、衝撃が加えられた場合に割れを生じるため、鋼材には硬度と靭性のバランスが要求される。   In general, steel used for parts that require wear resistance, fatigue characteristics, etc. among parts of automobiles and various industrial machines is generally hardened by quenching treatment. The steel material mainly composed of a martensite structure by the quenching process has a hardness determined by the C content in the steel component, and the hardness of the steel material can be increased by increasing the C content. However, increasing the hardness of a steel material, on the other hand, lowers the toughness and causes cracking when an impact is applied, so the steel material is required to have a balance between hardness and toughness.

これらに対処する従来の技術として、鋼成分中にSi、Nb、Cr、Mo、Vを含むことを特徴とし、特定の圧延、熱処理により、使用中にVを核とするCr、Mo、Vの複合析出物を形成せしめた、優れた耐磨耗性と靭性を兼ね備える鋼が提案されている(例えば、特許文献1参照)。さらに、焼入れ後の焼戻し過程で、Mn、Ni、Cr等の合金成分が含まれると、Mn、Ni、Cr等の炭化物が旧オーステナイト粒界に析出して粒界破壊の原因となることに対し、Moを添加すると、Moの炭化物が旧オーステナイト粒内にある転位を核として析出するため、析出物は旧オーステナイト粒内に微細に分散析出して粒界破壊の原因とはならないとした、耐衝撃性と耐磨耗性に優れた鋼が提案されている(例えば、特許文献2参照)。また、低P、低S化による粒界偏析の軽減、低Mn化による粒界強化、Moの増量とNb添加による細粒化によって靭性向上を図り、さらにNb、Cr、Moの複合添加は鋼の焼戻し軟化抵抗を著しく高めるため、高い焼戻し温度を採用することによる靭性向上を図った高強度かつ靭性および耐磨耗性が良好な高強度高靭性耐磨耗用鋼が提案されている(例えば、特許文献3参照)。   As a conventional technique for dealing with these, the steel component is characterized by containing Si, Nb, Cr, Mo, V, and Cr, Mo, V having V as a core during use by specific rolling and heat treatment. Steels having excellent wear resistance and toughness in which composite precipitates are formed have been proposed (see, for example, Patent Document 1). Furthermore, when alloy components such as Mn, Ni, and Cr are included in the tempering process after quenching, carbides such as Mn, Ni, and Cr are precipitated at the prior austenite grain boundaries and cause grain boundary fracture. When Mo is added, the carbide of Mo precipitates with dislocations existing in the prior austenite grains as nuclei, so the precipitates are finely dispersed and precipitated in the prior austenite grains and do not cause grain boundary fracture. Steels excellent in impact resistance and wear resistance have been proposed (see, for example, Patent Document 2). Moreover, grain boundary segregation is reduced by lowering P and lowering S, grain boundary strengthening by lowering Mn, increasing toughness by increasing Mo and fine graining by adding Nb, and Nb, Cr, Mo combined addition is steel In order to remarkably increase the tempering softening resistance of steel, high strength, high toughness and wear-resistant steels with high toughness and good toughness and wear resistance have been proposed by adopting high tempering temperatures (for example, And Patent Document 3).

特開平10−102185号公報Japanese Patent Laid-Open No. 10-102185 特公平5−37202号公報Japanese Patent Publication No. 5-37202 特許第3360687号公報Japanese Patent No. 3360687

しかし、上記の先行技術文献における、Cr、Mo、Vの複合析出物を形成するには、焼戻し温度を200〜550℃で行う必要があるため、所定の硬度が得られない可能性がある。また、Mo添加による靭性向上は高温焼戻し条件下でのことであり、硬度確保のために低温焼戻しを行う場合には、その効果は明確ではない。さらに、低P化は製鋼段階での脱リン操業を通常操業より過剰に行う必要があるため、製造性やコストアップの問題がある。つまり、高硬度かつ高靭性であることが従来技術では達成できていない。   However, in order to form the composite precipitates of Cr, Mo, and V in the above-described prior art documents, it is necessary to perform the tempering temperature at 200 to 550 ° C., so that the predetermined hardness may not be obtained. Moreover, the toughness improvement by addition of Mo is under high-temperature tempering conditions, and the effect is not clear when performing low-temperature tempering to ensure hardness. Further, the reduction in P requires problems of productivity and cost increase because it is necessary to perform dephosphorization operation at the steelmaking stage in excess of normal operation. That is, high hardness and high toughness cannot be achieved by the prior art.

そこで、本発明が解決しようとする課題は、硬度を高く保つために焼入れ後、低温焼戻しを施した条件下において、高硬度と高靭性を両立した鋼材の製造方法を提供することである。   Accordingly, the problem to be solved by the present invention is to provide a method for producing a steel material that achieves both high hardness and high toughness under the conditions of low temperature tempering after quenching in order to keep the hardness high.

上記の課題を解決するための本発明の手段は、請求項1の手段では、質量%で、C:0.30〜0.65%、Si:0.20〜1.00%、Mn:0.20〜0.60%、P:0.030%以下、S:0.030%以下、Cr:1.00〜3.00%、Al:0.005〜0.200%、N:0.0200%以下、O:0.0030%以下を含有し、残部がFeおよび不可避不純物からなる鋼の、上記組成のSi、Mn、Crの含有量から算出される4Si+3Cr−Mnの値が6.00%以上を満足する鋼を800〜900℃の範囲に加熱して焼入れた後、400〜650℃での焼戻し処理を1回または2回以上行い、さらに800〜900℃の範囲に加熱して焼入れた後、100〜250℃の焼戻し処理を行うことを特徴とする靭性および耐磨耗性に優れた鋼の製造方法である。   The means of the present invention for solving the above problem is that in the means of claim 1, C: 0.30 to 0.65%, Si: 0.20 to 1.00%, Mn: 0 in mass%. 20 to 0.60%, P: 0.030% or less, S: 0.030% or less, Cr: 1.00 to 3.00%, Al: 0.005 to 0.200%, N: 0.00. The value of 4Si + 3Cr-Mn calculated from the contents of Si, Mn and Cr of the above composition of steel containing 0200% or less, O: 0.0030% or less and the balance being Fe and inevitable impurities is 6.00. % Of steel satisfying at least 100% is heated in the range of 800 to 900 ° C and quenched, then tempered at 400 to 650 ° C once or twice, and further heated to the range of 800 to 900 ° C and quenched. And then toughness characterized by performing a tempering treatment at 100 to 250 ° C. A method for producing a steel excellent in abrasion resistance.

請求項2の手段では、質量%で、C:0.30〜0.65%、Si:0.20〜1.00%、Mn:0.20〜0.60%、P:0.030%以下、S:0.030%以下、Cr:1.00〜3.00%、Al:0.005〜0.200%、N:0.0200%以下、O:0.0030%以下を含有し、さらにNi:0.50〜2.00%、Mo:0.05〜1.00%、B:0.0005〜0.0050%、Ti:0.010〜0.200%、Nb:0.010〜0.100%のうち1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼の上記組成のSi、Mn、Crの含有量から算出される4Si+3Cr−Mnの値が6.00%以上を満足する鋼を800〜900℃の範囲に加熱して焼入れた後、400〜650℃での焼戻し処理を1回または2回以上行い、さらに800〜900℃の範囲に加熱して焼入れた後、100〜250℃の焼戻し処理を行うことを特徴とする靭性および耐磨耗性に優れた鋼の製造方法である。   In the means of claim 2, by mass%, C: 0.30 to 0.65%, Si: 0.20 to 1.00%, Mn: 0.20 to 0.60%, P: 0.030% Hereinafter, S: 0.030% or less, Cr: 1.00 to 3.00%, Al: 0.005 to 0.200%, N: 0.0200% or less, O: 0.0030% or less Further, Ni: 0.50 to 2.00%, Mo: 0.05 to 1.00%, B: 0.0005 to 0.0050%, Ti: 0.010 to 0.200%, Nb: 0.0. The value of 4Si + 3Cr-Mn calculated from the contents of Si, Mn, and Cr of the above composition of steel containing at least one of 0.10 to 0.100% and the balance of Fe and unavoidable impurities is 6 After the steel satisfying 0.000% or more is heated and quenched in the range of 800 to 900 ° C, it is 400 to 650 ° C. The toughness and wear resistance are characterized by performing the tempering treatment once or twice or more, further heating and quenching in the range of 800 to 900 ° C., and then performing the tempering treatment at 100 to 250 ° C. It is a manufacturing method of steel.

本発明における鋼の化学成分の限定理由を以下に説明する。なお、以下において%は質量%を示す。   The reason for limiting the chemical composition of steel in the present invention will be described below. In the following, “%” represents mass%.

C:0.30〜0.65%
Cは、必要な強度および焼入れ硬さを確保するために必要な元素である。したがって、耐磨耗性の支配因子である硬さを確保するために0.30%以上が必要である。一方、0.65%を超えると靭性が低下するとともに素材の硬さが上昇するため加工性、被削性の劣化は避けられない。そこで、Cは0.30〜0.65% とし、望ましくは0.35〜0.50%とする。
C: 0.30 to 0.65%
C is an element necessary for ensuring necessary strength and quenching hardness. Therefore, 0.30% or more is necessary in order to ensure the hardness which is the controlling factor of wear resistance. On the other hand, if it exceeds 0.65%, the toughness is lowered and the hardness of the material is increased, so that deterioration of workability and machinability is inevitable. Therefore, C is 0.30 to 0.65%, preferably 0.35 to 0.50%.

Si:0.20〜1.00%
Siは、鋼の脱酸に有効な元素であり、鋼に必要な焼入性を付与し強度を高めるために添加する。さらに、Siは焼戻し軟化抵抗を向上させる。すなわち焼戻し処理および使用時の摩擦熱による耐軟化性を向上させる元素である。したがって、0.20%以上が必要である。一方、1.00%を超えると靭性が低下するとともに素材の硬さが上昇して加工性が劣化する。そこで、Siは0.20〜1.00%とし、望ましくは0.40〜0.80%とする。
Si: 0.20 to 1.00%
Si is an element effective for deoxidation of steel, and is added to impart necessary hardenability to the steel and increase strength. Furthermore, Si improves the temper softening resistance. That is, it is an element that improves the softening resistance due to frictional heat during tempering and use. Therefore, 0.20% or more is necessary. On the other hand, if it exceeds 1.00%, the toughness is lowered and the hardness of the material is increased to deteriorate the workability. Therefore, Si is 0.20 to 1.00%, preferably 0.40 to 0.80%.

Mn:0.20〜0.60%
Mnは、鋼の脱酸に有効な元素である。さらに、鋼に必要な焼入性を付与し強度を高めるために添加する。しかし、多量に添加すると靭性を低下させ、さらに、Sと結合してMnSの介在物を形成するため割れの起点となる。そこで、Mnは0.20〜0.60%とし、望ましくは0.30〜0.50%とする。
Mn: 0.20 to 0.60%
Mn is an element effective for deoxidation of steel. Furthermore, it is added to impart the necessary hardenability to the steel and increase the strength. However, if added in a large amount, the toughness is lowered, and further, it combines with S to form inclusions of MnS, which becomes the starting point of cracking. Therefore, Mn is 0.20 to 0.60%, preferably 0.30 to 0.50%.

P:0.030%以下
Pは、不可避不純物として粒界に偏析し、0.030%を超えると靭性を低下させる。そこで、Pは0.030%以下とする。
P: 0.030% or less P segregates at grain boundaries as an inevitable impurity, and if it exceeds 0.030%, toughness is reduced. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは、不可避不純物としてMnSの介在物を形成して靭性を低下させる。そこで、Sは0.030%以下とする。
S: 0.030% or less S lowers toughness by forming inclusions of MnS as inevitable impurities. Therefore, S is set to 0.030% or less.

Cr:1.00〜3.00%
Crは、鋼に必要な焼入性を付与し強度を高めるために添加する。さらに、Crは焼戻し軟化抵抗を向上させるため、焼戻し処理および使用時の摩擦熱による耐軟化性を向上させる元素である。したがって、1.00%以上が必要である。一方、3.00%を超えると靭性が低下するとともに素材の硬さが上昇して加工性が劣化する。そこで、Crは1.00〜3.00%とし、望ましくは1.20〜2.20%とする。
Cr: 1.00 to 3.00%
Cr is added to impart the necessary hardenability to the steel and increase the strength. Furthermore, Cr is an element that improves the softening resistance due to frictional heat during tempering and use in order to improve temper softening resistance. Therefore, 1.00% or more is necessary. On the other hand, if it exceeds 3.00%, the toughness is lowered and the hardness of the material is increased to deteriorate the workability. Therefore, Cr is 1.00 to 3.00%, preferably 1.20 to 2.20%.

Al:0.005〜0.200%
Alは、鋼の脱酸に有効な元素であり、さらにNと結合しAlNを生成するため、結晶粒粗大化の抑制に有効である。したがって、0.005%以上が必要である。しかし、Alは多量に添加すると非金属介在物を生成して割れの起点となる。そこで、Alは0.005〜0.200%とし、望ましくは0.015%〜0.150%とする。
Al: 0.005 to 0.200%
Al is an element effective for deoxidation of steel, and further binds to N to produce AlN, so that it is effective for suppressing grain coarsening. Therefore, 0.005% or more is necessary. However, if Al is added in a large amount, non-metallic inclusions are generated and become the starting point of cracking. Therefore, Al is made 0.005 to 0.200%, preferably 0.015% to 0.150%.

N:0.0200%以下
Nは、Alと結合してAlNを生成するため結晶粒粗大化の抑制に有効である。しかし、Nは多すぎても、その効果が飽和するため、Nは0.0200%以下とする。
N: 0.0200% or less N is effective in suppressing grain coarsening because it combines with Al to produce AlN. However, even if there is too much N, the effect is saturated, so N is made 0.0200% or less.

O:0.0030%以下
Oは、0.0030%を超えて含有すると、割れの起点となる酸化物系介在物を生成する。そこで、酸化物系介在物の生成を抑制するために、Oは0.0030%以下とする。
O: 0.0030% or less If O is contained in excess of 0.0030%, an oxide-based inclusion serving as a starting point of cracking is generated. Therefore, in order to suppress the formation of oxide inclusions, O is made 0.0030% or less.

以上は本発明における鋼の基本成分であるが、さらに本発明では上記成分の他にNi、Mo、B、Ti、Nbのうち1種または2種以上を添加することができる。   The above are the basic components of steel in the present invention. In the present invention, one or more of Ni, Mo, B, Ti, and Nb can be added in addition to the above components.

Ni:0.50〜2.00%
Niは、焼入性と靭性を向上させるために有効な元素である。その効果を発揮するため0.50%以上が必要であるが、Niはコストを上昇させる元素であるため、Niは0.50〜2.00%とする。
Ni: 0.50 to 2.00%
Ni is an element effective for improving hardenability and toughness. In order to exhibit the effect, 0.50% or more is necessary. However, since Ni is an element that increases the cost, Ni is set to 0.50 to 2.00%.

Mo:0.05〜1.00%
Moは、焼入性と靭性を向上させるために有効な元素である。その効果を発揮するため0.05%以上が必要であるが、Moはコストを上昇させる元素であるため、Moは0.05〜1.00%とする。
Mo: 0.05-1.00%
Mo is an effective element for improving hardenability and toughness. In order to exhibit the effect, 0.05% or more is necessary. However, since Mo is an element that increases the cost, Mo is set to 0.05 to 1.00%.

B:0.0005〜0.0050%
Bは、微量の添加で焼入性を向上させ、さらに、粒界を強化し靭性向上に有効な元素である。したがって、0.0005%以上が必要であるが、0.0050%を超えるとその効果は飽和するため、Bは0.0005〜0.0050%とする。
B: 0.0005 to 0.0050%
B is an element effective for improving hardenability by addition of a small amount, further strengthening grain boundaries and improving toughness. Therefore, 0.0005% or more is necessary, but if it exceeds 0.0050%, the effect is saturated, so B is made 0.0005 to 0.0050%.

Ti:0.010〜0.200%
Tiは、Nと結合しTiNを生成するため、Nを固定して、焼入性向上に寄与する有効Bを確保する。さらに、Cと結合しTiCを生成するため、ピンニング効果による結晶粒粗大化の抑制および耐磨耗性の向上に有効である。したがって、0.010%以上を添加する。一方、0.200%を越えると靭性および加工性が低下する。そこで、Tiは0.010〜0.200%とする。
Ti: 0.010 to 0.200%
Since Ti combines with N to produce TiN, N is fixed to ensure effective B that contributes to improving hardenability. Furthermore, since it combines with C to produce TiC, it is effective in suppressing grain coarsening due to the pinning effect and improving wear resistance. Therefore, 0.010% or more is added. On the other hand, if it exceeds 0.200%, the toughness and workability deteriorate. Therefore, Ti is set to 0.010 to 0.200%.

Nb:0.010〜0.100%
Nbは、Nb炭窒化物を生成するため、ピンニング効果による結晶粒粗大化の抑制に有効である。したがって、0.010%以上を添加する。一方、0.100%を超えると粗大なNb析出物が生じ靭性が低下する。そこで、Nbは0.010〜0.100%とする。
Nb: 0.010 to 0.100%
Nb produces Nb carbonitride and is therefore effective in suppressing crystal grain coarsening due to the pinning effect. Therefore, 0.010% or more is added. On the other hand, if it exceeds 0.100%, coarse Nb precipitates are produced and the toughness is lowered. Therefore, Nb is made 0.010 to 0.100%.

本発明の方法における鋼は、上記組成のSi、Mn、Crの含有量から算出される4Si+3Cr−Mnの値が6.00%以上を満足する鋼である。上述の通り、Si、Crは焼戻し軟化抵抗を向上させる元素であるため、使用時の摩擦熱による軟化を抑制し磨耗量の低減に有効である。さらに、高Si、高Crの成分設計にすると粒界強化の作用がある。一方、Mnは鋼を脆化させる元素であるため添加量は必要最小限とする。よって、上記計算式より導き出せる数値を6.00%以上とする。   The steel in the method of the present invention is a steel in which the value of 4Si + 3Cr-Mn calculated from the contents of Si, Mn and Cr having the above composition satisfies 6.00% or more. As described above, since Si and Cr are elements that improve temper softening resistance, softening due to frictional heat during use is suppressed and effective in reducing the amount of wear. Furthermore, the design of high Si and high Cr components has the effect of strengthening grain boundaries. On the other hand, since Mn is an element that embrittles steel, the addition amount is made the minimum necessary. Therefore, the numerical value that can be derived from the above formula is 6.00% or more.

次に、本発明における鋼の製造方法について説明する。   Next, the manufacturing method of the steel in this invention is demonstrated.

まず、上記の成分組成の鋼を加熱し800〜900℃の温度範囲に保持する。これは、鋼をオーステナイト化させるためである。800℃より低い温度に加熱すると、鋼のオーステナイト化が不十分であるため、焼入れ後に完全なマルテンサイト組織が得られない。また、900℃より高い温度に加熱するとオーステナイトが粗大化するため靭性の低下を招く。そこで、焼入れ温度は800〜900℃とする。   First, the steel having the above component composition is heated and held in a temperature range of 800 to 900 ° C. This is to make the steel austenitic. When heated to a temperature lower than 800 ° C., the austenitization of the steel is insufficient, so that a complete martensite structure cannot be obtained after quenching. In addition, when heated to a temperature higher than 900 ° C., austenite coarsens, leading to a decrease in toughness. Therefore, the quenching temperature is set to 800 to 900 ° C.

焼入れされた鋼は、その後400〜650℃の焼戻し処理を行う。これは、その後の熱処理において細粒化に必要なピンニング粒子となる炭化物を析出させるためである。400℃より低い温度では炭化物の析出が不十分でありピン止め効果を発揮できず細粒化しない。また、650℃より高い温度では炭化物のマトリックスへの固溶あるいは炭化物の粗大化を引き起こし、細粒化に必要なピンニング粒子数が低減する。そこで、焼戻し温度は400〜650℃とする。   The quenched steel is then tempered at 400-650 ° C. This is for the purpose of precipitating carbides that become pinning particles necessary for the fine graining in the subsequent heat treatment. If the temperature is lower than 400 ° C., the precipitation of carbides is insufficient, and the pinning effect cannot be exhibited and the particles are not refined. Moreover, when the temperature is higher than 650 ° C., the solid solution of the carbide in the matrix or the coarsening of the carbide is caused, and the number of pinning particles necessary for the fine granulation is reduced. Therefore, the tempering temperature is 400 to 650 ° C.

以上の焼入れ焼戻し処理を1回または2回以上行う。   The above quenching and tempering treatment is performed once or twice or more.

その後、さらに800〜900℃の温度範囲に加熱する。800℃より低い温度に加熱すると、鋼のオーステナイト化が不十分であるため、焼入れ後に完全なマルテンサイト組織が得られない。また、900℃より高い温度に加熱するとオーステナイトが粗大化するため靭性の低下を招く。そこで、焼入れ温度は800〜900℃とする。   Then, it heats to the temperature range of 800-900 degreeC further. When heated to a temperature lower than 800 ° C., the austenitization of the steel is insufficient, so that a complete martensite structure cannot be obtained after quenching. In addition, when heated to a temperature higher than 900 ° C., austenite coarsens, leading to a decrease in toughness. Therefore, the quenching temperature is set to 800 to 900 ° C.

焼入れされた鋼は、その後100〜250℃の焼戻し処理を行う。これは、靭性向上のためである。100℃より低い温度では鋼の靭性が不十分であり、250℃より高い温度では硬さの低下や低温焼戻し脆化を引き起こす。そこで、焼戻し温度は100〜250℃とする。   The quenched steel is then tempered at 100-250 ° C. This is for improving toughness. When the temperature is lower than 100 ° C., the toughness of the steel is insufficient, and when the temperature is higher than 250 ° C., the hardness is lowered and low temperature temper embrittlement is caused. Therefore, the tempering temperature is 100 to 250 ° C.

上記した手段の方法とすることで、硬度を高く保つため繰返し焼入れ焼戻し後の、最終の焼入れ後に、低温焼戻しを施した条件下において、高硬度と高靭性を両立した鋼材を得ることができる。   By adopting the method described above, it is possible to obtain a steel material having both high hardness and high toughness under the conditions of low-temperature tempering after the final quenching after the repeated quenching and tempering in order to keep the hardness high.

2mm−Uノッチシャルピー試験片を示し、(a)は側面図、(b)は端面図である。A 2 mm-U notch Charpy test piece is shown, (a) is a side view, (b) is an end view. ローラーピッチング試験片を示す。A roller pitching test piece is shown.

表1に示す化学組成の鋼を100kg真空溶解炉で溶製し、得られた鋼を1200℃で熱間鍛造し、40mm×40mmの角鋼および径32mmの丸棒鋼に製造し、これらの角鋼および丸棒鋼を870℃に60分間保持し空冷して焼ならし処理を行った。   Steel having the chemical composition shown in Table 1 was melted in a 100 kg vacuum melting furnace, and the obtained steel was hot forged at 1200 ° C. to produce 40 mm × 40 mm square bar and 32 mm diameter round bar steel. The round steel bar was kept at 870 ° C. for 60 minutes, air cooled, and subjected to a normalizing treatment.

Figure 2013072105
Figure 2013072105

その後、上記の40mm×40mmの角鋼を、図1に示す2mm−Uノッチシャルピー衝撃試験片の粗形に加工し、800〜900℃の温度範囲で20分保持し油焼入れを施した後、400〜650℃の温度範囲で90分保持し水冷する焼戻し処理を1回または2回以上行い、さらに800〜900℃の温度範囲で20分保持し油焼入れを施した後、100〜250℃の温度範囲で90分保持し空冷する焼入れ焼戻し処理を行った。その後、さらにこの粗形を仕上げ加工して、図1に示す2mm−Uノッチシャルピー衝撃試験片とした。この2mm−Uノッチシャルピー衝撃試験片を用い、シャルピー衝撃試験を行った。さらに、上記試験片を用いて硬さ測定ならびに光学顕微鏡観察を行うことにより旧オーステナイト粒径を求めた。   After that, the above 40 mm × 40 mm square steel was processed into a rough shape of a 2 mm-U notch Charpy impact test piece shown in FIG. 1, held in a temperature range of 800 to 900 ° C. for 20 minutes and subjected to oil quenching, and then 400 A tempering treatment that is held for 90 minutes in the temperature range of ˜650 ° C. and cooled with water is performed once or twice, and further held for 20 minutes in the temperature range of 800 ° C. to 900 ° C., followed by oil quenching, and a temperature of 100 ° C. to 250 ° C. Quenching and tempering treatment was performed in which the temperature was maintained for 90 minutes and air-cooled. Thereafter, this rough shape was further processed into a 2 mm-U notch Charpy impact test piece shown in FIG. Using this 2 mm-U notch Charpy impact test piece, a Charpy impact test was conducted. Furthermore, the prior austenite particle size was determined by performing hardness measurement and optical microscope observation using the above test piece.

また、上記の径32mmの丸棒鋼を、図2に示すローラーピッチング試験の粗形に加工し、800〜900℃の温度範囲で20分保持し油焼入れを施した後、400〜650℃の温度範囲で90分保持し水冷する焼戻し処理を1回または2回以上行い、さらに800〜900℃の温度範囲で20分保持し油焼入れを施した後、100〜250℃の温度範囲で90分保持し空冷する焼入れ焼戻し処理を行った。その後、さらにこの粗形を仕上げ加工して、図2に示すローラーピッチング試験片とした。このローラーピッチング試験片を用い、面圧3.3GPa、すべり率−40%の条件でローラーピッチング試験を行い、5×106サイクル到達後、試験を中止し、試験片のすべり接触部の磨耗量を測定した。 Further, the above round bar steel having a diameter of 32 mm is processed into a rough shape of the roller pitching test shown in FIG. Tempering treatment that is held for 90 minutes in the range and water-cooled is performed once or twice, and further, held for 20 minutes in the temperature range of 800 to 900 ° C and then oil-quenched, and then held for 90 minutes in the temperature range of 100 to 250 ° C A quenching and tempering treatment was then performed. Thereafter, this rough shape was further processed into a roller pitching test piece shown in FIG. Using this roller pitching test piece, a roller pitching test was conducted under conditions of a surface pressure of 3.3 GPa and a slip rate of −40%. After reaching 5 × 10 6 cycles, the test was stopped, and the amount of wear at the sliding contact portion of the test piece Was measured.

以上のシャルピー衝撃試験、硬さ測定、光学顕微鏡観察、ローラーピッチング試験の結果として、粒径、硬さ、衝撃値、磨耗量について表2に記載する。また、焼入れ焼戻し条件についても表2に記載する。   Table 2 shows the particle size, hardness, impact value, and wear amount as a result of the Charpy impact test, hardness measurement, optical microscope observation, and roller pitching test. The quenching and tempering conditions are also shown in Table 2.

Figure 2013072105
Figure 2013072105

表2において、No.1〜No.24の網掛けをしている部分は、熱処理条件が請求項から外れるもの、粒径が8.0μmより大きいもの、衝撃値が50J/cm2に満たないもの、および磨耗量が15μmより多いものである。なお、No.1〜No.8、No.9〜No.16、No.17〜No.24は熱処理条件は違うものの、鋼成分は同等である。 In Table 2, no. 1-No. 24 shaded parts are those whose heat treatment conditions are outside the scope of claims, those whose particle size is larger than 8.0 μm, those whose impact value is less than 50 J / cm 2 , and those whose wear amount is larger than 15 μm It is. In addition, No. 1-No. 8, no. 9-No. 16, no. 17-No. No. 24 has the same steel composition, although the heat treatment conditions are different.

No.1〜No.8のように1回の焼入れ焼戻し処理では、粒径が8.0μmより大きく、衝撃値が50J/cm2に満たないもの、磨耗量が15μmより多いものである。しかし、No.9〜No.24の中で1回目あるいは2回目の焼入れを800〜900℃の温度範囲で行い、焼戻しを400〜650℃の温度範囲で行った後、さらに焼入れを800〜900℃の温度範囲で行い、焼戻しを100〜250℃の温度範囲で行うことで、8.0μmまで細粒化し靭性および耐磨耗性において優れることがわかる。 No. 1-No. In one quenching and tempering treatment as in No. 8, the particle size is larger than 8.0 μm, the impact value is less than 50 J / cm 2 , and the wear amount is larger than 15 μm. However, no. 9-No. 24, the first or second quenching is performed in a temperature range of 800 to 900 ° C., tempering is performed in a temperature range of 400 to 650 ° C., and further quenching is performed in a temperature range of 800 to 900 ° C. Is carried out in the temperature range of 100 to 250 ° C., it can be seen that the fine particles are reduced to 8.0 μm and the toughness and wear resistance are excellent.

1 2mm−Uノッチシャルピー試験片
1a ノッチ部
2 ローラーピッチング試験片
1 2 mm-U notch Charpy test piece 1a Notch part 2 Roller pitching test piece

Claims (2)

質量%で、C:0.30〜0.65%、Si:0.20〜1.00%、Mn:0.20〜0.60%、P:0.030%以下、S:0.030%以下、Cr:1.00〜3.00%、Al:0.005〜0.200%、N:0.0200%以下、O:0.0030%以下を含有し、残部がFeおよび不可避不純物からなる鋼の上記組成のSi、Mn、Crの含有量から算出される4Si+3Cr−Mnの値が6.00%以上を満足する鋼を800〜900℃の範囲に加熱して焼入れた後400〜650℃での焼戻し処理を1回または2回以上行い、さらに800〜900℃の範囲に加熱して焼入れた後100〜250℃の焼戻し処理を行うことを特徴とする靭性および耐磨耗性に優れた鋼の製造方法。   In mass%, C: 0.30 to 0.65%, Si: 0.20 to 1.00%, Mn: 0.20 to 0.60%, P: 0.030% or less, S: 0.030 %: Cr: 1.00 to 3.00%, Al: 0.005 to 0.200%, N: 0.0200% or less, O: 0.0030% or less, the balance being Fe and inevitable impurities After heating and quenching steel in which the value of 4Si + 3Cr-Mn calculated from the content of Si, Mn, and Cr of the above-described composition satisfying 6.00% or more is quenched in the range of 800 to 900 ° C., 400 to Toughness and wear resistance characterized by performing tempering treatment at 650 ° C once or twice or more, heating to 800 to 900 ° C and quenching, and then tempering at 100 to 250 ° C. Excellent steel manufacturing method. 質量%で、C:0.30〜0.65%、Si:0.20〜1.00%、Mn:0.20〜0.60%、P:0.030%以下、S:0.030%以下、Cr:1.00〜3.00%、Al:0.005〜0.200%、N:0.0200%以下、O:0.0030%以下を含有し、さらにNi:0.50〜2.00%、Mo:0.05〜1.00%、B:0.0005〜0.0050%、Ti:0.010〜0.200%、Nb:0.010〜0.100%のうち1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼の上記組成のSi、Mn、Crの含有量から算出される4Si+3Cr−Mnの値が6.00%以上を満足する鋼を800〜900℃の範囲に加熱して焼入れた後400〜650℃での焼戻し処理を1回または2回以上行い、さらに800〜900℃の範囲に加熱して焼入れた後100〜250℃の焼戻し処理を行うことを特徴とする靭性および耐磨耗性に優れた鋼の製造方法。   In mass%, C: 0.30 to 0.65%, Si: 0.20 to 1.00%, Mn: 0.20 to 0.60%, P: 0.030% or less, S: 0.030 %: Cr: 1.00 to 3.00%, Al: 0.005 to 0.200%, N: 0.0200% or less, O: 0.0030% or less, and Ni: 0.50 -2.00%, Mo: 0.05-1.00%, B: 0.0005-0.0050%, Ti: 0.010-0.200%, Nb: 0.010-0.100% The value of 4Si + 3Cr-Mn calculated from the content of Si, Mn, and Cr of the above composition of the steel containing one or more of them and the balance consisting of Fe and inevitable impurities satisfies 6.00% or more. After heating and quenching the steel in the range of 800-900 ° C, tempering at 400-650 ° C is performed once. Is performed more than once, further 800 to 900 manufacturing method of a steel having excellent toughness and abrasion resistance which is heated to a range of ° C. and performing the tempering treatment of 100 to 250 ° C. After quenching.
JP2011210794A 2011-09-27 2011-09-27 Steel manufacturing method with excellent toughness and wear resistance Active JP5688742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210794A JP5688742B2 (en) 2011-09-27 2011-09-27 Steel manufacturing method with excellent toughness and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210794A JP5688742B2 (en) 2011-09-27 2011-09-27 Steel manufacturing method with excellent toughness and wear resistance

Publications (2)

Publication Number Publication Date
JP2013072105A true JP2013072105A (en) 2013-04-22
JP5688742B2 JP5688742B2 (en) 2015-03-25

Family

ID=48476855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210794A Active JP5688742B2 (en) 2011-09-27 2011-09-27 Steel manufacturing method with excellent toughness and wear resistance

Country Status (1)

Country Link
JP (1) JP5688742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076384A1 (en) 2013-11-22 2015-05-28 新日鐵住金株式会社 High-carbon steel sheet and method for producing same
JP2018123411A (en) * 2017-02-03 2018-08-09 Jfeスチール株式会社 Abrasion resistant steel sheet, and method for producing the same
CN111945067A (en) * 2020-08-05 2020-11-17 山东钢铁股份有限公司 Wear-resistant bar with silicon content of 0.8-1.2% and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034839A (en) * 2001-05-14 2003-02-07 Sanyo Special Steel Co Ltd High-strength medium carbon steel
JP2007239100A (en) * 2006-02-09 2007-09-20 Kobe Steel Ltd Method for designing component in alternative steel for chromium-molybdenum steel
WO2009063753A1 (en) * 2007-11-12 2009-05-22 Topy Kogyo Kabushiki Kaisha Method for heat treatment of columnar component
JP2009179869A (en) * 2008-01-31 2009-08-13 Tsuda Heat Treatment Co Ltd Method for manufacturing bush

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034839A (en) * 2001-05-14 2003-02-07 Sanyo Special Steel Co Ltd High-strength medium carbon steel
JP2007239100A (en) * 2006-02-09 2007-09-20 Kobe Steel Ltd Method for designing component in alternative steel for chromium-molybdenum steel
WO2009063753A1 (en) * 2007-11-12 2009-05-22 Topy Kogyo Kabushiki Kaisha Method for heat treatment of columnar component
JP2009179869A (en) * 2008-01-31 2009-08-13 Tsuda Heat Treatment Co Ltd Method for manufacturing bush

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076384A1 (en) 2013-11-22 2015-05-28 新日鐵住金株式会社 High-carbon steel sheet and method for producing same
KR20160072233A (en) 2013-11-22 2016-06-22 신닛테츠스미킨 카부시키카이샤 High-carbon steel sheet and method for producing same
US10407748B2 (en) 2013-11-22 2019-09-10 Nippon Steel Corporation High-carbon steel sheet and method of manufacturing the same
JP2018123411A (en) * 2017-02-03 2018-08-09 Jfeスチール株式会社 Abrasion resistant steel sheet, and method for producing the same
CN111945067A (en) * 2020-08-05 2020-11-17 山东钢铁股份有限公司 Wear-resistant bar with silicon content of 0.8-1.2% and preparation method thereof

Also Published As

Publication number Publication date
JP5688742B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
CN110846580B (en) high-Mo high-performance Mn-Cr series steel for wind power output gear and production method thereof
JP5620336B2 (en) Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof
WO2011061812A1 (en) High-toughness abrasion-resistant steel and manufacturing method therefor
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP5030280B2 (en) High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
JP2018059188A (en) Abrasion resistant steel sheet and manufacturing method of abrasion resistant steel sheet
CN112292471B (en) Mechanical component
CN108350538B (en) Steel having high hardness and excellent toughness
JP2018059187A (en) Abrasion resistant steel sheet and manufacturing method of abrasion resistant steel sheet
JP2018059189A (en) Abrasion resistant steel sheet and manufacturing method of abrasion resistant steel sheet
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4994932B2 (en) Oil tempered wire and method for producing oil tempered wire
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP5868099B2 (en) Steel with excellent toughness and wear resistance
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP2005240135A (en) Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JPWO2020039485A1 (en) Steel plate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5688742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250