CN107267522B - 梨转录因子PyMYB114及其重组表达载体和应用 - Google Patents
梨转录因子PyMYB114及其重组表达载体和应用 Download PDFInfo
- Publication number
- CN107267522B CN107267522B CN201710485838.8A CN201710485838A CN107267522B CN 107267522 B CN107267522 B CN 107267522B CN 201710485838 A CN201710485838 A CN 201710485838A CN 107267522 B CN107267522 B CN 107267522B
- Authority
- CN
- China
- Prior art keywords
- pymyb114
- anthocyanin
- gene
- ser
- leu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明公开了梨转录因子PyMYB114及其重组表达载体和应用。一种分离自‘八月红’梨具有促进植物器官脱落功能的转录因子PyMYB114基因,其核苷酸序列为SEQ ID No.1所示,其编码的氨基酸序列为序列表SEQ ID No.2所示。通过农杆菌介导遗传瞬时转化方法把PyMYB114与它的辅助因子PybHLH3共同转化到烟草叶片,草莓和梨果实,都能促进花青苷的生物合成。这些结果表明本发明克隆的PyMYB114基因具有促进花青苷生物合成的功能。PyMYB114基因的发现,为促进红皮梨花青苷生物合成的分子育种提供新的基因资源,为实施绿色农业提供新的遗传资源。
Description
技术领域
本发明属于植物基因工程领域,涉及梨转录因子PyMYB114及其重组表达载体和应用,具体涉及从‘八月红’梨中分离、克隆得到一个梨果皮色泽调控相关的R2R3 MYB基因家族成员PyMYB114基因及其应用。
背景技术
花青苷是在高等植物中产生的次生代谢产物,它使鲜花和水果呈现出鲜艳的颜色。在花中,这些色素能够吸引传粉者;在水果中,它们吸引动物来帮助广泛的传播传播种子(Regan et al., 2001;Schaefer et al.,2004)。花青苷对植物抗病性也起着重要的作用,比如在抵御紫外线,抗氧化活性方面的作用(Bieza et al.,2001;Veeriah et al.,2006),还有各种有益健康的方面的作用,比如提供神经系统的保护和心血管疾病、癌症和糖尿病等方面(Konczak et al.,2004;Butelli et al., 2008)。
花青苷的生物合成通路是由关键结构基因的控制在很多植物中已经被充分研究(Jaakola et al.,2013)。这是由许多酶催化步骤组成的一系列催化反应构成的类黄酮生物合成代谢通路,包括的主要关键催化酶有苯丙氨酸解氨酶(PAL)、查耳酮合酶(CHS)、查耳酮异构酶(CHI)和黄烷酮3-羟化酶(F3H),以及在生成花青苷过程中发生的系列反应,包括二氢黄酮醇4-还原酶 (DFR),花青苷合成酶(ANS)和UDP-glucose:黄酮类3-O-葡糖基转移酶(UFGT)(Takos et al., 2006)。此外,转录因子调控结构基因的表达进而引起花青苷的生物合成方面的研究也有相关的报道(Zhang et al.,2003;Rowan et al.,2009)。在园艺作物中,果实中花青苷积累的分子机制也得到广泛的研究。R2R3-MYB转录因子在花青苷生物合成过程中具有重要的调控作用。例如苹果(Malus×domestica),MdMYB10和MdMYB110a分别从红色果肉苹果‘Red Field’和‘Sangrado’中被克隆,它们被证明分别正向调控类型I/II苹果果皮的色泽(Espley et al.,2007; Chagnéet al.,2013)。还有两个苹果中发现的转录因子,MdMYB1和MdMYBA,是苹果中受光诱导促进花青苷生物合成的至关重要的调控因子(Takos et al.,2006;Ban et al.,2007;Li et al., 2012)。草莓(Fragaria×ananassa)FaMYB10已经被证明是正向调节花青苷生物合成 (Medina-Puche et al.,2014)。然而,关于对花青苷代谢通路的转录抑制也有报道。这些研究包括草莓FaMYB1(Fragaria×ananassa)和FcMYB1(Fragaria chiloensis),矮牵牛PhMYB27,葡萄VvMYBC2-L1和Medicago truncatula MtMYB2(Aharoni et al.,2001;Salvatierra et al.,2013;Albert et al.,2014;Huang et al.,2014;Jun et al.,2015)。超表达的FaMYB1导致烟草(Nicotiana tabacum) 花青苷合成的抑制,抑制FcMYB1是通过瞬时RNA干扰草莓果实促进花青苷的生物合成的增加。同样的,RNA干扰抑制PhMYB27能增加矮牵牛的花和营养组织中花青苷的积累(Albert et al., 2014)。拟南芥AtMYBL2(Matsui et al.,2008)的同源基因VvMYBC2-L1会抑制原花青苷的(PA)积累和下调PA相关基因的表达通过在葡萄果实的数量性状定位和转录阻遏MtMYB2调控花青苷和原花青苷积累通过MBW复合体(MYB14/MYB5-TT8-WD40-1)的激活剂的介导作用在 Medicago truncatula。因此,花青苷生物合成受转录因子或转录调控复合体构成的调控网络的调控(Nesi et al.,2001;Hichri et al.,2011;Cavallini et al.,2015)。
控制红皮梨着色的关键基因已经被研究。在欧洲梨的研究中,Dondini et al.(2008)报道,‘Max Red Bartlett’红色性状定位到连锁群4(LG4),而不是苹果和梨的MYB10基因位于的LG9。随后,Pierantoni et al.(2010)报道,虽然图谱定位到的PyMYB10与苹果的MdMYB10高度同源,并且MdMYB10控制苹果果皮的色泽,但是在‘Max Red Bartlett’和‘Williams’梨品种中,它不是直接转录调控红皮和黄色果皮性状的基因,定位梨基因组的不同的区域。Wu et al.(2013b)也报道,西洋梨‘早红考密斯’及其它的绿色芽变的红/绿果皮色泽的突变体,鉴定出MADS转录因子可能参与了梨果皮中花青苷合成。花青苷生物合成基因MYB10和bHLH的表达和WD40 并没有表现出相关性,提出在梨中调控花青苷生物合成的一种更复杂的机制(Yang et al., 2014)。然而,MYB10也有报道调控花青苷生物合成在一些梨品种中(Feng et al.,2010;Zhang et al.,2011;Yu et al.,2012)。MYB10启动子区域的甲基化水平‘Max Red Bartlett’的绿色芽变的形成有关(Wang et al.,2013)。揭示红皮梨着色的分子机制仍然需要研究。梨主要分为亚洲梨和欧洲梨两种类型。红皮亚洲梨因着色不稳定而造成有很少的品质佳的品种。相比较而言,欧洲梨具有较多的红皮梨品种。通常来说,亚洲梨着色在接近成熟期(Yang et al,2014);而欧洲梨着色在果实发育前期并持续到果实成熟期。这意味着有不同的分子机制负责两种红皮梨类型。
QTL定位在很多作物中被广泛的和成功的运用。例如,Matsuda et al.(2012)用主效QTL 解析水稻基因型和表型关联的水稻粒重。Ilk et al.(2015)报道在高光照和低温胁迫下花青苷积累的自然变异是由于HUA2位点与拟南芥PAP1和PAP2相关联。在苹果果实中,一个多酚化合物的主效QTL定位在LG16(Khan et al.,2012)。Zorrilla-Fontanesi et al.(2011)和Azuma et al.(2015)分别报道控制八倍体草莓(Fragaria×ananassa)和葡萄中重要的农艺性状和果实品质性状的QTL位点及潜在的候选基因。随着最近‘砀山酥梨’全基因组序列成功组装并锚定在的17条染色体上(Wu et al.,2103),利用与SSR整合的SNPs构建了高密度遗传连锁图谱,用于精细定位QTL(Wu et al.,2014)。
发明内容
本发明的目的是提供一种促进梨果花青苷生物合成的转录因子PyMYB114基因。
本发明的另一目的是提供该基因的应用。
本发明的目的可通过以下技术方案实现:
一种分离自‘八月红’具有促进梨果花青苷生物合成功能的转录因子PyMYB114基因,属于R2R3MYB家族成员,其核苷酸序列为SEQ ID No.1所示,包含687bp的开放阅读框;编码228个氨基酸,其编码的氨基酸序列为序列表SEQ ID No.2所示,等电点为8.93,分子量为26.54kDa。
含有本发明所述PyMYB114基因的重组表达载体。
所述的重组表达载体,优选以pSAK277为出发载体,所述pSAK277基因的插入位点为 EcoR I和Xhol I之间。
含有本发明所述PyMYB114基因的宿主菌。
克隆本发明所述PyMYB114基因cDNA序列的引物对,上游引物PyMYB114-F1序列如SEQ ID No.7所示,下游引物PyMYB114-R1序列如SEQ ID No.8所示。
本发明所述PyMYB114基因在促进梨果花青苷生物合成中的应用。
所述的PyMYB114基因联合辅助因子PybHLH3基因在促进梨果皮花青苷生物合成中的应用;其中所述的辅助因子PybHLH3基因核苷酸序列如SEQ ID No.3所示,氨基酸序列如SEQ ID No.4所示。
本发明所述的重组表达载体在促进梨果花青苷生物合成中的应用。
所述的重组表达载体联合含辅助因子PybHLH3基因的重组表达载体在促进梨果皮花青苷生物合成中的应用。
有益效果
与现有技术相比,本发明具有以下优点和效果:
1.PyMYB114基因的发现,为促进梨果花青苷生物合成的分子育种提供新的基因资源,为实施绿色农业提供新的遗传资源,该遗传资源的开发利用有利于降低农业成本和实现环境友好。
2.通过农杆菌介导遗传转化方法将转录因子瞬时转化烟草,草莓和梨果实,有效的促进花青苷的合成,经生物学功能验证,表明本发明克隆的PyMYB114基因具有促进梨果皮花青苷生物合成的功能。
附图说明
图1为红/绿皮梨品种花色苷含量及与花青苷相关的基因的表达水平分析。
其中:A,C,E,G表明在幼果期不同红皮/绿皮梨品种中花色苷含量和转录因子PyMYB114, PybHLH3和PyMYB10的表达模式。B、D、F、H表明在接近成熟期不同红皮/绿皮梨品种中花色苷含量和转录因子PyMYB114,PybHLH3和PyMYB10的表达模式。
图2为瞬时PyMYB114和其它的转录因子共转化烟草促进花青苷生物合成。
其中:A.瞬时转化7天后烟草叶片的花青苷积累的表型图。a:pSAK277(空载作为阴性对照); b.PyMYB114+PyMYB10,c.PyMYB10+PybHLH3;d.PyMYB114+PybHLH3;B.通过色差仪测量烟草叶片花青苷着色区域的色素积累,a*/b*的比值从负值转为正值表示草莓的颜色由绿色变为红色。误差线是测量6个着色区域比值的平均值。C.测定总花色苷的含量利用分光光度计。大写表示差异显着性水平P<0.01,小写表示差异显着性水平P<0.05。
图3为PyMYB114和其它的转录因子瞬时共转化草莓促进花青苷生物合成。
其中:A.通过注射转化的YW5AF7的草莓果实的着色的表型图。a和b.pSAK277及纵切面;c 和d.PyMYB10及纵切面;e和f.PyMYB114及纵切面;g和h.PyMYB114+PyMYB10及纵切面; i和j.PyMYB10+PybHLH3及纵切面;k和l.PyMYB114+PybHLH3及纵切面。B.通过色差仪在草莓果实的着色区域检测色素的变化,a*/b*的比值从负值转为正值表示烟草叶片的颜色由绿色变为红色。误差线是测量6个着色区域比值的平均值。C.对草莓果实总花色苷含量的测定。 D.UPLC对草莓果实花色苷组分和含量。矢车菊3-阿拉伯糖苷,芍药素3-半乳糖苷。大写字母表明差异显着性水平P<0.01,小写字母表明差异显着性水平P<0.05。
图4为PyMYB114和PybHLH3转化梨对果皮花青苷生物合成的影响。
其中:A.是瞬时转化梨果实花青苷着色的表型图。I:pSAK277(空载作为阴性对照),II. PyMYB114+PybHLH3。B.瞬时转化梨果皮着色位置通过UPLC测定色素含量。C和D.花青苷生物合成相关基因的相对表达量分析。E.RNA干扰抑制梨果皮花青苷的生物合成的表型图。 F和G.RNA抑制花青苷含量及组分的测定。H.采用RT-qPCR分析梨果皮中花色苷相关基因的表达水平。
图5双荧光素酶报告系统检测PyMYB114,PybHLH3共转化拟南芥原生质体激活花青苷代谢通路启动子的活性。
图6转录调控因子之间相互作用的酵母双杂交试验验证。
其中:A.I-V分别代表基因PyMYB114C-端,或者N-端的氨基酸残基的长度。B.通过酵母双杂交体外验证基因PyMYB114的自激活区域以及PyMYB114和PybHLH3之间相互作用的位点。 C.通过酵母双杂交体外验证基因PyMYB114的自激活区域以及PyMYB114和PyMYB10之间相互作用的位点。
具体实施方式
以下结合具体实施例对本发明做出详细的描述。根据以下的描述和这些实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。
实施例1 PyMYB114的表达与红皮梨的花青苷的含量的相关性分析
梨果实有两种类型的着色模式,花青苷着色在果实发育早期或者接近成熟期。发明人基于 QTL定位鉴定出与红皮梨相关的候选基因PyMYB114。在本发明中,我们筛选几个红/绿皮的梨品种果实在发育早期和接近成熟期来评价花青苷含量和基因的表达模式,候选基因 PyMYB114,它的辅助因子PybHLH3。RT-qPCR分析所用PyMYB114特异性正向引物序列是: 5’-GCCACATCCGTCATAAGACCTC-3’(SEQ ID No.9);反向引物序列是:5’-GCCACTCATGTGTAACCCTTC-3’(SEQ ID No.10);辅助因子PybHLH3特异性正向引物序列是:5’-TTGTGGAGGGAAGTGGCGGT-3’(SEQ ID No.13);反向引物序列是:5’-AGCTCCCTAAGTGTTTGCATCAC-3’(SEQ ID No.14);PyMYB10特异性正向引物序列是:5’-GACCAATGTGATAAGACCTCAGCC-3’(SEQ ID No.17);反向引物序列是:5’-CCGTTCTTTGTTGACGACGAC-3’(SEQ ID No.18);在整个发育过程中,在不同的梨品种,红皮梨的花青苷含量都明显高于绿皮梨。其中,三个西洋梨品种表现出花青苷含量最高在果实发育的早期(图1)。在接近成熟期,6个亚洲梨红皮梨呈现显著的花青苷含量比其他梨品种(图3)。相关分析表明,花青苷含量与PyMYB114表达呈显著正相关(果实发育早期的相关系数0.777 **,果实发育后期的相关系数0.825**)。与此同时,PyMYB114和PybHLH3的表达水平显著相关在果实发育早期和接近成熟期(相关系数分别是0.524*和0.539*)(图1;表1)。
另外,我们又分析花青苷相关基因PyMYB10(Feng et al.,2010)。PyMYB10与花青苷呈正相关(0.56*为果实发育早期,0.501*为果实发育成熟阶段)。PyMYB114的表达与PyMYB10 的表达显着相关;果实发育早期相关系数为0.867**,果实发育接近成熟期为0.578*(图1;表 1)。因此,PyMYB10和PyMYB114都可能有助于调节花青苷的生物合成。
表1红皮/绿皮梨的花青苷含量与转录因子之间的相关性分析
实施例2 PyMYB114和辅助因子PybHLH3基因克隆及重组载体构建
从‘八月红’梨果皮中提取RNA,经反转录得到的第一链cDNA用于扩增PyMYB114基因全长。RNA提取使用Plant Total RNA Isolation Kit Plus(Foregene,RE-05022),按照该试剂盒提供的操作说明书操作。第一链cDNA的合成用First Script Strand cDNASynthesis Sup erMix(Transgene,AE301-02)反转录试剂盒(按照该试剂盒提供的说明书操作)。扩增基因P yMYB114引物序列PyMYB114-F1:5’-ACTAGTGGATCCAAAgaattcATGAGGAAGGGTGCCT GG-3’(SEQ ID No.7);PyMYB114-R1:5’-CAGGACTCTAGAAGTACTctcgagCTAAATCTTAGTTATCTCTTCTTCTAGATTCCA-3’(SEQ ID No.8)。此外,PyMYB10克隆的模板是‘八月红’梨,引物序列PyMYB10-F1:5’-cgcggtggcggccgcggatccATGGAGGGATATAACGTTAACTTG- 3’(SEQ IDNo.15),PyMYB10-R1:5’-gggccccccctcgagaagcttCTATTCTTCTTTTGAATGATT CCAA-3’(SEQID No.16);。超保真DNA聚合酶Super-Fidelity DNA Polymerase (P505-d1)购自诺唯赞生物科技公司。扩增的反应体系为50μL中包括200ng cDNA,2× Phanta Max Buffer25μL,10mM dNTP 1μL,Phanta Max Super-Fidelity DNA Polymeras e(1U/μl)1μL,10μM 2μL上述引物,加ddH2O至50μL。PCR反应在eppendorf扩增仪上按以下程序完成:95℃,预变性3分钟,95℃变性15秒,60℃退火15秒,72℃延伸40秒, 35个热循环,72℃延伸5分钟,4℃保存。每个基因都只产生一条单一PCR条带产物。
PCR产物经1%的琼脂糖凝胶电泳检测后,用AxyGEN小量胶回收试剂盒(购自爱思进生物技术杭州有限公司,中国)回收DNA片段,步骤参照使用说明。回收纯化的DNA溶液与pSAK277载体进行连接反应,重组酶II One Step Cloning Kit(货号:C112-01) 购自诺唯赞生物科技公司,并按说明书步骤操作。连接反应体系总体积是10μL,其中包括2μL 的5×CE II Buffer,50~200ng线性化克隆载体,50~200ng插入片段扩增产物,1μL II。37℃连接30min。待反应完成后,立即将反应罐置于冰水浴中冷却5min,反应产物可直接进行转化。转化采用热击法(参照《分子克隆实验手册》第三版,科学出版社,2002)转化大肠杆菌DH5α,在含有50mg/L壮观霉素的LB固体平板中筛选阳性克隆,挑取5个阳性克隆测序(由上海英骏生物技术有限公司完成)。测序结果表明,PyMYB114基因全长为687bp,其核苷酸序列为SEQ ID NO.1所示,BLAST的结果分析证明从梨中新得到的基因为一个MYB 基因家族成员,申请人将这个基因命名为PyMYB114。重组载体命名为pSAK277-PyMYB114。 PyMYB10基因全长为735bp,其核苷酸序列为SEQ ID NO.5所示,重组载体命名为pSAK277-PyMYB10。
辅助因子PybHLH3的克隆的模板是‘八月红’梨,所用的正向引物序列是: 5‘-ACTAGTGGATCCAAAgaattcATGGCTGCACCGCCGCCAAG-3’(SEQ ID No.11);反向引物序列是:5’-CAGGACTCTAGAAGTACTctcgagTTAAGAGTCAGATTGGGGTATAATTTGATTTAT C(SEQ ID No.12)。PCR扩增所用的超保真DNA聚合酶Super-Fidelity DNA Polymerase (P505-d1)购自诺唯赞生物科技公司。扩增的反应体系为50μL中包括200ng cDNA,2×Phanta Max Buffer 25μL,10mM dNTP 1μL,Phanta Max Super-Fidelity DNA Polymerase(1U/μl)1μL, 10μM 2μL上述引物,加ddH2O至50μL。PCR反应在eppendorf扩增仪上按以下程序完成:95℃,预变性3分钟,95℃变性15秒,60℃退火15秒,72℃延伸2min,35个热循环,72℃延伸5分钟,4℃保存。产生一条单一PCR条带产物。
PCR产物经1%的琼脂糖凝胶电泳检测后,用AxyGEN小量胶回收试剂盒(购自爱思进生物技术杭州有限公司,中国)回收DNA片段,步骤参照使用说明。回收纯化的DNA溶液与pSAK277载体进行连接反应,重组酶II One Step Cloning Kit(货号:C112-01) 购自诺唯赞生物科技公司,并按说明书步骤操作。连接反应体系总体积是10μL,其中包括2μL 的5×CE II Buffer,50~200ng线性化克隆载体,50~200ng插入片段扩增产物,1μL II。37℃连接30min。待反应完成后,立即将反应罐置于冰水浴中冷却5min,反应产物可直接进行转化。转化采用热击法(参照《分子克隆实验手册》第三版,科学出版社,2002)转化大肠杆菌DH5α,在含有50mg/L壮观霉素的LB固体平板中筛选阳性克隆,挑取5个阳性克隆测序(由上海英骏生物技术有限公司完成)。测序结果表明,PybHLH3基因全长为2130bp,其核苷酸序列为SEQ ID NO.3所示,重组载体命名为pSAK277-PybHLH3。应用冻融法将重组载体导入到农杆菌GV3101中。
实施例4 PyMYB114与它的共作用因子PybHLH3共转化导致烟草花青苷合成
瞬时转化烟草叶片试验是为了验证候选超表达基因的功能。结果表明,单独转化PyMYB114 或者PybHLH3并不能观察到花青苷含量的积累,而需要共同转化PyMYB114和PybHLH3才能观察到花青苷在烟草叶片的积累。此外,PyMYB114与PyMYB10共转化也能有微弱的色素沉积(图2A)。花青苷积累的烟草叶片通过色差仪和分光光度计检测色素含量(图2B和2C),结果与表型图一致。因此,PyMYB114和辅助转录因子PybHLH3可以促进烟草叶片花青苷生物合成;PyMYB114和PyMYB10也能促进花青苷的生物合成。
实施例5 PyMYB114与它的共作用因子PybHLH3异源表达导致草莓花青苷合成
瞬时转化黄色草莓‘Yellow wonder’5AF7(YW5AF7)果实(花后2周)。结果表明,共转化 PyMYB114和PybHLH3能观察到少量花青苷的积累。空载pSAK277转化后没有观察到色素积累,单独转化PyMYB114或者PybHLH3或者PyMYB10也没有色素积累。有趣的是,共转化PyMYB114和PyMYB10也能促进草莓花托中花青苷的生物合成(图3A)。进一步用色差仪,分光光度计和UPLC测定花青苷的含量,结果与表型图一致(图3B,C)。此外,UPLC进一步分析了着色草莓中花青苷组分和含量。诱导草莓果实中花青苷含量最高的矢车菊3-半乳糖苷,占总花青苷含量的68%以上(图3D)。
实施例6 PyMYB114与它的共作用因子PybHLH3同源表达促进梨花青苷合成
选取花后30天左右的‘早酥梨’为试验材料,参考Clough et al.(1998)真空渗透方法将超表 达的载体PyMYB114和PybHLH3转入梨果皮。结果表明,共同侵染转化PyMYB114和PybHLH3 后发现有花青苷的积累在梨果皮侵染的区域(图4A)。此外,UPLC测定花青苷的含量表明与 表型数据趋势一致,它的主要成分是矢车菊3-半乳糖苷,并且花青苷含量的增加主要是矢车菊 3-半乳糖苷含量的升高(图4B)。花青苷生物合成相关基因的表达模式也进一步分析(图4C和 D),结果表明花青苷生物合成的关键结构基因PyDFR,PyANS和PyUFGT表达量提高,促进 梨果皮花青苷生物合成。因此,PyMYB114起着重要的作用在转录调控花青苷生物合成的过程 中,而PybHLH3是它的辅助因子。
PyMYB114基因的功能进一步通过验证RNA干扰基因表达系统进行验证。为了避免沉默其它同源基因,选取转录因子接近3’端的特异性的氨基酸片段被克隆,插入到pSAK277瞬时表达载体,构建了重组载体:PyMYB114-RNAi,PybHLH3-RNAi。农杆菌介导转化pSAK277(空载),PyMYB114-RNAi和PybHLH3-RNAi分别注射到接近成熟期的‘红早酥’梨果皮。转化 7天后观察到PyMYB114-RNAi和PybHLH3-RNAi的梨果皮侵染的位置周围着色减少,pSAK277(空载)梨果皮并没有发现果皮颜色的变化(图4E)。总花青苷含量的测定表现出类似的趋势(图4G),UPLC测定花青苷的主要成分是矢车菊3-半乳糖苷,并且花青苷含量的减少也主要是矢车菊3-半乳糖苷含量的降低(图4F)。此外,RT-qPCR分析花青苷合成的关键基因的转录水平,结果表明,与空载pSAK277相比,PyMYB114-RNAi,PybHLH3-RNAi的表达量都有不同程度的下降(图4H)。这些结果表明PyMYB114,PybHLH3参与梨果皮花青苷生物合成的调控。
实施例7双荧光素酶报告系统验证PyMYB114和PybHLH3之间的互作
为了验证共转化2个转录因子是否能激活花青苷生物合成通路后期的结构基因PyDFR, PyANS和PyUFGT的启动子区域通过瞬时转化拟南芥原生质体,并用双荧光素酶报告系统进行检测。结果表明,PyMYB114能够转录激活启动子,尤其是当与其它转录因子PybHLH3共转化,当启动子是PyDFR,和PyUFGT时,PyMYB114具有更高的转录激活活性。相反,当启动子是PyANS时,PyMYB10与PybHLH3共转化具有更高的活性(图5)。此外,PyMYB114 和PyMYB10共转化也能激活PyDFR,PyANS和PyUFGT的启动子活性,进而促进花青苷的生物合成(图5)。
实施例8酵母双杂交验证PyMYB114和PybHLH3之间的互作
酵母双杂交试验是为了验证3个转录因子之间是否存在相互作用。为了验证转录因子的自激活活性,克隆PyMYB114CDS全长序列和C-或N-端残基氨基酸序列,并插入到pGBKT7 载体,同时克隆了PybHLH3和PyMYB10 CDS全长序列插入pGADT7载体目的是检测与PyMYB114是否存在蛋白互作。首先共转化PybHLH3与PyMYB114在二缺SD-Trp-Leu的培养基上生长,再把转化子转移到四缺SD-Trp-Leu-His-Ade的培养基上进行筛选,结果表明,PyMYB114CDS全长的氨基酸序列(V)和C-端160个氨基酸残基(169-229)(IV)表现出很强的转录激活活性,N-端氨基端残基MYB1141-93(I)和MYB1141-160(II)和C-端氨基酸残基MYB114136-229(III)不存在转录激活活性。共同转化酵母时,N-端氨基端残基MYB1141-160(II)与PybHLH3不但能在在二缺SD-Trp-Leu的培养基上生长,而且能在四缺SD-Trp-Leu-His-Ade培养基上生长,这说明PyMYB114与PybHLH3之间互作的位点在N-端氨基端残基MYB1141-160(II) 位点(图6A,B)。PyMYB114与PyMYB10之间的互作分析发现,PyMYB114的C-端残基MYB114 136-229(III)与PyMYB10存在互作(图6C)。
主要参考文献
Aharoni,A.,De Vos,C.H.,Wein,M.,Sun,Z.,Greco,R.,Kroon,A.,Mol,J.N.andO’Connell,A.P. (2001)The strawberry FaMYB1transcription factor suppressesanthocyanin and flavonol accumulation in transgenic tobacco.Plant J 28:319-332.
Albert,N.W.,Davies,K.M.,Lewis,D.H.,Zhang,H.B.,Montefiori,M.,Brendolise,C.,Boase,M. R.,Ngo,H.,Jameson,P.E.and Schwinn,K.E.(2014)Aconserved network of transcriptional activators and repressors regulatesanthocyanin pigmentation in Eudicots.Plant Cell 26:962–980.
Ban Y,Honda C,Hatsuyama Y,Igarashi M,Bessho H,Moriguchi T(2007)Isolation and functional analysis of a MYB transcription factor gene that isa key regulator for the development of red coloration in apple skin.PlantCell Physiol 48:958–970
Ban,Y.,Mitani,N.,Hayashi,T.,Sato,A.,Azuma,A.,Kono,A.and Kobayashi,S.(2014)Exploring quantitative trait loci for anthocyanin content ininterspecific hybrid grape(Vitis labruscana x Vitis vinifera).Euphytica.198:101–114.
Bieza,K.and Lois,R.(2001)An Arabidopsis mutant tolerant to lethalultraviolet-B levels shows constitutively elevated accumulation of flavonoidsand other phenolics.Plant Physiol 126: 1105–1115.
Butelli,E.,Titta,L.,Giorgio,M.,Mock,H.P.,Matros,A.and Peterek,S.(2008)Enrichment of tomato fruit with health-promoting anthocyanins byexpression of select transcription factors. Nat.Biotechnol 26:1301–1308.
Cavallini,E.,Matus,J.T.,Finezzo,L.,Zenoni,S.,Loyola,R.,Guzzo,F.,Schlechter,R.,Ageorges, A.,Arce-Johnson,P.and Tornielli,G.B.(2015)Thephenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine.Plant Physiology 167:1448-1470.
Chagné,D.,Lin-Wang,K.,Espley,R.V.,Volz,R.K.,How,N.M.,Rouse,S.,Brendolise,C.,Carlisle, C.M.,Kumar,S.,Silva,N.D.,Micheletti,D.,McGhie,T.,Crowhurst,R.N.,Storey,R.D., Velasco,R.,Hellens,R.P.,Gardiner,S.E.and Allan,A.C.(2013)An ancient duplication of apple MYB transcription factors isresponsible for novel red fruit-flesh phenotypes.Plant Physiology 161:225–239.
Dondini,L.,Pierantoni,L.,Ancarani,V.,Angelo,M.D.,Cho,K.H.,Shin,I.S.,Musacchi,S.,Kang, S.J.and Sansavini,S.(2008)The inheritance of the red colourcharacter in European pear (Pyrus communis)and its map position in themutated cultivar‘Max Red Bartlett’.Plant Breeding 127:524–526.
Espley,R.V.,Hellens,R.P.,Putterill,J.,Stevenson,D.E.,Kutty-Amma,S.andAllan,A.C.(2007) Red colouration in apple fruit is due to the activity of theMYB transcription factor,MdMYB10. Plant J 49:414–427
Feng,S.,Wang,Y.,Yang,S.,Xu,Y.and Chen,X.(2010)Anthocyaninbiosynthesis in pears is regulated by a R2R3-MYB transcription factorPyMYB10.Planta 232:245-255.
Hichri,I.,Barrieu,F.,Bogs,J.,Kappel,C.,Delrot,S.and Lauvergeat,V.(2011)Recent advances in the transcriptional regulation of the flavonoidbiosynthetic pathway.Journal of Experimental Botany 62:2465-2483.
Huang,Y.F.,Vialet,S.,Guiraud,J.L.,Torregrosa,L.,Bertrand,Y.,Cheynier,V.,This P.and Terrier, N.(2014)A negative MYB regulator of proanthocyanidinaccumulation,identified through expression quantitative locus mapping in thegrape berry.New Phytologist 201:795–809.
Ilk,N.,Ding,J.,Ihnatowicz,A.,Koornneef,M.and Matthieu,R.M.(2015)Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2(HUA2)locus incombination with PRODUCTION OF ANTHOCYANIN PIGMENT1(PAP1)and PAP2.NewPhytologist.206:422–435.
Khan,S.A.,Chibon,P.,de Vos,R.C.H.,Schipper,B.A.,Walraven,E.,Beekwilder,J.,Dijk,T., Finkers,R.,Visser,R.,Weg,E.W.,Bovy,A.,Cestaro,A.,Velasco,R.,Jacobsen,E.and Schouten,H.(2012)Genetic analysis of metabolites inapple fruits indicates an mQTL hotspot for phenolic compounds on linkagegroup 16.J Exp Bot 63(8):2895-2908.
Jaakola,L.(2013)New insights into the regulation of anthocyaninbiosynthesis in fruits.Trends in Plant Science 18:9.
Jun,J.H.,Liu,C.,Xiao,X.,Richard,A.and Dixon,R.(2015)Thetranscriptional repressor MYB2 regulates both spatial and temporal patternsof proanthocyandin and anthocyanin pigmentation in Medicago truncatula.PlantCell 27:2860–2879.
Konczak,I.and Zhang,W.(2004)Anthocyanins-more than nature’scolours.J.Biomed.Biotechnol. 5:239–240.
Li,Y.,Mao,K.,Zhao,C.,Zhao,X.,Zhang,H.,Shu,H.and Hao,Y.(2012)MdCOP1ubiquitin E3 ligases interact with MdMYB1 to regulate light-inducedanthocyanin biosynthesis and red fruit coloration in apple.Plant Physiology160:1011–1022.
Matsuda,F.,Okazaki,Y.,Oikawa,A.,Kusano,M.,Nakabayashi,R.,Kikuchi,J.,Yonemaru,J.,
Ebana,K.,Yano,M.and Saito,K.(2012)Dissection of genotype–phenotypeassociations in rice grains using metabolome quantitative trait locianalysis.Plant J 70:624–636.
Matsui,K.,Umemura,Y.and Ohme-Takagi,M.(2008)AtMYBL2,a protein with asingle MYB domain,acts as a negative regulator of anthocyanin biosynthesis inArabidopsis.Plant J 55: 954–967.
Medina-Puche,L.,Cumplido-Laso,G.,Amil-Ruiz,F.,Hoffmann,T.,Ring,L.,Rodríguez-Franco, A.,Caballero,J.L.,Schwab,W.,-Blanco,J.and Blanco-Portales,R.(2014)MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria×ananassafruits.Journal of Experimental Botany 65:401–417.
Nesi,N.,Jond,C.,Debeaujon,I.,Caboche,M.and Lepiniec,L.(2001)TheArabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a keydeterminant for proanthocyanidin accumulation in developing seed.Plant Cell13:2099-2114.
Pierantoni L,Dondini L,Franceschi PD,Musacchi S,Winke BSJ,Sansavini S(2010).Mapping of an anthocyanin-regulating MYB transcription factor and itsexpression in red and green pear, Pyrus communis.Plant Physiology andBiochemistry 48:1020–1026.
Regan,B.C.,Julliot,C.,Simmen,B.,Vienot,F.,Charles-Dominique,P.andMollon,J.D.(2001) Fruits,foliage and the evolution of primate colourvision.Philos Trans R Soc Lond B Biol Sci 356:229–283.
Rowan,D.D.,Cao,M.,Lin-Wang,K.,Cooney,J.M.,Jensen,D.J.,Austin,P.T.(2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsisthaliana.New Phytologist 182:102–115.
Salvatierra,A.,Pimentel,P.,Moya-León,M.A.and Herrera,R.(2013)Increased accumulation of anthocyanins in Fragaria chiloensis fruits bytransient suppression of FcMYB1 gene. Phytochemistry 90:25–36
Schaefer,H.M.,Schaefer,V.,Levey,D.J.(2004)How plant-animalinteractions signal new insights in communication.Trends Ecol Evol 19:577–584.
Takos,A.M.,Jaffé,F.W.,Jacob,S.R.,Bogs,J.,Robinson,S.P.and Walker,A.R.(2006) Light-induced expression of a MYB gene regulates anthocyaninbiosynthesis in red apples. Plant Physiol 142:1216–1232.
Veeriah,S.,Kautenburger,T.,Habermann,N.,Sauer,J.,Dietrich,H.,Will,F.and Pool-Zobel,B.L. (2006).Apple flavonoids inhibit growth of HT29 humancolon cancer cells and modulate expression of genes involved in thebiotransformation of xenobiotics.Mol.Carcinog 45: 164–174.
Wang,Z.,Meng,D.,Wang,A.,Li,T.,Jiang,S.,Cong,P.and Li,L.(2013)Themethylation of the PcMYB10 promoter is associated with green-skinned sport inMax Red Bartlett pear.Plant Physiology 162:885–896.
Wu,J.,Li,L.,Li,M.,Khan,M.,Li,X.,Chen,H.,Yin,H.and Zhang,S.(2014)High-density genetic linkage map construction and identification of fruit-relatedQTLs in pear using SNP and SSR markers.Journal of Experimental Botany 65(20):5771-5781.
Wu,J.,Wang,Z.,Shi,Z.Zhang,S.,Ming,R.,Zhu,S.et al.(2013a)The genome ofthe pear(Pyrus bretschneideri Rehd.).Genome Research 23:396–408.
Wu,J.,Zhao,G.,Yang,Y.N.,Le,W.Q.,Khan,M.A.,Zhang,S.L.,Gu,C.and Huang,W.J.(2013b) Identification of differentially expressed genes related tocoloration in red/green mutant pear (Pyrus communis L.)Tree Genetics&Genomes9:75–83.
Yang,Y.,Yao,G.,Yue,W.Zhang,S.and Wu,J.(2015)Transcriptome profilingreveals differential gene expression in proanthocyanidin biosynthesisassociated with red/green skin color mutant of pear(Pyrus communis L.).Front.Plant Sci.6:795.
Yang,Y.,Yao,G.,Zheng,D.,Zhang,S.,Wang,C.,Zhang,M.and Wu,J.(2014)Expression differences of anthocyanin biosynthesis genes reveal regulationpatterns for red pear coloration. Plant Cell Rep doi:10.1007/s00299-014-1698-0.
Yu,B.,Zhang,D.,Huang,C.H.,Qian,M.J.,Zheng,X.Y.and Teng,Y,W,(2012)Isolation of anthocyanin biosynthetic genes in red Chinese sand pear(Pyruspyrifolia Nakai)and their expression as affected by organ/tissue,cultivar,bagging and fruit side.Scientia Horticulturae 136:29–37.
Zhang,F.,Gonzalez,A.,Zhao,M.,Payne,C.T.,Lloyd,A.(2003)A network ofredundant bHLH proteins functions in all TTG1-dependent pathways ofArabidopsis.Development 130:4859– 4869.
Zhang,X.,Allan,A.C.,Yi,Q.,Chen,L.,Li,K.and Shu,Q.(2011)Differentialgene expression analysis of Yunnan Red Pear,Pyrus pyrifolia,during fruit skincoloration.Plant Molecular Biology Reports 29:305-314。
<110> 南京农业大学
<120> 梨转录因子PyMYB114及其重组表达载体和应用
<160> 16
<210> 1
<211> 687
<212> DNA
<213> ‘八月红’梨
<220>
<223> 转录因子PyMYB114基因
<400> 1
atgaggaagg gtgcctggac tcaacaggaa gatgatattc tgaggcagta cgttgaaaag 60
catggagatg gaaagtggca ccaggttcct cgcgaaacag gtctaaacag atgcaggaaa 120
agctgcagac agaggtggtt gaactatttg aagccgaatc tcaagagcgg agatttcaca 180
gaggatgaaa tagatctaat ccatagactt cagaaacttt tgggaaacag gtggtcaata 240
attgctggaa gactcccagg aagaacagca ggcaaggtaa aaaattattg gaatagcaag 300
caacgaaagg agttggaata tatgaaggat aaatccaaag aaagaacaaa agccacatcc 360
gtcataagac ctcaaccacg gagagctaga gttgcaattt ttcaatctga agagaactgt 420
agcaggttat tacagacatc atcaccacct acagaaaacg ctattgattc atggaaggcc 480
atgttgcatg atacagacaa tgttgatgga acaccatttt ctagtttagg gttaggggaa 540
gacctcttca caaacttttg ggttgaagat attgcacagt cgacaatggt aggcatgaat 600
tctgctgatg aagggttaca catgagtggc aacttttcct ttagagagaa cttttggaat 660
ctagaagaag agataactaa gatttag 687
<210> 2
<211> 228
<212> DNA
<213> ‘八月红’梨
<220>
<223> 转录因子PyMYB114基因编码蛋白
<400> 2
Met Arg Lys Gly Ala Trp Thr Gln Gln Glu Asp Asp Ile Leu Arg Gln
1 5 10 15
Tyr Val Glu Lys His Gly Asp Gly Lys Trp His Gln Val Pro Arg Glu
20 25 30
Thr Gly Leu Asn Arg Cys Arg Lys Ser Cys Arg Gln Arg Trp Leu Asn
35 40 45
Tyr Leu Lys Pro Asn Leu Lys Ser Gly Asp Phe Thr Glu Asp Glu Ile
50 55 60
Asp Leu Ile His Arg Leu Gln Lys Leu Leu Gly Asn Arg Trp Ser Ile
65 70 75 80
Ile Ala Gly Arg Leu Pro Gly Arg Thr Ala Gly Lys Val Lys Asn Tyr
85 90 95
Trp Asn Ser Lys Gln Arg Lys Glu Leu Glu Tyr Met Lys Asp Lys Ser
100 105 110
Lys Glu Arg Thr Lys Ala Thr Ser Val Ile Arg Pro Gln Pro Arg Arg
115 120 125
Ala Arg Val Ala Ile Phe Gln Ser Glu Glu Asn Cys Ser Arg Leu Leu
130 135 140
Gln Thr Ser Ser Pro Pro Thr Glu Asn Ala Ile Asp Ser Trp Lys Ala
145 150 155 160
Met Leu His Asp Thr Asp Asn Val Asp Gly Thr Pro Phe Ser Ser Leu
165 170 175
Gly Leu Gly Glu Asp Leu Phe Thr Asn Phe Trp Val Glu Asp Ile Ala
180 185 190
Gln Ser Thr Met Val Gly Met Asn Ser Ala Asp Glu Gly Leu His Met
195 200 205
Ser Gly Asn Phe Ser Phe Arg Glu Asn Phe Trp Asn Leu Glu Glu Glu
210 215 220
Ile Thr Lys Ile
225
<210> 3
<211> 2130
<212> DNA
<213> ‘八月红’梨
<220>
<223> 转录因子PybHLH3基因
<400> 3
atggctgcac cgccgccaag cagcagccgc ctccgtggta tgttgcaggc ctcagtccaa 60
tatgtccaat ggacttacag tctcttctgg caaatctgtc cccaacaagg gatcttagta 120
tggtcagatg ggtactataa tggagccatc aagacgagga agacggtgca accaatggaa 180
gtgagtgccg aggaggcatc tctccagagg agccagcaac tcagagaact ctacgactct 240
ttgtccgctg gagagacaaa ccagccccca gcacgccgcc cttgcgcttc cttgtccccg 300
gaggacttaa ccgaatccga atggttctac ttgatgtgtg tctcattctc ctttcccccc 360
ggcgtcgggt tgccagggaa agcatacgca aggaggcagc atgtatggct caccggtgca 420
aacgaggtcg atagcaaaac cttttccaga gctattttgg caaagagtgc tcgtatacag 480
accgtagtgt gcattcctct tctagatggc gtcgtagaat ttggcaccac agagagggtt 540
ccagaagacc acgccttagt cgaacacgtc aaaaccttct tcgttgacca ccaccaccct 600
ccgccaccaa aacccgccct ctccgagcac tccacatcca accccgccac ctcatccgat 660
cacccacatt tccactctcc gcaccttctc cagaccatgt gcaccaaccc tcctctcaac 720
gccgcccaag aagacgaaga ggacgaagaa gaagatgata atcaggagga ggacgacgga 780
ggagacgagt ccgactccga agccgaaacg ggtcgcaatg gtggagccgt tgttcccgcc 840
gcaaaccctc ctcaggtttt ggccgcggta gccgagccaa gcgagctcat gcaactcgag 900
atgtccgaag acatccggct gggctccccg gacgatgcct caaataactt ggactctgat 960
ttccacttgt tagctgtgag tcagtctagg aacccagcgg atcagcagag acaagctgac 1020
tcgtatcgag ccgagtcgac caggcggtgt ccgtcagtac aagagccgct gagcagtggc 1080
cttcaaccgc cgcacacagg acccttagct ttagaggagt tgacacatga tgacgacaca 1140
cattactcgg agacggtctc caccatactg cagggacaag cgactcggtg gacggattca 1200
tcgtccacca actacacagc ttgcttgact cagtcggctt tcgccaagtg gtcgagccgg 1260
attgatcacc acttcctcat cccggttgag ggcacgtccc aatggctttt gaaatatatt 1320
ttatttagtg taccattcct ccactcaaaa tatcgcgacg aaaactcgcc aaaatctcaa 1380
gagggcgaag gctcgacgcg tttgaggaaa gggaccccac aagacgagct cagtgccaat 1440
catgtgttag cggaacgacg tcgtagagag aagcttaatg agaggtttat tatactaagg 1500
tccctagtgc cttttgtgac aaaaatggac aaggcttcga tattagggga cacaatcgag 1560
tatgtgaagc aactgcgtaa caaaattcag gatctcgagg cacgtaacat gctgatggag 1620
gaagatcaac gatcgagatc atccggggaa atgcaaaggt ccagtagttg taaagagttg 1680
cgaagtgggc tcacggtagt ggagcggacc caaggaggtc caccggggtc cgataaaagg 1740
aagttgagga ttgtggaggg aagcggcggt gtcgccattg gtaaggctaa agtaatggag 1800
gactcaccgc ctccaccgcc cccgccacca cctcagccag aaccttcacc gacacctatg 1860
gtgacgggga cttctctaga ggtgtcgata atcgagagtg atgggctgtt ggagctccaa 1920
tgcccgtata gagaagggtt attgcttgat gtgatgcaaa cacttaggga gctaagaatt 1980
gagaccacgg tggtccagtc ctcattgaat aacggattct tcgtagctga actaagagcc 2040
aaggtgaagg ataacgtgag tggcaagaaa gtaagtatta cggaagtgaa gagggtgata 2100
aatcaaatta taccccaatc tgactcttaa 2130
<210> 4
<211> 709
<212> DNA
<213> ‘八月红’梨
<220>
<223> 转录因子PybHLH3基因编码蛋白
<400> 4
Met Ala Ala Pro Pro Pro Ser Ser Ser Arg Leu Arg Gly Met Leu Gln
1 5 10 15
Ala Ser Val Gln Tyr Val Gln Trp Thr Tyr Ser Leu Phe Trp Gln Ile
20 25 30
Cys Pro Gln Gln Gly Ile Leu Val Trp Ser Asp Gly Tyr Tyr Asn Gly
35 40 45
Ala Ile Lys Thr Arg Lys Thr Val Gln Pro Met Glu Val Ser Ala Glu
50 55 60
Glu Ala Ser Leu Gln Arg Ser Gln Gln Leu Arg Glu Leu Tyr Asp Ser
65 70 75 80
Leu Ser Ala Gly Glu Thr Asn Gln Pro Pro Ala Arg Arg Pro Cys Ala
85 90 95
Ser Leu Ser Pro Glu Asp Leu Thr Glu Ser Glu Trp Phe Tyr Leu Met
100 105 110
Cys Val Ser Phe Ser Phe Pro Pro Gly Val Gly Leu Pro Gly Lys Ala
115 120 125
Tyr Ala Arg Arg Gln His Val Trp Leu Thr Gly Ala Asn Glu Val Asp
130 135 140
Ser Lys Thr Phe Ser Arg Ala Ile Leu Ala Lys Ser Ala Arg Ile Gln
145 150 155 160
Thr Val Val Cys Ile Pro Leu Leu Asp Gly Val Val Glu Phe Gly Thr
165 170 175
Thr Glu Arg Val Pro Glu Asp His Ala Leu Val Glu His Val Lys Thr
180 185 190
Phe Phe Val Asp His His His Pro Pro Pro Pro Lys Pro Ala Leu Ser
195 200 205
Glu His Ser Thr Ser Asn Pro Ala Thr Ser Ser Asp His Pro His Phe
210 215 220
His Ser Pro His Leu Leu Gln Thr Met Cys Thr Asn Pro Pro Leu Asn
225 230 235 240
Ala Ala Gln Glu Asp Glu Glu Asp Glu Glu Glu Asp Asp Asn Gln Glu
245 250 255
Glu Asp Asp Gly Gly Asp Glu Ser Asp Ser Glu Ala Glu Thr Gly Arg
260 265 270
Asn Gly Gly Ala Val Val Pro Ala Ala Asn Pro Pro Gln Val Leu Ala
275 280 285
Ala Val Ala Glu Pro Ser Glu Leu Met Gln Leu Glu Met Ser Glu Asp
290 295 300
Ile Arg Leu Gly Ser Pro Asp Asp Ala Ser Asn Asn Leu Asp Ser Asp
305 310 315 320
Phe His Leu Leu Ala Val Ser Gln Ser Arg Asn Pro Ala Asp Gln Gln
325 330 335
Arg Gln Ala Asp Ser Tyr Arg Ala Glu Ser Thr Arg Arg Cys Pro Ser
340 345 350
Val Gln Glu Pro Leu Ser Ser Gly Leu Gln Pro Pro His Thr Gly Pro
355 360 365
Leu Ala Leu Glu Glu Leu Thr His Asp Asp Asp Thr His Tyr Ser Glu
370 375 380
Thr Val Ser Thr Ile Leu Gln Gly Gln Ala Thr Arg Trp Thr Asp Ser
385 390 395 400
Ser Ser Thr Asn Tyr Thr Ala Cys Leu Thr Gln Ser Ala Phe Ala Lys
405 410 415
Trp Ser Ser Arg Ile Asp His His Phe Leu Ile Pro Val Glu Gly Thr
420 425 430
Ser Gln Trp Leu Leu Lys Tyr Ile Leu Phe Ser Val Pro Phe Leu His
435 440 445
Ser Lys Tyr Arg Asp Glu Asn Ser Pro Lys Ser Gln Glu Gly Glu Gly
450 455 460
Ser Thr Arg Leu Arg Lys Gly Thr Pro Gln Asp Glu Leu Ser Ala Asn
465 470 475 480
His Val Leu Ala Glu Arg Arg Arg Arg Glu Lys Leu Asn Glu Arg Phe
485 490 495
Ile Ile Leu Arg Ser Leu Val Pro Phe Val Thr Lys Met Asp Lys Ala
500 505 510
Ser Ile Leu Gly Asp Thr Ile Glu Tyr Val Lys Gln Leu Arg Asn Lys
515 520 525
Ile Gln Asp Leu Glu Ala Arg Asn Met Leu Met Glu Glu Asp Gln Arg
530 535 540
Ser Arg Ser Ser Gly Glu Met Gln Arg Ser Ser Ser Cys Lys Glu Leu
545 550 555 560
Arg Ser Gly Leu Thr Val Val Glu Arg Thr Gln Gly Gly Pro Pro Gly
565 570 575
Ser Asp Lys Arg Lys Leu Arg Ile Val Glu Gly Ser Gly Gly Val Ala
580 585 590
Ile Gly Lys Ala Lys Val Met Glu Asp Ser Pro Pro Pro Pro Pro Pro
595 600 605
Pro Pro Pro Gln Pro Glu Pro Ser Pro Thr Pro Met Val Thr Gly Thr
610 615 620
Ser Leu Glu Val Ser Ile Ile Glu Ser Asp Gly Leu Leu Glu Leu Gln
625 630 635 640
Cys Pro Tyr Arg Glu Gly Leu Leu Leu Asp Val Met Gln Thr Leu Arg
645 650 655
Glu Leu Arg Ile Glu Thr Thr Val Val Gln Ser Ser Leu Asn Asn Gly
660 665 670
Phe Phe Val Ala Glu Leu Arg Ala Lys Val Lys Asp Asn Val Ser Gly
675 680 685
Lys Lys Val Ser Ile Thr Glu Val Lys Arg Val Ile Asn Gln Ile Ile
690 695 700
Pro Gln Ser Asp Ser
705
<210> 5
<211> 735
<212> DNA
<213> ‘八月红’梨
<220>
<223> 转录因子PyMYB10基因
<400> 5
atggagggat ataacgttaa cttgagtgtg agaaaaggtg cctggactcg agaggaagac 60
aatcttctca ggcagtgcat tgagattcat ggagagggaa agtggaacca agtttcatac 120
aaagcaggct taaacaggtg caggaagagc tgcagacaaa gatggttaaa ctatctgaag 180
ccaaatatca agagaggaga ctttaaagag gatgaagtag atcttatact tagacttcac 240
aggcttttgg gaaacaggtg gtcattgatt gctagaagac ttccaggaag aacagcgaat 300
gatgtgaaaa attattggaa cactcgattg cggatcgatt ctcgcatgaa aacgttgaaa 360
aataaatctc aagaaacgag aaagaccaat gtgataagac ctcagcccca aaaattcatc 420
aaaagttcat attacttaag cagtaaagaa ccaattctag aacatattca atcagcagaa 480
gatttaagta cgccatcaca aacgtcgtcg tcaacaaaga acggaaatga ttggtgggag 540
accttgttcg aaggcgagga tacttttgaa agggctgcat gtcccagcat tgagttagag 600
gaagaactct tcacaacttt ttggtttgat gatcgactgt cggcaagatc atgtgccaat 660
tttcctgaag aaggacaaag tagaagtgaa ttctccttta gcatggacct ttggaatcat 720
tcaaaagaag aatag 735
<210> 6
<211> 244
<212> DNA
<213> ‘八月红’梨
<220>
<223> 转录因子PyMYB10基因编码蛋白
<400> 6
Met Arg Lys Gly Ala Trp Thr Gln Gln Glu Asp Asp Ile Leu Arg Gln
1 5 10 15
Tyr Val Glu Lys His Gly Asp Gly Lys Trp His Gln Val Pro Arg Glu
20 25 30
Thr Gly Leu Asn Arg Cys Arg Lys Ser Cys Arg Gln Arg Trp Leu Asn
35 40 45
Tyr Leu Lys Pro Asn Leu Lys Ser Gly Asp Phe Thr Glu Asp Glu Ile
50 55 60
Asp Leu Ile His Arg Leu Gln Lys Leu Leu Gly Asn Arg Trp Ser Ile
65 70 75 80
Ile Ala Gly Arg Leu Pro Gly Arg Thr Ala Gly Lys Val Lys Asn Tyr
85 90 95
Trp Asn Ser Lys Gln Arg Lys Glu Leu Glu Tyr Met Lys Asp Lys Ser
100 105 110
Lys Glu Arg Thr Lys Ala Thr Ser Val Ile Arg Pro Gln Pro Arg Arg
115 120 125
Ala Arg Val Ala Ile Phe Gln Ser Glu Glu Asn Cys Ser Arg Leu Leu
130 135 140
Gln Thr Ser Ser Pro Pro Thr Glu Asn Ala Ile Asp Ser Trp Lys Ala
145 150 155 160
Met Leu His Asp Thr Asp Asn Val Asp Gly Thr Pro Phe Ser Ser Leu
165 170 175
Gly Leu Gly Glu Asp Leu Phe Thr Asn Phe Trp Val Glu Asp Ile Ala
180 185 190
Gln Ser Thr Met Val Gly Met Asn Ser Ala Asp Glu Gly Leu His Met
195 200 205
Ser Gly Asn Phe Ser Phe Arg Glu Asn Phe Trp Asn Leu Glu Glu Glu
210 215 220
Ile Thr Lys Ile
225
<210> 7
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物PyMYB114-F1
<400> 7
actagtggat ccaaagaatt catgaggaag ggtgcctgg 39
<210> 8
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> 引物PyMYB114-R1
<400> 8
caggactcta gaagtactct cgagctaaat cttagttatc tcttcttcta gattcca 57
<210> 9
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引物PyMYB114-F2
<400> 9
gccacatccg tcataagacc tc 22
<210> 10
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物PyMYB114-R2
<400> 10
gccactcatg tgtaaccctt c 21
<210> 11
<211> 41
<212> DNA
<213> 人工序列
<220>
<223> 引物PybHLH3-F1
<400> 11
actagtggat ccaaagaatt catggctgca ccgccgccaa g 41
<210> 12
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> 引物PybHLH3-R1
<400> 12
caggactcta gaagtactct cgagttaaga gtcagattgg ggtataattt gatttatc 58 58
<210> 13
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物PybHLH3-F2
<400> 13
ttgtggaggg aagtggcggt 20
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物PybHLH3-R2
<400> 14
agctccctaa gtgtttgcat cac 23
<210> 15
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 引物PyMYB10-F1
<400> 15
cgcggtggcg gccgcggatc catggaggga tataacgtta acttg 45
<210> 16
<211> 46
<212> DNA
<213> 人工序列
<220>
<223> 引物PyMYB10-R1
<400> 16
gggccccccc tcgagaagct tctattcttc ttttgaatga ttccaa 46
Claims (2)
1.PyMYB114基因在促进梨果皮花青苷生物合成中的应用;其特征在于所述的PyMYB114基因联合辅助因子PybHLH3基因在促进梨果皮花青苷生物合成中的应用;其中所述的PyMYB114基因,其核苷酸序列如SEQ ID No.1 所示,所述的辅助因子PybHLH3基因核苷酸序列如SEQ ID No.3所示。
2.含有PyMYB114基因的重组表达载体在促进梨果皮花青苷生物合成中的应用,其特征在于含有PyMYB114基因的重组表达载体联合含辅助因子PybHLH3基因的重组表达载体在促进梨果皮花青苷生物合成中的应用; 其中所述的PyMYB114基因,其核苷酸序列如SEQ IDNo.1 所示,所述的辅助因子PybHLH3基因核苷酸序列如SEQ ID No.3所示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710485838.8A CN107267522B (zh) | 2017-06-23 | 2017-06-23 | 梨转录因子PyMYB114及其重组表达载体和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710485838.8A CN107267522B (zh) | 2017-06-23 | 2017-06-23 | 梨转录因子PyMYB114及其重组表达载体和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107267522A CN107267522A (zh) | 2017-10-20 |
CN107267522B true CN107267522B (zh) | 2020-04-21 |
Family
ID=60068278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710485838.8A Active CN107267522B (zh) | 2017-06-23 | 2017-06-23 | 梨转录因子PyMYB114及其重组表达载体和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107267522B (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108383899B (zh) * | 2018-05-23 | 2021-04-20 | 青岛农业大学 | 一种调控黄金梨果顶硬化的wrky转录因子 |
CN108588092B (zh) * | 2018-07-13 | 2021-06-29 | 四川农业大学 | 一种梨花色素苷合成转录因子PbMYB109及其应用 |
CN109810990A (zh) * | 2019-01-04 | 2019-05-28 | 南京农业大学 | 梨果实花青苷转运相关PyGSTf12基因及其重组表达载体和应用 |
CN109609514B (zh) * | 2019-01-17 | 2022-05-27 | 南京农业大学 | 梨转录因子PbrMYB169及其应用 |
CN110283832B (zh) * | 2019-08-07 | 2022-07-12 | 合肥工业大学 | 一种促进花青苷合成的ItfERF71a基因及其重组表达载体与应用 |
CN111733163B (zh) * | 2019-08-07 | 2022-05-03 | 合肥工业大学 | 一种调节花青苷合成的IbMYB44基因及其重组表达载体与应用 |
CN111733164B (zh) * | 2019-08-07 | 2022-05-03 | 合肥工业大学 | 一种促进花青苷合成的IbNAC56基因及其应用 |
CN111733165B (zh) * | 2019-12-29 | 2022-05-03 | 合肥工业大学 | 一种促进花青苷合成的PyWRKY26基因及其重组表达载体与应用 |
CN111876428B (zh) * | 2019-12-29 | 2022-05-03 | 合肥工业大学 | 一种促进花青苷合成的PyWRKY31基因及其重组表达载体与应用 |
CN111154772B (zh) * | 2020-02-09 | 2022-10-04 | 南京农业大学 | 梨糖转运基因PbSWEET4及其应用 |
CN113861279B (zh) * | 2020-06-30 | 2023-08-25 | 中国科学院遗传与发育生物学研究所 | 大豆转录因子GmbHLH664及其编码基因在提高种子蛋白质含量中的应用 |
CN114395019B (zh) * | 2021-12-15 | 2023-06-16 | 山东农业大学 | 草莓FvMYB79基因及其应用 |
CN114525284B (zh) * | 2022-01-21 | 2023-09-19 | 长江师范学院 | 红皮龙眼花色苷生物合成调控基因DlMYB1-HP及其应用 |
CN114891793A (zh) * | 2022-06-13 | 2022-08-12 | 南京农业大学 | 一种梨CRISPRa基因转录激活系统及其应用 |
CN115011612B (zh) * | 2022-06-28 | 2023-07-07 | 洛阳师范学院 | 促进植物器官产生花青素的色泽基因ZjFAS2及其应用 |
-
2017
- 2017-06-23 CN CN201710485838.8A patent/CN107267522B/zh active Active
Non-Patent Citations (5)
Title |
---|
AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis;Kyoko Matsui et al.;《The Plant Journal》;20080711;第55卷;第954-967页 * |
GenBank: XM_018647540.1;NCBI;《NCBI》;20161012;FEATURES、ORIGIN * |
GenBank: XM_018648715.1;NCBI;《NCBI》;20161012;FEATURES、ORIGIN * |
Jasmonate-responsive transcription factors regulating plant secondary metabolism;Meiliang Zhou et al.;《Biotechnology Advances》;20160210;第34卷;第446页右栏最后一段 * |
NCBI.GenBank: XM_018648715.1.《NCBI》.2016,FEATURES、ORIGIN. * |
Also Published As
Publication number | Publication date |
---|---|
CN107267522A (zh) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107267522B (zh) | 梨转录因子PyMYB114及其重组表达载体和应用 | |
Liu et al. | Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit (Actinidia chinensis) | |
Liu et al. | Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors | |
CN107686840B (zh) | 梨转录因子PyERF3及其重组表达载体和应用 | |
CN109810181B (zh) | 梨转录因子PyHY5及其重组表达载体和应用 | |
Shi et al. | R2R3-MYB transcription factor SmMYB75 promotes anthocyanin biosynthesis in eggplant (Solanum melongena L.) | |
Kou et al. | A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration | |
Yin et al. | Suppression of the MADS-box gene SlMBP8 accelerates fruit ripening of tomato (Solanum lycopersicum) | |
CN110066326B (zh) | 调控植物花青素合成的盐芥转录因子EsMYB41及其编码基因和应用 | |
CN113337635B (zh) | 枸杞基因以及其编码蛋白质、重组载体、及其用途 | |
Meng et al. | Characterization of transcriptional expression and regulation of carotenoid cleavage dioxygenase 4b in grapes | |
CN109810990A (zh) | 梨果实花青苷转运相关PyGSTf12基因及其重组表达载体和应用 | |
Zhang et al. | Overexpression of NtabDOG1L promotes plant growth and enhances drought tolerance in Nicotiana tabacum | |
Chen et al. | Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit | |
Ai et al. | Expression of RsMYB1 in Petunia enhances anthocyanin production in vegetative and floral tissues | |
Cui et al. | ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus | |
KR101465692B1 (ko) | AtbHLH113 유전자를 이용한 안토시아닌 생합성이 조절된 형질전환 식물체의 제조방법 및 그에 따른 식물체 | |
Zhao et al. | The TT2-type MYB transcription factor JrMYB12 positively regulates proanthocyanidin biosynthesis in red walnut | |
Hou et al. | Modulation of anthocyanin accumulation in storage roots of sweetpotato by transcription factor IbMYB1-2 through direct binding to anthocyanin biosynthetic gene promoters | |
Wang et al. | Comparative transcriptome analysis and flavonoid profiling of floral mutants reveals CmMYB11 regulating flavonoid biosynthesis in chrysanthemum | |
CN114539370B (zh) | 苹果MYB转录因子MdMYB90-like及其应用 | |
Zhang et al. | Comprehensive transcriptome and WGCNA analysis reveals the potential function of anthocyanins in low-temperature resistance of a red flower mutant tobacco | |
Liu et al. | FaMYB6-like negatively regulates FaMYB10-induced anthocyanin accumulation during strawberry fruit ripening | |
Tang et al. | Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promote anthocyanin biosynthesis in blueberry (Vaccinium corymbosum) | |
Wang et al. | Genetics and genomics of fruit color development in apple |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |