CN107256966B - 一种锂离子电池正极极片及其制备方法 - Google Patents

一种锂离子电池正极极片及其制备方法 Download PDF

Info

Publication number
CN107256966B
CN107256966B CN201710348610.4A CN201710348610A CN107256966B CN 107256966 B CN107256966 B CN 107256966B CN 201710348610 A CN201710348610 A CN 201710348610A CN 107256966 B CN107256966 B CN 107256966B
Authority
CN
China
Prior art keywords
lithium ion
positive electrode
ion battery
electrode slurry
graphene powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710348610.4A
Other languages
English (en)
Other versions
CN107256966A (zh
Inventor
高坡
马宇飞
葛明
丛霄
张彦林
张磊
张金宇
瞿研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sixth Element Changzhou Meterials Technology Co ltd
Original Assignee
Sixth Element Changzhou Meterials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sixth Element Changzhou Meterials Technology Co ltd filed Critical Sixth Element Changzhou Meterials Technology Co ltd
Priority to CN201710348610.4A priority Critical patent/CN107256966B/zh
Publication of CN107256966A publication Critical patent/CN107256966A/zh
Application granted granted Critical
Publication of CN107256966B publication Critical patent/CN107256966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种磷酸铁锂正极极片及其制备方法、磷酸铁锂正极浆料及其方法,其中,所述浆料包括固体物质和溶剂,所述固体物质包括石墨烯粉体、磷酸铁锂和PVDF,所述石墨烯粉体占固体物质总质量的0.7‑2%。本发明的石墨烯在低的添加量的情况下可使正极材料获得低的极片电阻率,为2.1Ω·cm,与CNTs正极极片电阻率持平,比SP正极极片电阻率低7%。

Description

一种锂离子电池正极极片及其制备方法
技术领域
本发明涉及一种电极片及其制备方法,特别涉及了一种添加有石墨烯的电极片及其制备方法。
背景技术
随着能源与环境问题的日显突出,电动汽车特别是纯电动汽车的发展势在必行。目前,制约电动汽车发展的瓶颈是能否开发出价廉、安全、环境友好的二次电池。锂离子电池由于兼具高比能量及高比功率等特点,被公认为是最具发展潜力的电动车动力电池。对于锂离子电池来说,正极片是决定其电化学性能、安全性能以及价格成本的关键因素。在各种储锂正极材料中,磷酸铁锂 (LiFePO4) 由于安全性能好、循环寿命长、原材料来源广泛、无环境污染等优点脱颖而出,自1997年John B. Goodenough 教授首次发现其可逆嵌锂-脱锂特性以来,就一直是锂离子电池正极材料研究开发的热点。
但是LiFePO4电导率低,在一定程度制约了其的实际应用。针对这一情况,目前普遍是向LiFePO4体系中引入导电剂。常用的导电剂为导电炭黑Super P Li、导电石墨SFG6和碳纳米管CNTs。改善LiFePO4电导率时,导电炭黑导电剂用量很大,在一定程度上降低了电池的能量密度;而CNTs浆料在应用于高电压体系时,出现高温存储变差以及cycle fading加速的问题,其分散剂PVP在高压下会发生氧化。
迄今为止,在锂离子正极体系中加入石墨烯的技术中与本发明最接近的现有技术是:一种磷酸铁锂/石墨烯复合正极材料的制备方法,公开号为CN102169986B。公开了一种磷酸铁锂/石墨烯复合正极材料的制备方法,包括如下步骤:(1)制备磷酸铁锂前驱体,称取原料催化剂、锂盐、铁盐和磷酸盐,将上述原料加入分散剂中,经球磨制得磷酸铁锂前驱体;(2)首先在所述磷酸铁锂前驱体上生长石墨烯,之后关闭碳源气体和氨气,再向所述反应器中通入氢气,在通入氢气的过程中以10℃~20℃/分钟的速度将反应器内的温度调整到600~800℃,然后恒温24~48小时,之后反应器内所得产物再在氮气气氛下冷却至室温,即制得磷酸铁锂/石墨烯复合正极材料。
该项专利技术中,存在以下缺陷:
1)改变了现有磷酸铁锂的制备工艺,不能直接使用商品化的磷酸铁理;
2)制备工艺中需要通入氢气,升温,保温等一系列制备过程得到的样品,工艺复杂,很难控制石墨烯的含量;
3)对设备和工艺要求很高,成本高,实际量产化很困难。
发明内容
本发明的目的在于针对目前的技术缺陷,提供一种不含有分散剂且品质好的磷酸铁锂正极浆料;
本发明的另一目的是提供上述磷酸铁锂正极浆料的制备方法;
本发明的又一目的是提供一种导电剂添加量小且性能更佳的磷酸铁锂正极极片;
本发明的又一目的是提供上述正极极片的制备方法;
本发明的又一目的是提供上述正极极片在锂离子电池中的应用方法。
本发明的目的通过以下技术方案来具体实现:
一种磷酸铁锂正极浆料,包括固体物质和溶剂,所述固体物质包括石墨烯粉体、磷酸铁锂和PVDF,所述石墨烯粉体占固体物质总质量的0.7%-2%。
优选地,所述石墨烯粉体占固体物质总质量的0.7%。
优选地,所述PVDF占固体物质总质量的2.1%-4%,优选3%。
优选地,所述磷酸铁锂占固体物质总质量的95%-97%,优选96.3%。
优选地,所述溶剂采用NMP,所述NMP的质量为固体物质总质量的80%-95%,优选90%。
优选地,所述石墨烯粉体的BET为400-600m2/g,D50粒径为5-9μm。
优选地,所述石墨烯粉体的pH值为5-8。
优选地,所述石墨烯粉体的表观密度为0.01-0.02g/ml、吸油值为0.01-0.02m3/kg。
优选地,所述石墨烯粉体的碳含量97-99%。
进一步优选地,所述石墨烯粉体的BET为450m2/g,D50粒径为6μm;更进一步优选地,所述石墨烯粉体的pH值为6.5。
上述的锂离子电池正极浆料的制备方法,包括:
1)先将PVDF溶于溶剂中,控制物料温度为30-40℃,在搅拌条件下反应0.5-1小时,得到PVDF溶液;
2)向步骤1)得到的PVDF溶液中加入石墨烯粉体,搅拌条件下反应1-1.5小时;
3)向步骤2)所得到的溶液中加入正极材料中,再加入剩余的溶剂,搅拌条件下反应0.5-1小时,即可得到本发明磷酸铁锂正极浆料。
优选地,所述步骤1)中,所述溶剂的用量是固体物质总质量的67%-82%,优选75%。
优选地,所述步骤3)中,所述溶剂的用量是固体物质总质量的15%。
优选地,所述步骤1)中,所述搅拌的转速为100rpm-300rpm,优选280rpm。
优选地,所述步骤2)中,所述搅拌的转速为100rpm-300rpm,优选280rpm。
优选地,所述步骤2)中,所述搅拌的转速为100rpm-300rpm,优选280rpm。
一种锂离子电池正极极片的制备方法,采用上述的锂离子电池正极浆料,包括:
将正极浆料涂于铝箔上,干燥;
压制、冲裁,即可得到本发明正极片。
上述方法的一个方面中,所述正极浆料用200μm刮涂模具涂在铝箔上。
上述方法的一个方面中,所述干燥的方法为:将涂有正极浆料的铝箔放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度是-0.1Mpa、温度是120℃的真空干燥箱中,烘5h。此时,正极浆料中的溶剂全部挥发。
上述方法的一个方面中,所述压制,将极片辊压至压实密度2.15-2.3g/cm3
采用上述的方法所得到的锂离子电池正极极片。
一种锂离子电池正极极片,含有0.7-2wt%石墨烯,优选0.7wt%。
上述锂离子电池正极极片的一个方面,所述正极极片包括正极材料、石墨烯、PVDF,所述正极材料为:
LiCoO2
或LiFePO4
或LiNixCoyMn(1-x-y)O2(0≤x≤10≤y≤1);
或LiNixCoyAl(1-x-y)O2(0≤x≤1,0≤y≤1)。
优选地,所述PVDF占固体物质总质量的2.1-4%,优选3%;
优选地,所述正极极片的电阻率为2.1 Ω·cm。
上述锂离子电池正极极片在锂离子电池中的应用,装配成扣式电池,具体装配顺序如下:负极壳朝上,放入弹片,放入垫片,放入负极锂片,放入隔膜,放入正极片,加入适量电解液,最后扣上正极壳,直接用封口机对电池进行封口,完毕。
本发明中出现的正极材料的概念,是指现有的锂离子电池所用的正极材料,包括三元材料,例如:磷酸铁锂LiFePO4,锂钴氧化物LiCoO2,镍酸锂LiNiO2,锂锰氧化物LiMnO2、锰镍钴复合氧化物LiMnxNiyCo1-x-yO2,锂钒氧化物LiV2O4、LiVMO4(M=Ni, Co)或Li1+xV3O8,等等,且不止于列举的种类。
石墨烯材料具有多方面的性质,尤其是通过对制备方法的工艺调整后,可以在对石墨烯多方面的某一方面的性质进行控制。常州第六元素率先做到了根据下游端的需求定制相应性质的石墨烯。也是在基于这种强大制备能力的基础上,本发明人大胆的对石墨烯不同性质与在正极材料中的应用进行针对性的全方位的实验构想和实验。发明人在研究中发现,石墨烯的比表面积和粒径两方面的性能对直接添加石墨烯后的正极材料的改善比较大,参见图3、4所示,不同石墨烯样品对极片性能有影响,如果石墨烯比表面积比较小,粒径比较小,在体系中未能形成良好的导电网络来连接正极材料的颗粒,则极片性能差;如果石墨烯比表面积比较大,粒径比较大,则石墨烯在体系中难以均匀分散,不能很好的连接较多的正极材料颗粒,导电网络也会较差,则极片性能也不好。当然,还有一些其它方面性质对正极材料也有一定的干扰。在这种情况的跟踪研究下,本申请发明人得到这样的结论:当石墨烯的比表面积(BET)为400-600m2/g、D50粒径为5-9μm时,直接将石墨烯加入现有的正极材料中,体系在磁力搅拌的作用力溶剂分子的作用力下,可以得到非常好的分散。参见图1、2,图1为没有加入石墨烯的磷酸铁锂的电镜图片,图2为加入了石墨烯的磷酸铁锂正极极片的电镜图片。从图1中可以看出石墨烯加入磷酸铁锂的极片中后,连接了磷酸铁锂的颗粒,覆载在磷酸铁锂颗粒表面及颗粒之间,直接形成了电子的传导路径。同时研究得到,在石墨烯的其它方面中,石墨烯粉体的pH值、表观密度、吸油值以及碳含量,对正极材料的影响也不可忽视。石墨烯粉体的pH值为5-8,表观密度为0.01-0.02g/ml、吸油值为0.01-0.02m3/kg时,碳含量97-99%时,正极极片的性能更佳。另外,在石墨烯二维面结构的作用下,有助于改善极片辊压工艺,增加压实密度。本发明的石墨烯在低的添加量的情况下可使正极材料获得低的极片电阻率,为3.2Ω·cm,与CNTs正极极片电阻率持平,比SP正极极片电阻率低30%。
附图说明
图1是实施例中用到的磷酸铁锂材料的SEM图片;
图2是实施例6中添加石墨烯的电极极片的SEM图片;
图3是实施例1-9的极片电阻率;
图4是实施例1-9的不同倍率放电性能;
具体实施方式
以下对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
以下实施例中,从石墨烯不同性质进行按照本发明方法进行实验,其中,表1是样品1-9的测试性能;表2. 样品10、11的测试性能;表3.样品1-11中用到的石墨烯特性。
实施例1:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的纯石墨烯粉体(BET为500m2/g,D50粒径在7μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3。记为样品1,性能见表1。
极片电阻率的测试:
用苏州晶格 ST2253型数字式四探针测试仪测试极片的极片电阻率,采用锂电极片电阻测试专用的二电极探针测试。测试为30个点的电阻率值取平均值记为该极片的电阻率值。
锂离子电池容量的测试:
上述磷酸铁锂正极极片在锂离子电池中的应用,装配成扣式电池,具体装配顺序如下:负极壳朝上,放入弹片,放入垫片,放入负极锂片,放入隔膜,放入正极片,加入适量电解液,最后扣上正极壳,直接用封口机对电池进行封口,完毕。将上述的扣式电池放置在新威电池测试仪上,按Cycle测试工步:0.1C充/0.1C放循环3圈,0.2C充/0.2C放循环5圈,0.3C充/1C放循环5圈,0.3C充/1C放循环5圈,进行测试。
极片电阻率和锂离子电池的测试方法以下实施例中通用。
实施例2:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的1%的纯石墨烯粉体(BET在500m2/g,D50粒径在7μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙。记为样品2,性能见表1。
实施例3
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的2%的纯石墨烯粉体(BET在500m2/g,D50粒径在7μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的95%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙。记为样品3,性能见表1。
实施例4:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的SP粉体,将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙。记为样品4,性能见表1。
实施例5:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的CNT浆料,将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品5,性能见表1。
实施例6:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的纯石墨烯粉体(BET在450m2/g,D50粒径在6μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品6,性能见表1。
实施例7:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的纯石墨烯粉体(BET在300m2/g,D50粒径在4μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品7,性能见表1。
实施例8:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的纯石墨烯粉体(BET在600m2/g,D50粒径在9μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品8,性能见表1。
实施例9:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的0.7%的纯石墨烯粉体(BET在710m2/g,D50粒径在11μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96.3%的磷酸铁锂,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用200μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品9,性能见表1。
实施例10:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的1%的碳纳米管浆料(固含量4.9%),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96%的LiNi0.33Co0.33Mn0.33O2,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用100μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品10,性能见表2。
实施例11:
称取总固体质量的3%的PVDF溶于总固体质量的75%的 N-甲基吡咯烷酮(NMP)中,将上述样品在温度30℃,搅拌转速为100rpm的条件下,反应0.5小时;再加入总固体质量的1%的纯石墨烯粉体(BET=450m2/g,D50粒径为7μm),将上述样品在搅拌转速为100rpm的条件下,反应1小时;然后加入总固体质量的96%的LiNi0.33Co0.33Mn0.33O2,再加入总固体质量的15%的NMP,将上述样品在搅拌转速为100rpm的条件下,反应1小时,将所得正极材料的浆料静置待用;然后将正极材料浆料用100μm刮涂模具涂在铝箔上,放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度-0.1Mpa,温度120℃的真空干燥箱中,烘5h;通过调节对辊机辊缝间隙将正极极片辊压至目标压实密度2.15-2.3g/cm3,记录最后辊缝的间隙,进行测试。记为样品11,性能见表2。
表1.样品1-9的测试性能
Figure 318340DEST_PATH_IMAGE002
表2. 样品10、11的测试性能
Figure 94535DEST_PATH_IMAGE004
表3:样品1-11中用到的石墨烯特性
Figure 608693DEST_PATH_IMAGE006
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (25)

1.一种锂离子电池正极浆料,包括固体物质和溶剂,其特征在于:所述固体物质包括石墨烯粉体、磷酸铁锂和PVDF,所述石墨烯粉体占固体物质总质量的0.7-2%;所述石墨烯粉体的BET为400-600m2/g,D50粒径为5-9μm;所述石墨烯粉体的pH值为5-8;所述石墨烯粉体的表观密度为0.01-0.02g/ml、吸油值为0.01-0.02m3/kg;所述石墨烯粉体的碳含量97-99%。
2.根据权利要求1所述的锂离子电池正极浆料,其特征在于:所述石墨烯粉体占固体物质总质量的0.7%。
3.根据权利要求1所述的锂离子电池正极浆料,其特征在于:所述PVDF占固体物质总质量的2.1-4%。
4.根据权利要求3所述的锂离子电池正极浆料,其特征在于:所述PVDF占固体物质总质量的3%。
5.根据权利要求1所述的锂离子电池正极浆料,其特征在于:所述磷酸铁锂占固体物质总质量的95%-97%。
6.根据权利要求5所述的锂离子电池正极浆料,其特征在于:所述磷酸铁锂占固体物质总质量的96.3%。
7.根据权利要求1所述的锂离子电池正极浆料,其特征在于:所述溶剂采用NMP,所述NMP的质量为固体物质总质量的80%-95%。
8.根据权利要求7所述的锂离子电池正极浆料,其特征在于:所述NMP的质量为固体物质总质量的90%。
9.根据权利要求1-8任一项所述的锂离子电池正极浆料,其特征在于:所述石墨烯粉体的BET为450m2/g,D50粒径为6μm;和/或,所述石墨烯粉体的pH值为6.5。
10.根据权利要求1-9任一项所述的锂离子电池正极浆料的制备方法,其特征在于:包括以下步骤:
1)先将PVDF溶于溶剂中,控制物料温度为30℃-40℃,在搅拌条件下反应0.5-1小时,得到PVDF溶液;
2)向步骤1)得到的PVDF溶液中加入石墨烯粉体,搅拌条件下反应1-1.5小时;
3)向步骤2)所得到的溶液中加入正极材料,再加入剩余的溶剂,搅拌条件下反应0.5-1小时,即可得到正极浆料。
11.根据权利要求10所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤1)中,所述溶剂的用量是固体物质总质量的67%-82%。
12.根据权利要求11所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤1)中,所述溶剂的用量是固体物质总质量的75%。
13.根据权利要求10所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤3)中,所述溶剂的用量是固体物质总质量的15%。
14.根据权利要求10所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤1)中,所述搅拌的转速为100rpm-300rpm ;
和/或,所述步骤2)中,所述搅拌的转速为100rpm-300rpm;
和/或,所述步骤3)中,所述搅拌的转速为100rpm-300rpm。
15.根据权利要求14所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤1)中,所述搅拌的转速为280rpm。
16.根据权利要求14所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤2)中,所述搅拌的转速为280rpm。
17.根据权利要求14所述的锂离子电池正极浆料的制备方法,其特征在于:所述步骤3)中,所述搅拌的转速为280rpm。
18.一种锂离子电池正极极片的制备方法,其特征在于:采用权利要求1-9任一项所述的锂离子电池正极浆料,包括:
将正极浆料涂于铝箔上,干燥;
压制、冲裁,即可得到正极片。
19.根据权利要求18所述的锂离子电池正极极片的制备方法,其特征在于:所述正极浆料用200μm刮涂模具或涂布机涂在铝箔上;
和/或,所述干燥的方法为:将涂有正极浆料的铝箔放入80℃鼓风干燥箱中,烘0.5h,再转移至真空度是-0.1Mpa、温度是120℃的真空干燥箱中,烘5h;
和/或,所述压制,将极片辊压至压实密度2.15-2.3g/cm3
20.一种锂离子电池正极极片,其特征在于:包括石墨烯粉体、磷酸铁锂和PVDF,所述石墨烯粉体占固体物质总质量的0.7-2%;所述石墨烯粉体的BET为400-600m2/g,D50粒径为5-9μm;所述石墨烯粉体的pH值为5-8;所述石墨烯粉体的表观密度为0.01-0.02g/ml、吸油值为0.01-0.02m3/kg;所述石墨烯粉体的碳含量97-99%。
21.根据权利要求20所述的锂离子电池正极极片,其特征在于:含有0.7wt%的石墨烯。
22.根据权利要求20所述的锂离子电池正极极片,其特征在于:所述PVDF占固体物质总质量的2.1-4%。
23.根据权利要求20所述的锂离子电池正极极片,其特征在于:所述PVDF占固体物质总质量的3%。
24.根据权利要求20所述的锂离子电池正极极片,其特征在于:所述正极极片的电阻率为2.1 Ω·cm。
25.根据权利要求20-24任一项所述的锂离子电池正极极片在锂离子电池中的应用,其特征在于:装配成扣式电池,具体装配顺序如下:负极壳朝上,放入弹片,放入垫片,放入负极锂片,放入隔膜,放入正极片,加入适量电解液,最后扣上正极壳,直接用封口机对电池进行封口,完毕。
CN201710348610.4A 2017-05-17 2017-05-17 一种锂离子电池正极极片及其制备方法 Active CN107256966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710348610.4A CN107256966B (zh) 2017-05-17 2017-05-17 一种锂离子电池正极极片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710348610.4A CN107256966B (zh) 2017-05-17 2017-05-17 一种锂离子电池正极极片及其制备方法

Publications (2)

Publication Number Publication Date
CN107256966A CN107256966A (zh) 2017-10-17
CN107256966B true CN107256966B (zh) 2021-03-23

Family

ID=60027637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710348610.4A Active CN107256966B (zh) 2017-05-17 2017-05-17 一种锂离子电池正极极片及其制备方法

Country Status (1)

Country Link
CN (1) CN107256966B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969182B (zh) 2018-08-31 2021-06-29 宁德时代新能源科技股份有限公司 正极极片、其制备方法及其相关的锂离子二次电池、电动车辆和电子产品
CN111384377B (zh) 2018-12-29 2021-09-17 宁德时代新能源科技股份有限公司 一种正极材料及其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505513A (zh) * 2014-09-15 2015-04-08 宁波维科电池股份有限公司 一种锂离子电池石墨烯导电剂及其制备方法
CN105870454A (zh) * 2016-06-03 2016-08-17 田东 石墨烯作为导电剂用于锂离子电池正极浆料的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403537A (zh) * 2011-11-30 2012-04-04 南京双登科技发展研究院有限公司 一种磷酸铁锂电池制作方法
JP2015103332A (ja) * 2013-11-22 2015-06-04 トヨタ自動車株式会社 非水電解液二次電池
CN105185427B (zh) * 2015-09-17 2018-01-26 广东爱康太阳能科技有限公司 一种石墨烯导电银浆制备方法
CN105140519B (zh) * 2015-10-20 2018-09-18 东莞市致格电池科技有限公司 一种磷酸铁锂正极材料及磷酸铁锂二次电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505513A (zh) * 2014-09-15 2015-04-08 宁波维科电池股份有限公司 一种锂离子电池石墨烯导电剂及其制备方法
CN105870454A (zh) * 2016-06-03 2016-08-17 田东 石墨烯作为导电剂用于锂离子电池正极浆料的方法

Also Published As

Publication number Publication date
CN107256966A (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
WO2022121136A1 (zh) 一种高倍率锂离子电池人造石墨负极材料及其制备方法
Kim et al. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries
CN107026262B (zh) 表面石墨烯包覆的高容量球形硬炭负极材料
CN113213470A (zh) 人造石墨二次颗粒、包覆剂、其制备方法和应用
CN106299282B (zh) 一种氮掺杂碳纳米管硫复合材料及制备方法
CN108242538B (zh) 一种中空三明治型铁基负极材料的制备方法
WO2011009231A1 (zh) 一种碳包覆锂离子电池正极材料的制备方法
Sun et al. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes
CN107507961B (zh) 一种导电聚合物修饰锂离子电池正极极片的制备方法
Wang et al. Effects of different carbon sources on the electrochemical properties of Li4Ti5O12/C composites
CN112751075A (zh) 一种锂离子电池及其制备方法
CN115566170B (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN111653732A (zh) 一种正极材料、正极极片及锂离子电池
CN111697203A (zh) 一种磷酸锰铁锂复合材料及其制备方法和应用
CN113903981A (zh) 锂离子电池及其制备方法和应用
CN112447971B (zh) 一种正极材料添加剂、活性材料、正极材料及其制备和在锂离子电池中的应用
CN108682828B (zh) 一种氮掺杂碳包覆正极材料的制备方法
CN107256966B (zh) 一种锂离子电池正极极片及其制备方法
Qiao et al. Solvothermal preparation and lithium storage properties of Fe2O3/C hybrid microspheres
CN117219777A (zh) 一种补锂剂及其制备方法、正极极片与二次电池
CN110299525B (zh) 一种石墨烯包覆锂离子电池正极材料的制备方法
CN110970599B (zh) 一种石墨烯基复合负极材料、其制备方法及锂离子电池
CN102255071A (zh) 改性石墨材料、制备方法及应用
CN108183216B (zh) 一种碳包覆富锂锰基正极材料及其制备方法和锂离子电池
CN115159527B (zh) 一种硬碳包覆硅纳米颗粒复合微球负极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant