CN107242997A - 一种用于肿瘤高效治疗的凝胶材料及其制备方法 - Google Patents

一种用于肿瘤高效治疗的凝胶材料及其制备方法 Download PDF

Info

Publication number
CN107242997A
CN107242997A CN201710317689.4A CN201710317689A CN107242997A CN 107242997 A CN107242997 A CN 107242997A CN 201710317689 A CN201710317689 A CN 201710317689A CN 107242997 A CN107242997 A CN 107242997A
Authority
CN
China
Prior art keywords
solution
furoyl
tumour
furans
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710317689.4A
Other languages
English (en)
Inventor
王启刚
王霞
吴青
位青聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710317689.4A priority Critical patent/CN107242997A/zh
Publication of CN107242997A publication Critical patent/CN107242997A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/226Solutes, emulsions, suspensions, dispersions, semi-solid forms, e.g. hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种用于肿瘤高效治疗的凝胶材料及其制备方法,所述的凝胶材料由超分子‑高分子宏观复合水凝胶载体,以及担载的生物酶组分组成,所述的超分子‑高分子宏观复合水凝胶载体由成胶因子自组装交联聚合而成,其中,成胶因子包括芳香族取代的多肽小分子和呋喃化的多糖分子。与现有技术相比,本发明通过采用微观有机‑无机杂化纳米凝胶载体生物酶的装载和固定化提供天然保护,并在肿瘤部位葡萄糖响应特性和肿瘤等病变部位活性氧组分响应性发生高效、串联的酶催化反应,产生单线态氧,实现高效、安全的治疗。

Description

一种用于肿瘤高效治疗的凝胶材料及其制备方法
技术领域
本发明涉及医用纳米生物材料技术领域,尤其是涉及一种用于肿瘤高效治疗的凝胶材料及其制备方法。
背景技术
近年来,我国恶性肿瘤的发病率呈逐年上升的趋势,严重危害到人类的健康。当前肿瘤的主要治疗方法即为创伤性外科手术和化疗,目前的效果往往不仅未能有效抑制癌症死亡率,其长期治疗的毒副作用还会造成患者机体功能急剧下降,导致医源性、药源性疾病激增,治疗本身造成患者新的身心创伤甚至残疾。怎样实现更加安全、有效的肿瘤治疗已成为一项重大的社会问题,也是材料、化学、生物、临床、工程等多学科科研工作者们所共同面对的亟待突破的难题。
近年来,研究人员逐渐认识到,肿瘤与细胞外基质(ECM)、血管、结缔组织以及其环境中的免疫细胞,即肿瘤微环境(TME)紧密相关,直接关系着肿瘤的生长、侵袭和转移行为。基于与正常组织的差异对生物体微环境进行研究,如不同的血管异常、氧化状态、pH值和代谢状态等,已然成为提出相应最优治疗策略的先决条件。这些特异性变化在生物机制研究、药物筛选及许多疾病,尤其是肿瘤的诊断和治疗发挥着关键作用。
活性氧组分(ROS)是所有生物系统微环境中氧代谢的活性衍生物,也是免疫系统应对感染、刺激或损伤的第一响应,与许多疾病,包括癌症、炎症反应、动脉粥样硬化、哮喘和囊性纤维化等密切相关。一般主要包括过氧化氢(H2O2)、超氧自由基(·O2 -)、羟基自由基(·OH)、单线态氧(1O2)以及过氧自由基(ROO˙)和次氯酸/次氯酸根离子(HOCl/-OCl)等。生物医学和纳米技术的研究开发出一系列纳米探针和载体材料去响应性检测异常高水平的ROS,最终实现病变组织部位的响应性治疗研究。首先,在成像检测方面,由于H2O2组分较高的稳定性和含量(可达50-100μM)成为探针设计的最主要基础成分。奥塔哥大学的Winterbourn教授和加利福利亚大学的Chang CJ教授(Winterbourn,C.C.,Reconcilingthe chemistry and biology of reactive oxygen species.Nat Chem Biol 2008,4,278-286)、长春应化所谢志刚教授(Chen,X.Q.;Wang,F.;Hyun,J.Y.;Wei,T.W.;Qiang,J.;Ren,X.T.;Shin,I.;Yoon,J.,Recent progress in the development of fluorescent,luminescent and colorimetric probes for detection of reactive oxygen andnitrogen species.Chem Soc Rev 2016,45,2976-3016.)、韩国梨花女子大学JuyoungYoon和Injae Shin教授(Miller,E.W.;Tulyanthan,O.;Isacoff,E.Y.;Chang,C.J.,Molecular imaging of hydrogen peroxide produced for cell signaling.Nat ChemBiol 2007,3,263-267.)等研究者课题组基于H2O2诱导硼化物价键氧化降解的机理(Phenylboronate-to-phenol Transformation),设计硼化物共轭的荧光素与H2O2反应断开,导致荧光素发光行为或聚集状态发生变化,最终成功实现生物体病变部位响应性荧光检测;其次,在响应性治疗方面,北卡罗莱纳大学教堂山分校Guzheng教授(Hu,X.;Yu,J.;Qian,C.;Lu,Y.;Kahkoska,A.R.;Xie,Z.;Jing,X.;Buse,J.B.;Gu,Z.,H2O2-responsivevesicles integrated with transcutaneous patches for glucose-mediated insulindelivery.ACS Nano 2017,11,613-620.)、南京大学郭子健教授课题组(Chen,H.C.;Tian,J.W.;He,W.J.;Guo,Z.J.,H2O2-activatable and O2-evolving nanoparticles forhighly efficient and selective photodynamic therapy against Hypoxic tumorcells.J Am Chem Soc 2015,137,1539-1547.)、清华大学许华平教授、乔治亚理工学院夏幼南教授(Shim,M.S.;Xia,Y.N.,A reactive oxygen species(ROS)-responsive polymerfor safe,efficient,and targeted gene delivery in cancer cells.Angew Chem IntEdit 2013,52,6926-6929.)等课题组主要集中研究通过病变部位富集的高水平ROS诱导载体材料中硼酸基、硫醚类及硒类等功能化分子发生氧化水解反应,实现材料直接解离或亲疏水状态变化导致的解组装,实现治疗性药物、蛋白及基因的释放而达到响应性治疗效果,或利用H2O2增强氧含量而响应性增强光动力学(PDT)治疗研究。由于ROS本身特殊的病理信息指示特性,国内外研究者对其响应性体系的设计、制备及其性能研究进行了广泛研究。此外,针对肿瘤的养分葡萄糖设计制备肿瘤治疗的材料也是成为研究的热点。最近,美国NIH的陈小元教授课题组(Wenpei Fan,Nan Lu,Peng Huang,Yi Liu,Zhen Yang,Sheng Wang,Guocan Yu,Yijing Liu,Junkai Hu,Qianjun He,Junle Qu,Tianfu Wang,XiaoyuanChen.Glucose-Responsive Sequential Generation of Hydrogen Peroxide and NitricOxide for Synergistic Cancer Starving-Like/Gas Therapy.Angew Chem Int Edit2016,DOI:10.1002/anie.201610682.)利用空心介孔二氧化硅材料装载葡萄糖氧化酶,利用材料在肿瘤部位消耗葡萄糖转化为葡萄糖酸和过氧化氢,切断肿瘤赖以生长的能量供应,达到“饿死”肿瘤的目的。由于药物载体本身限制和微环境成分的不稳定性,其体内循环过程中担载药物的泄漏及到达靶向区的响应性释放不完全仍然是限制体内响应性治疗的关键因素。因此,开发新的诊疗体系实现更加安全和高效的病变微环境响应性检测治疗是肿瘤诊疗研究的迫切需要。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于肿瘤高效治疗的凝胶材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种用于肿瘤高效治疗的凝胶材料,由超分子-高分子宏观复合水凝胶载体,以及担载的生物酶组分组成,所述的超分子-高分子宏观复合水凝胶载体由成胶因子自组装交联聚合而成,其中,成胶因子包括芳香族取代的多肽小分子和呋喃化的多糖分子。(多肽小分子由2~4个氨基酸分子构成,分子量一般在180~480道尔顿)多糖分子优选为壳聚糖等。
作为优选的实施方案,所述的生物酶组分为超氧岐化酶和/或葡萄糖氧化酶,与过氧化物酶的复合,其中,所述的过氧化物酶选自过氧化氢酶、氯过氧化物酶、矾过氧化物酶或髓过氧化物酶。
作为更优选的实施方案,所述的生物酶组分为葡萄糖氧化酶和过氧化物酶的复合。
用于肿瘤高效治疗的凝胶材料的制备方法,包括以下步骤:
(1)取芳香族取代的多肽小分子溶于强碱性溶液中,调节溶液至弱碱性,加蒸馏水稀释,静置,自组装得到稳定超分子一次胶;
(2)再继续加入呋喃化的多糖分子溶液,混合均匀;
(3)最后加入生物酶组分和酶诱导自由基体系,混匀得到前驱液,二次交联,即得到目的产物。
作为优选的实施方案,步骤(1)中所述的芳香族取代的多肽小分子为赖氨酸衍生物Fmoc-Lys(furoyl)-OH,其通过以下步骤制成:
以0.3-0.8g Fmoc-Lys-OH计,取Fmoc-Lys-OH 0.3-0.8g溶于2~5mL THF和0.8-1.2mL 1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.2-0.3g糠酰氯,室温反应过夜,加8-12mL二氯甲烷,依次用pH=2-3的稀盐酸溶液、蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
作为优选的实施方案,步骤(2)中所述的呋喃化的多糖分子为壳聚糖的糠酰基衍生物GC-furoyl,其通过以下步骤制成:
取乙二醇壳聚糖0.03-0.07g溶于8-12mL DMSO中,搅拌过夜,滴加0.06-0.08g糠酸和0.15-0.25g BOP的DMSO溶液,所得反应液于28-35℃下反应20-30h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
作为优选的实施方案,步骤(1)和步骤(2)中,芳香族取代的多肽小分子和呋喃化的多糖分子溶液的添加量之比为9mg:200-400μL,呋喃化的多糖分子溶液的浓度为2-5wt%。
作为优选的实施方案,步骤(3)中所述的生物酶组分为葡萄糖氧化酶和氯过氧化物酶的复合,所述的酶诱导自由基体系为葡萄糖/葡萄糖氧化酶体系,其与生物酶组分的加入满足步骤(3)的前驱液中包括:
以9mg的芳香族取代的多肽小分子计,等量于80μL 0.3-0.7M的NaCl溶液的NaCl,等量于140-180μL 1M葡萄糖溶液的葡萄糖,等量于40-60μL 10mg/mL的葡萄糖氧化酶溶液的葡萄糖氧化酶,等量于40-60μL 10mg/mL的氯过氧化物酶溶液的氯过氧化物酶。
作为优选的实施方案,步骤(3)中,二次交联的工艺条件为:于37℃保温120min。
本发明设计制备了功能化的超分子-高分子宏观复合水凝胶体系作为载体,担载生物酶组分包括多种/串联反应酶,通过在肿瘤部位葡萄糖响应特性和肿瘤等病变部位活性氧组分响应性发生高效、串联的酶催化反应,产生单线态氧,实现高效、安全的治疗。与传统的光动力学治疗、声动力学治疗,该治疗方法也可被认为是一种新型的酶动力学治疗模式。本发明中的超分子-高分子宏观复合水凝胶体系可以为生物酶组分的装载和固定化提供天然保护,实现高效的响应性酶催化反应。
本发明首先模拟细胞外基质,设计选取芳族取代基的多肽小分子结构、制备呋喃化的功能化的多糖分子等成胶因子,利用芳香族苯环间的π-πstacking作用形成宏观一次胶结构,再利用酶催化自由基聚合反应实现二次聚合固化得到功能化的宏观复合水凝胶体系。具体是先通过调节pH诱导多肽小分子从强碱性的溶解状态到弱酸性的聚集状态的改变,自组装形成一次胶结构,然后,利用酶诱导自由基体系产生的单线态氧组分攻击呋喃基团产生自由基引起二次聚合反应,最终得到二次聚合胶结构。
此外,宏观复合水凝胶体系中担载超氧岐化酶、葡萄糖氧化酶、过氧化氢酶、氯过氧化物酶、矾过氧化物酶和髓过氧化物酶等多种/串联酶组分,响应性地与肿瘤病变部位的葡萄糖和活性氧组分发生反应,催化葡萄糖生成葡萄酸和双氧水,以及催化活性氧组分产生氧气和双氧水等,经过后续的过氧化物酶(氯过氧化物酶、矾过氧化物酶和髓过氧化物酶)反应双氧水产生具有治疗作用的单线态氧,同时产生具有超声成像作用的氧气等。
本发明可以通过调节实验参数控制凝胶流变学行为,主要是通过调整成胶各组分的浓度、温度和pH值来系统调节,通过参考具体的实验参数实现宏观凝胶材料的可注射性,在肿瘤部位注射后响应性与葡萄糖反应生成葡萄酸和双氧水,经过后续的过氧化物酶与双氧水继续反应产生具有治疗作用的单线态氧,实现酶新型动力学治疗的同时消耗肿瘤养分,同时实现“饿死肿瘤”的肿瘤饥饿治疗。
原料的种类,添加量,成胶时间和温度等对最后所得凝胶材料的机械性能,拉伸性能,可注射性有较大影响,过高会使得注射性变差及注射时间窗口缩短,过低会减弱对酶的担载效果,酶会较容易从凝胶网络中释放出来,进而可能损伤正常组织。
宏观凝胶体系材料,通过参考具体的实验参数实现宏观凝胶材料的可注射性,在肿瘤部位注射后响应性与葡萄糖反应生成葡萄酸和双氧水,经过后续的过氧化物酶与双氧水继续反应产生具有治疗作用的单线态氧,同时单线态氧进一步聚合凝胶材料,固化凝胶网络在肿瘤内部,避免不必要的泄漏和毒性。
与现有技术相比,本发明提供了一种新型的酶动力学治疗模式,通过制备了功能化的超分子-高分子宏观复合水凝胶体系作为载体,担载生物酶组分包括多种/串联反应酶,通过在肿瘤部位葡萄糖响应特性和肿瘤等病变部位活性氧组分响应性发生高效、串联的酶催化反应,产生单线态氧,实现高效、安全的治疗。
附图说明
图1为本发明的葡萄糖氧化酶(GOx)-氯过氧化物酶(CPO)双酶联用催化产生单线态氧制备呋喃功能化复合宏观水凝胶的示意流程图。
图2-1为呋喃功能化复合宏观水凝胶的一次胶结构和酶催化交联二次胶的扫描照片。
图2-2为呋喃功能化复合宏观水凝胶的一次胶结构和酶催化交联二次胶的透射电镜照片。
图3为呋喃功能化复合宏观水凝胶的ESR图谱。
图4为呋喃功能化复合宏观水凝胶与荧光探针DPBF作用后的荧光光谱。
图5为呋喃功能化复合宏观水凝胶以及自由酶与U87神经胶质瘤细胞共培养后细胞毒性MTT实验。
图6为复合宏观水凝胶以及自由酶与U87神经胶质瘤细胞共培养加入DCFH-DA单线态氧探针后的激光共聚焦CLSM图片。
图7-1为复合宏观水凝胶注射入U87神经胶质瘤小鼠瘤内后的抑瘤效果照片。
图7-2为复合宏观水凝胶注射入U87神经胶质瘤小鼠瘤内后相应的肿瘤体积。
图7-3为复合宏观水凝胶注射入U87神经胶质瘤小鼠瘤内后的小鼠体重。
图7-4为复合宏观水凝胶注射入U87神经胶质瘤小鼠瘤内后的小鼠存活率。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
如图1所示,其示出本发明的葡萄糖氧化酶(GOx)-氯过氧化物酶(CPO)双酶联用催化产生单线态氧制备呋喃功能化复合宏观水凝胶的示意流程图。
首先,采用SPPS法制备芳香族取代的小分子多肽,此处优选NapFFK-furoyl,即赖氨酸衍生物Fmoc-Lys(furoyl)-OH。其具体制备方法为:取Fmoc-Lys-OH溶THF和NaHCO3的混合溶剂中,冰水浴冷却,然后滴加糠酰氯,室温反应过夜,加二氯甲烷,依次用pH=2-3的稀盐酸溶液,蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
同时,制备呋喃化的多糖分子,此处优选壳聚糖的糠酰基衍生物GC-furoyl,其通过以下步骤制成:取乙二醇壳聚糖(glycol chitosan,GC)溶于DMSO中,搅拌过夜,滴加糠酸和BOP的DMSO溶液,所得反应液于30℃下反应24h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
然后,取多肽NapFFK-furoyl配成溶液,通过调节pH值(如从pH=10调节到7-8),室温下静置30min即成稳定的宏观凝胶一次胶。
最后,加入GC-furoyl和葡萄糖溶液后,通过GOx和CPO酶联合作用,产生单线态氧组分攻击呋喃基团产生自由基引起二次聚合反应,最终得到二次聚合胶结构。
实施例1
一种呋喃功能化复合宏观水凝胶,通过以下方法制成:
(1)取Fmoc-Lys-OH 0.5g溶于2mL THF和1mL 1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.26g糠酰氯,室温反应过夜,加10mL二氯甲烷,依次用pH=2-3的稀盐酸溶液,蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
(2)取乙二醇壳聚糖(glycol chitosan,GC)0.05g溶于10mL DMSO中,搅拌过夜,滴加0.066g糠酸和0.21g BOP的DMSO溶液(1mL),所得反应液于30℃下反应24h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
(3)取9mg步骤(1)制得的赖氨酸衍生物Fmoc-Lys(furoyl)-OH溶于300μL的氢氧化钠溶液(pH=10)中,然后用0.5M的HCl调pH值到7-8,静置30min,得到超稳定一次胶结构。
(4)继续加入步骤(2)制得的300μL GC-furoyl(3wt%)的溶液,混合均匀;然后加80μL NaCl溶液(0.5M),160μL葡萄糖溶(1M),50μL CPO溶液和50μL GOx溶液(10mg/mL),并调整体积至900μL,混匀,前驱液于37℃保温120min,酶催化交联,得到目的产物呋喃功能化复合宏观水凝胶(即酶催化交联二次胶)。
图2-1和图2-2分别为实施例1中呋喃功能化复合宏观水凝胶的一次胶和酶催化交联二次胶的扫描照片(SEM)和透射电镜照片(TEM)。SEM和TEM图都显示了超分子一次水凝胶具有较为稀疏的纤维网络,且缠绕较少;而酶催化交联二次复合胶具有较高的纤维密度,且纤维之间相互缠绕,形成了直径更大的纤维。
取实施例1制得的呋喃功能化复合宏观水凝胶进行电子顺磁共振测试,测定单线态氧1O2的产生,将200μL SOD-CPO自由酶溶液和功能性有机-无机杂化纳米凝胶材料溶液(其CPO浓度与自由CPO溶液浓度相同)与捕捉剂2,2,6,6-四甲基哌啶氧化物(TEMP)混合均匀,再加入50μL NaCl(1M),最后加入50μL H2O2(50mM),调整溶液体积到500μL后迅速转移到TEOL电子顺磁共振仪(JES FA200)中测试。图3显示了呋喃功能化复合宏观水凝胶的EPR图谱,可以发现,图谱中产生了单线态氧的1:1:1三重特征峰信号,这说明本发明的呋喃功能化复合宏观水凝胶可以产生单线态氧实现后续的治疗。
以1,3-二苯基异苯并呋喃(DPBF)为荧光探针,DPBF是已知活性最高的单线态氧捕获剂之一。单线态氧会进攻DPBF结构中的呋喃环,使之打开,导致其在447nm处的荧光强度降低,通过测定DPBF的荧光强度变化可以测定单线态氧。在比色皿中加入100μL NaCl(1M),100μL H2O2(50mM),20μL DPBF和含有等量CPO的呋喃功能化复合宏观水凝胶(采用实施例1方法制备)的和自由GOx/CPO,调整体积至1mL,置于荧光分光光度计中,在λex=403nm,λem=447nm的条件下测量体系的荧光强度变化。从图4中可以看出,随着时间的随着时间的延长,荧光强度不断减弱,也证实了呋喃功能化复合宏观水凝胶中的单线态氧的不断产生。
取实施例1制备的呋喃功能化复合宏观水凝胶与U87神经胶质瘤细胞共培养后测定细胞毒性MTT实验。具体过程如下:调整细胞悬液浓度,每孔(96孔板)加入100μL,铺板使待测细胞调密度为5000每孔(边缘用无菌PBS填充);37℃培养箱培养,至细胞单层铺满孔底,细胞贴壁后,加入不同量的复合胶(或自由酶);37℃培养箱培养一定时间(12-48h),倒置显微镜下观察;每孔加入20μL MTT溶液(5mg/mL),继续培养4h;终止培养,小心吸去孔内培养液,每孔加入150μL DMSO,置摇床上低速振荡10min,使结晶物充分溶解,在酶联免疫检测仪OD 490nm处测量各孔的吸光值。其具体结果如图5所示,从图中可以看出,在酶浓度较低时(小于等于10ug/mL),细胞均保持95%的活性,无明显细胞毒性作用;随着酶浓度增加至约为10ug/mL,复合胶和自由酶组的细胞存活率均呈现明显的下降(细胞活性低于20%),且两组数据没有明显差别,表明通过固定化作用后,在复合胶中的双酶具有与自由酶相似的高酶催化活性,催化产生细胞毒性,可以用来高效的杀死癌细胞。
取自由双酶溶液、实施例1制得的呋喃功能化复合宏观水凝胶与U87神经胶质瘤细胞共培养后,以DCFH-DA作为探针检测加入材料之后的ROS的变化情况。按照1:1000用无血清培养液稀释DCFH-DA,使终浓度为10μM/L。设定细胞浓度为5×105/ml,分别接种在共聚焦皿或六孔板内,待细胞贴壁后,分别加入PBS和自由双酶溶液/呋喃功能化复合宏观水凝胶。共聚焦下采用白光定位细胞,设定反应时间为30min,每间隔3min进行一次激光扫描。当加入DCFH-DA探针时设定为0min,以后实时观察荧光强度。图6其激光共聚焦CLSM图片和流式细胞结构分析。可以发现,低浓度实验组可以看到细胞完整的形态,而对于高浓度组,细胞发生了形态的改变,成为球形,开始凋亡,而且复合胶组产生的活性氧浓度要高于双酶溶液产生的活性氧。同时说明了,在一定浓度的双酶或复合胶存在下,能够杀死癌细胞。
图7-1~图7-4采用荷有U87神经胶质瘤小鼠模型评价本发明实施例1的宏观凝胶材料响应性酶诱导单线态氧治疗肿瘤的结果。在小鼠皮下种植U87神经胶质瘤细胞,待肿瘤长到一定程度时,将小鼠随机分为三组,一组是对照组,注射PBS=7.4,二组是纯胶组,注射不含酶的复合胶前驱液,三组是复合胶组,注射复合胶前驱液,其在肿瘤里原位成胶。每隔一天向肿瘤中注射一次,每次50μL,并记录小时体重的变化。共注射四次,第八天时将小鼠处死,取出肿瘤组织并拍照。通过治疗前后肿瘤的照片(7-1),以及相应的肿瘤体积(7-2)、小鼠体重(7-3)及小鼠存活率(7-4)都可以直接证明出该酶动力学治疗的体内高效抑瘤效果。从肿瘤的照片(图7-1)可以看出,对照组PBS和纯胶(不含双酶的复合胶前驱液,即超分子胶)组对肿瘤基本没有抑制作用,而复合胶很好的抑制了肿瘤的生长。被包埋在水凝胶中的双酶可以持续产生单线态氧来杀死癌细胞,相对于PDT间断辐照产生单线态氧,具有较高的效率。从图7-2中也可以看出,复合胶(水凝胶载酶)组可以有效的抑制肿瘤的生长,而小鼠体重组别差异较小(7-3),同时可能由于双酶的毒性较大,使得小鼠在第二天即死亡,而纯凝胶组合复合胶组小鼠没有死亡发生(7-4)。
实施例2
一种呋喃功能化复合宏观水凝胶,通过以下方法制成:
(1)取Fmoc-Lys-OH 0.3g溶于3mL THF和0.8mL 1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.2g糠酰氯,室温反应过夜,加8mL二氯甲烷,依次用pH=2-3的稀盐酸溶液,蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
(2)取乙二醇壳聚糖(glycol chitosan,GC)0.03g溶于8mL DMSO中,搅拌过夜,滴加0.06g糠酸和0.15g BOP的DMSO溶液(1mL),所得反应液于28℃下反应20h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
(3)取9mg步骤(1)制得的赖氨酸衍生物Fmoc-Lys(furoyl)-OH溶于300μL的氢氧化钠溶液(pH=10)中,然后用0.5M的HCl调pH值到7-8,静置30min,得到超稳定一次胶结构。
(4)继续加入步骤(2)制得的200μL GC-furoyl(5wt%)的溶液,混合均匀;然后加80μL NaCl溶液(0.3M),140μL葡萄糖溶(1M),40μL CPO溶液和40μL GOx溶液(10mg/mL),并调整体积至900μL,混匀,前驱液于37℃保温120min,酶催化交联,得到目的产物呋喃功能化复合宏观水凝胶(即酶催化交联二次胶)。
实施例3
一种呋喃功能化复合宏观水凝胶,通过以下方法制成:
(1)取Fmoc-Lys-OH 0.8g溶于5mL THF和1.2mL 1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.3g糠酰氯,室温反应过夜,加12mL二氯甲烷,依次用pH=2-3的稀盐酸溶液,蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
(2)取乙二醇壳聚糖(glycol chitosan,GC)0.07g溶于12mL DMSO中,搅拌过夜,滴加0.08g糠酸和0.25g BOP的DMSO溶液(1mL),所得反应液于35℃下反应30h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
(3)取9mg步骤(1)制得的赖氨酸衍生物Fmoc-Lys(furoyl)-OH溶于300μL的氢氧化钠溶液(pH=10)中,然后用0.5M的HCl调pH值到7-8,静置30min,得到超稳定一次胶结构。
(4)继续加入步骤(2)制得的400μL GC-furoyl(3wt%)的溶液,混合均匀;然后加80μL NaCl溶液(0.7M),180μL葡萄糖溶(1M),60μL CPO溶液和60μL GOx溶液(10mg/mL),并调整体积至900μL,混匀,前驱液于37℃保温120min,酶催化交联,得到目的产物呋喃功能化复合宏观水凝胶(即酶催化交联二次胶)。
实施例4
一种呋喃功能化复合宏观水凝胶,通过以下方法制成:
(1)取Fmoc-Lys-OH 0.4g溶于4mL THF和0.9mL 1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.25g糠酰氯,室温反应过夜,加11mL二氯甲烷,依次用pH=2-3的稀盐酸溶液,蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
(2)取乙二醇壳聚糖(glycol chitosan,GC)0.04g溶于9mL DMSO中,搅拌过夜,滴加0.07g糠酸和0.22g BOP的DMSO溶液(1mL),所得反应液于32℃下反应22h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
(3)取9mg步骤(1)制得的赖氨酸衍生物Fmoc-Lys(furoyl)-OH溶于300μL的氢氧化钠溶液(pH=10)中,然后用0.5M的HCl调pH值到7-8,静置30min,得到超稳定一次胶结构。
(4)继续加入步骤(2)制得的350μL GC-furoyl(4wt%)的溶液,混合均匀;然后加80μL NaCl溶液(0.4M),150μL葡萄糖溶(1M),50μL CPO溶液和50μL GOx溶液(10mg/mL),并调整体积至900μL,混匀,前驱液于37℃保温120min,酶催化交联,得到目的产物呋喃功能化复合宏观水凝胶(即酶催化交联二次胶)。
实施例5
一种呋喃功能化复合宏观水凝胶,通过以下方法制成:
(1)取Fmoc-Lys-OH 0.5g溶于3mL THF和1.1mL 1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.22g糠酰氯,室温反应过夜,加9mL二氯甲烷,依次用pH=2-3的稀盐酸溶液,蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
(2)取乙二醇壳聚糖(glycol chitosan,GC)0.06g溶于11mL DMSO中,搅拌过夜,滴加0.065g糠酸和0.24g BOP的DMSO溶液(1mL),所得反应液于29℃下反应26h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
(3)取9mg步骤(1)制得的赖氨酸衍生物Fmoc-Lys(furoyl)-OH溶于300μL的氢氧化钠溶液(pH=10)中,然后用0.5M的HCl调pH值到7-8,静置30min,得到超稳定一次胶结构。
(4)继续加入步骤(2)制得的250μL GC-furoyl(3.5wt%)的溶液,混合均匀;然后加80μL NaCl溶液(0.6M),170μL葡萄糖溶(1M),55μL CPO溶液和55μL GOx溶液(10mg/mL),并调整体积至900μL,混匀,前驱液于37℃保温120min,酶催化交联,得到目的产物呋喃功能化复合宏观水凝胶(即酶催化交联二次胶)。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种用于肿瘤高效治疗的凝胶材料,其特征在于,由超分子-高分子宏观复合水凝胶载体,以及担载的生物酶组分组成,所述的超分子-高分子宏观复合水凝胶载体由成胶因子自组装交联聚合而成,其中,成胶因子包括芳香族取代的多肽小分子和呋喃化的多糖分子。
2.根据权利要求1所述的一种用于肿瘤高效治疗的凝胶材料,其特征在于,所述的生物酶组分为超氧岐化酶和/或葡萄糖氧化酶,与过氧化物酶的复合,其中,所述的过氧化物酶选自过氧化氢酶、氯过氧化物酶、矾过氧化物酶或髓过氧化物酶。
3.根据权利要求2所述的一种用于肿瘤高效治疗的凝胶材料,其特征在于,所述的生物酶组分为葡萄糖氧化酶和过氧化物酶的复合。
4.如权利要求1-3任一所述的用于肿瘤高效治疗的凝胶材料的制备方法,其特征在于,包括以下步骤:
(1)取芳香族取代的多肽小分子溶于强碱性溶液中,调节溶液至弱碱性,加蒸馏水稀释,静置,自组装得到稳定超分子一次胶;
(2)再继续加入呋喃化的多糖分子溶液,混合均匀;
(3)最后加入生物酶组分和酶诱导自由基体系,混匀得到前驱液,二次交联,即得到目的产物。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)中所述的芳香族取代的多肽小分子为赖氨酸衍生物Fmoc-Lys(furoyl)-OH,其通过以下步骤制成:
以0.3-0.8g Fmoc-Lys-OH计,取Fmoc-Lys-OH 0.3-0.8g溶于2~5mL THF和0.8-1.2mL1M NaHCO3的混合溶剂中,冰水浴冷却,然后滴加0.2-0.3g糠酰氯,室温反应过夜,加8-12mL二氯甲烷,依次用pH=2-3的稀盐酸溶液、蒸馏水和饱和食盐水洗,然后用无水硫酸钠干燥,旋去二氯甲烷得到淡黄色至无色粘稠液体,常温真空干燥过夜得到淡黄色蓬松片状固体,柱层析色谱纯化,洗脱剂为乙酸乙酯和石油醚(v:v=1:6),得到赖氨酸衍生物Fmoc-Lys(furoyl)-OH。
6.根据权利要求4所述的制备方法,其特征在于,步骤(2)中所述的呋喃化的多糖分子为壳聚糖的糠酰基衍生物GC-furoyl,其通过以下步骤制成:
取乙二醇壳聚糖0.03-0.07g溶于8-12mL DMSO中,搅拌过夜,滴加0.06-0.08g糠酸和0.15-0.25g BOP的DMSO溶液,所得反应液于28-35℃下反应20-30h,加入透析袋中,于蒸馏水中透析3天,每半天换一次水,最后冻干,得到蓬松棉花状固体产物,即为目的产物壳聚糖的糠酰基衍生物GC-furoyl。
7.根据权利要求4所述的制备方法,其特征在于,步骤(1)和步骤(2)中,芳香族取代的多肽小分子和呋喃化的多糖分子溶液的添加量之比为9mg:200-400μL,呋喃化的多糖分子溶液的浓度为2-5wt%。
8.根据权利要求4所述的制备方法,其特征在于,步骤(3)中所述的生物酶组分为葡萄糖氧化酶和氯过氧化物酶的复合,所述的酶诱导自由基体系为葡萄糖/葡萄糖氧化酶体系。
9.根据权利要求8所述的制备方法,其特征在于,酶诱导自由基体系与生物酶组分的加入满足步骤(3)的前驱液中包括:
以9mg的芳香族取代的多肽小分子计,等量于80μL 0.3-0.7M的NaCl溶液的NaCl,等量于140-180μL 1M葡萄糖溶液的葡萄糖,等量于40-60μL 10mg/mL的葡萄糖氧化酶溶液的葡萄糖氧化酶,等量于40-60μL 10mg/mL的氯过氧化物酶溶液的氯过氧化物酶。
10.根据权利要求4所述的制备方法,其特征在于,步骤(3)中,二次交联的工艺条件为:于37℃保温120min。
CN201710317689.4A 2017-05-08 2017-05-08 一种用于肿瘤高效治疗的凝胶材料及其制备方法 Pending CN107242997A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710317689.4A CN107242997A (zh) 2017-05-08 2017-05-08 一种用于肿瘤高效治疗的凝胶材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710317689.4A CN107242997A (zh) 2017-05-08 2017-05-08 一种用于肿瘤高效治疗的凝胶材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107242997A true CN107242997A (zh) 2017-10-13

Family

ID=60017516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710317689.4A Pending CN107242997A (zh) 2017-05-08 2017-05-08 一种用于肿瘤高效治疗的凝胶材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107242997A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999196A (zh) * 2019-02-21 2019-07-12 同济大学 一种金纳米棒基工程纳米凝胶的制备方法
CN110982092A (zh) * 2019-10-31 2020-04-10 山东大学 一种基于酶促反应调控动力学稳定的高分子材料临时修复的方法
CN111035612A (zh) * 2019-12-31 2020-04-21 华中科技大学 一种活性氧响应性凝胶贮库及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110117024A1 (en) * 2008-04-04 2011-05-19 Rutgers The State University Of New Jersey Nanocarrier and nanogel compositions
CN102949727A (zh) * 2012-12-12 2013-03-06 天津医科大学 靶向性抗肿瘤药物和基因共载载体材料及制备和应用
CN103342823A (zh) * 2013-07-03 2013-10-09 同济大学 一种酶促自由基聚合制备水凝胶的方法
CN104418971A (zh) * 2013-09-09 2015-03-18 同济大学 葡萄糖氧化酶介导自由基引发体系及其制备水凝胶的方法
CN104479150A (zh) * 2014-10-29 2015-04-01 上海大学 多重交联多糖可注射型水凝胶制备方法
CN104892835A (zh) * 2015-05-06 2015-09-09 同济大学 一种酶促聚合制备微凝胶的方法
CN105131315A (zh) * 2014-11-27 2015-12-09 华东理工大学 非自由基光化学交联水凝胶材料制备方法、其产品及应用
CN105777816A (zh) * 2016-03-21 2016-07-20 中南大学 一种超分子水凝胶因子、超分子水凝胶及其制备方法
CN106188222A (zh) * 2016-07-18 2016-12-07 南京理工大学 一种双二肽结构超分子凝胶因子及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110117024A1 (en) * 2008-04-04 2011-05-19 Rutgers The State University Of New Jersey Nanocarrier and nanogel compositions
CN102949727A (zh) * 2012-12-12 2013-03-06 天津医科大学 靶向性抗肿瘤药物和基因共载载体材料及制备和应用
CN103342823A (zh) * 2013-07-03 2013-10-09 同济大学 一种酶促自由基聚合制备水凝胶的方法
CN104418971A (zh) * 2013-09-09 2015-03-18 同济大学 葡萄糖氧化酶介导自由基引发体系及其制备水凝胶的方法
CN104479150A (zh) * 2014-10-29 2015-04-01 上海大学 多重交联多糖可注射型水凝胶制备方法
CN105131315A (zh) * 2014-11-27 2015-12-09 华东理工大学 非自由基光化学交联水凝胶材料制备方法、其产品及应用
CN104892835A (zh) * 2015-05-06 2015-09-09 同济大学 一种酶促聚合制备微凝胶的方法
CN105777816A (zh) * 2016-03-21 2016-07-20 中南大学 一种超分子水凝胶因子、超分子水凝胶及其制备方法
CN106188222A (zh) * 2016-07-18 2016-12-07 南京理工大学 一种双二肽结构超分子凝胶因子及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QINGCONG WEI等: "Printable hybrid hydrogel by dual enzymatic polymerization with superactivity", 《CHEM. SCI.》 *
WEI QINGCONG等: "Injectable Peptide Hydrogel Enables Integrated Tandem Enzymes Superactivity for Cancer Therapy", 《ISCIENCE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999196A (zh) * 2019-02-21 2019-07-12 同济大学 一种金纳米棒基工程纳米凝胶的制备方法
CN109999196B (zh) * 2019-02-21 2024-03-01 同济大学 一种金纳米棒基工程纳米凝胶的制备方法
CN110982092A (zh) * 2019-10-31 2020-04-10 山东大学 一种基于酶促反应调控动力学稳定的高分子材料临时修复的方法
CN110982092B (zh) * 2019-10-31 2021-08-27 山东圳谷新材料科技有限公司 一种基于酶促反应调控动力学稳定的高分子材料临时修复的方法
CN111035612A (zh) * 2019-12-31 2020-04-21 华中科技大学 一种活性氧响应性凝胶贮库及其制备方法与应用
CN111035612B (zh) * 2019-12-31 2020-12-18 华中科技大学 一种活性氧响应性凝胶贮库及其制备方法与应用

Similar Documents

Publication Publication Date Title
Zhang et al. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy
CN112618727B (zh) 一种增强乏氧肿瘤光动力治疗的制剂及其制备方法和应用
CN106139144B (zh) 一种具有协同抗肿瘤特性的透明质酸修饰的金-碳纳米球及其制备方法与应用
CN102370980A (zh) 用于光动力治疗的纳米氧化石墨烯载体的制备方法
EP2714747A1 (en) Modified alginates for cell encapsulation and cell therapy
CN107242997A (zh) 一种用于肿瘤高效治疗的凝胶材料及其制备方法
CN106729742A (zh) 一种肿瘤靶向丝胶蛋白胶束及其制备方法和应用
CN107242996B (zh) 一种用于肿瘤治疗的凝胶材料及其制备方法
CN113694023B (zh) 一种氧化响应型纳米胶束及其制法与应用
Meng et al. Constructing of pH and reduction dual-responsive folic acid-modified hyaluronic acid-based microcapsules for dual-targeted drug delivery via sonochemical method
Gao et al. Chlorella‐Loaded Antibacterial Microneedles for Microacupuncture Oxygen Therapy of Diabetic Bacterial Infected Wounds
Shao et al. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy
CN111166882B (zh) 酞菁-rgd多肽-氧化石墨烯复合纳米材料及其制备方法与应用
Huang et al. A hierarchical supramolecular nanozyme platform for programming tumor-specific PDT and catalytic therapy
CN111848658A (zh) 一种靶向线粒体的氟硼二吡咯类化合物及其脂质体包裹纳米粒子的制备方法和用途
CN104888219B (zh) 一种基于细胞膜包覆的肿瘤光疗试剂及其制备方法和应用
CN112472665B (zh) 一种自产氧增强光动力治疗的经皮给药纳米凝胶及其制备方法
CN111759808B (zh) 一种脂质体-石墨烯-金复合纳米材料及其制备方法和应用
CN110251672B (zh) 一种纳米诊疗剂及其制备方法与应用
Liu et al. Development of biodegradable nanogels for lipase accelerated drug release of 5-aminolevulinic acid
CN111568855A (zh) 一种可注射水凝胶的制备方法及其在术后肿瘤治疗中的应用
Zhang et al. Protein nanogels with enhanced pH-responsive dynamics triggered by remote NIR for systemic protein delivery and programmable controlled release
CN112656944B (zh) 一种齐墩果酸纳米凝胶的制备方法及其应用
CN112870356B (zh) 一种肿瘤光动力疗法系列药物及其应用
Xu et al. pH-Responsive injectable self-healing hydrogels loading Au nanoparticles-decorated bimetallic organic frameworks for synergistic sonodynamic-chemodynamic-starvation-chemo therapy of cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171013

RJ01 Rejection of invention patent application after publication