CN107229301B - 电压调节器 - Google Patents

电压调节器 Download PDF

Info

Publication number
CN107229301B
CN107229301B CN201710160211.5A CN201710160211A CN107229301B CN 107229301 B CN107229301 B CN 107229301B CN 201710160211 A CN201710160211 A CN 201710160211A CN 107229301 B CN107229301 B CN 107229301B
Authority
CN
China
Prior art keywords
phase compensation
circuit
voltage
output terminal
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710160211.5A
Other languages
English (en)
Other versions
CN107229301A (zh
Inventor
小林裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of CN107229301A publication Critical patent/CN107229301A/zh
Application granted granted Critical
Publication of CN107229301B publication Critical patent/CN107229301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/02Arrangements in which the value to be measured is automatically compared with a reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Abstract

本发明提供一种电压调节器,能够不损害作为调节器的稳定性地进行相位补偿电容的测试,且芯片面积不增加。该电压调节器构成为:在相位补偿电路处具有相位补偿电容测试电路,在外部输出电压调整端子处具有负电压检测电路,通过对外部输出电压调整端子施加负电压,起动相位补偿电容测试电路,通过测量相位补偿电容的放电时间或放电电流,对相位补偿电容的合格与否进行测试。

Description

电压调节器
技术领域
本发明涉及具有测试电路的电压调节器。
背景技术
电压调节器的重要特性是不振荡。
图5是示出以往的电压调节器的电路图。
以往的电压调节器600具有差动放大电路60、作为相位补偿电路的电阻61和电容62、电流源63、分压电阻电路64、PMOS晶体管65、输出晶体管66和基准电压电路67。
相位补偿电路通过使形成的零点在低频处产生,响应性良好,且即使是较小的输出电容也稳定进行动作(例如,参照专利文献1)。
专利文献1:日本特开2004-62374号公报
但是,以往的电压调节器存在如下课题:在制造工序中实施的测试中,对于位于电路内部的相位补偿电路等,难以直接测试氧化膜异常、触点连接不良等元件单体的不良。
例如,如果对相位补偿电路设置测试端子,则存在如下课题:因测试用焊盘而使芯片面积增大,并且由于测试用焊盘的寄生电容成分,导致相位补偿电路的性能受损。
发明内容
本发明鉴于上述课题,其目的在于提供一种能够在不新设置测试用焊盘的情况下对相位补偿电路进行测试的电压调节器。
为了解决以往的课题,本发明的电压调节器设为如下结构。
构成为具有:第一输出端子和第二输出端子,且具有:分压电路,其设置于第二输出端子,输出基于输出电压的反馈电压;差动放大器,其对基准电压和反馈电压进行比较;输出晶体管,该输出晶体管的漏极与第一输出端子连接,根据基于输入到源极的电源电压和输入到栅极的差动放大器的输出电压的电压,输出输出电压;相位补偿电路和相位补偿电容测试电路,它们设置于差动放大器的输出端子;以及负电压检测电路,其设置于第二输出端子,负电压检测电路在检测到所述第二输出端子成为了负电压时,输出检测信号,相位补偿电容测试电路接收负电压检测电路的检测信号并将充入到相位补偿电容的电荷释放到接地端子。
根据本发明的电压调节器,由于在相位补偿电路处具有相位补偿电容测试电路,在外部输出电压调整端子处具有负电压检测电路,所以能够不损害作为调节器的稳定性地进行相位补偿电容的测试,且无需追加测试用焊盘,因此芯片面积不增加。
附图说明
图1是示出本发明第一实施方式的电压调节器的一例的电路图。
图2是示出本发明第一实施方式的电压调节器的另一例的电路图。
图3是示出本发明第二实施方式的电压调节器的一例的电路图。
图4是示出本发明的二级放大的电压调节器的一例的电路图。
图5是示出以往的电压调节器的电路图。
标号说明
104:外部输出电压调整端子;105:导通/截止端子;17:基准电压电路;10:差动放大电路;13、23、31:恒流电路;14:分压电路;20、40:相位补偿电容测试电路;30:负电压检测电路。
具体实施方式
[第一实施方式]
图1是示出第一实施方式的电压调节器的一例的电路图。
第一实施方式的电压调节器100具有基准电压电路17、差动放大电路10、形成放大级的PMOS晶体管15和恒流电路13、分压电路14、作为相位补偿电路的相位补偿电阻11和相位补偿电容12、输出晶体管16、相位补偿电容测试电路20、负电压检测电路30、地端子101、电源端子102、输出端子103和外部输出电压调整端子104。
差动放大电路10的同相输入端子与基准电压电路17连接,反相输入端子与分压电路14的输出端子连接,输出端子与PMOS晶体管15的栅极连接。相位补偿电路和相位补偿电容测试电路20连接在差动放大电路10的输出端子和PMOS晶体管15的漏极之间。PMOS晶体管15和恒流电路13串联连接在电源端子102和地端子101之间。输出晶体管16的栅极与PMOS晶体管15的漏极连接,源极与电源端子102连接,漏极与输出端子103连接。分压电路14连接在外部输出电压调整端子104和地端子101之间。负电压检测电路30连接在外部输出电压调整端子104和相位补偿电容测试电路20之间。
相位补偿电容测试电路20具有恒流电路23、及开关晶体管21和22。开关晶体管21设置于相位补偿电阻11和相位补偿电容12之间。串联连接的开关晶体管22和恒流电路23设置于相位补偿电容12和地端子101之间。开关晶体管21和22的栅极与相位补偿电容测试电路20的输入端子连接。设相位补偿电容12与相位补偿电容测试电路20的连接点为节点VA。
负电压检测电路30具有恒流电路31、耗尽型NMOS晶体管32和形成信号的反相器电路33、34。耗尽型NMOS晶体管32的栅极与外部输出电压调整端子104连接,漏极经由恒流电路31与电源端子102连接,源极与地端子101连接。串联连接的反相器电路33和34设置于耗尽型NMOS晶体管32的漏极和相位补偿电容测试电路20的输入端子之间。
接着,对第一实施方式的电压调节器100的动作进行说明。
电压调节器100除负电压检测电路30和相位补偿电容测试电路20以外,是通常的电压三级放大的电压调节器,因此省略详细的说明。
负电压检测电路30检测外部输出电压调整端子104的电压。在对外部输出电压调整端子104施加正电压时,耗尽型NMOS晶体管32的电流比恒流电路31的电流大,所以负电压检测电路30将低电平信号输出到输出端子。在对外部输出电压调整端子104施加负电压时,耗尽型NMOS晶体管32的电流比恒流电路31的电流小,所以负电压检测电路30将高电平信号输出到输出端子。
在通常动作时,输出端子103和外部输出电压调整端子104是相连接的。由于外部输出电压调整端子104被施加了输出端子103的正电压,所以负电压检测电路30将低电平信号输出到输出端子。相位补偿电容测试电路20在接收到低电平信号时,开关晶体管21成为导通状态,开关晶体管22成为截止状态。因此,由于相位补偿电阻11和相位补偿电容12相连接,所以电压调节器100能够确保通常的动作。
接着,对相位补偿电路的测试进行说明。
外部输出电压调整端子104与输出端子103断开,从外部连接电压源。首先,从电压源对外部输出电压调整端子104施加正电压,例如施加电压调节器100所设定的输出电压,使电压调节器100为通常的工作状态。
然后,将电压源的电压变更为0V。由于栅极被施加了0V的电压的耗尽型NMOS晶体管32的电流比恒流电路31的电流大,所以负电压检测电路30输出低电平信号,相位补偿电容测试电路20不进行动作。这里,由于分压电路14的输出为0V,所以差动放大电路10输出高电平信号(≒VDD),PMOS晶体管15成为截止状态。因此,节点VA的电压为高电平(≒VDD),所以相位补偿电容12被充电。
在对相位补偿电容12进行充分充电后,将电压源的电压变更为负电压。由于耗尽型NMOS晶体管32成为截止状态,所以负电压检测电路30输出高电平信号。由于开关晶体管21截止,开关晶体管22导通,所以相位补偿电容测试电路20成为测试状态。由于在测试状态下,节点VA与恒流电路23连接,所以相位补偿电容12通过恒流电路23而放出放电电流,直到节点VA的电压成为0V为止。在设相位补偿电容12的电容值为C、在恒流电路23中流过的电流为Ic、电源端子102的电压为VDD时,电流流过的时间Tt通过以下的式子表示。
Tt=C×(VDD)/Ic
因此,根据电路整体的消耗电流来测量电流Ic流过的时间Tt,由此能够进行相位补偿电容12的连接不良的测试。
例如,如上述那样切换外部的电压源的电压,在切换为负电压的前后测量消耗电流,能够根据消耗电流增加恒流电路23的电流Ic的期间是期望的时间Tt,进行合格品的判断。
此外例如,在将外部的电压源的电压切换为负电压的前后测量出的消耗电流没有差异的情况下,能够检测相位补偿电容12的触点的连接不良。
如以上所说明那样,第一实施方式的电压调节器100能够在不损害作为调节器的稳定性的情况下进行相位补偿电容12的测试,且无需追加测试用焊盘,所以芯片面积不增加。并且,由于使用外部输出电压调整端子104,所以在组装到封装后的出厂检查中也能够进行测试。
图2是示出本发明第一实施方式的电压调节器的另一例的电路图。
如图2的电压调节器200所示,负电压检测电路30的恒流电路31可以不与电源端子102连接,而是与输出端子103连接。
在这样构成时,具有如下效果:在负电压检测电路30检测出负电压时,恒流电路31的电流不会影响到消耗电流。并且,通过将恒流电路31与输出端子103连接,能够获得如下效果:在通常动作时发挥输出负载的作用,在无负载时使输出电压稳定。此外,还具有如下效果:能够在高温时抑制由输出晶体管16的漏电流引起的输出电压的上升。
[第二实施方式]
图3是示出本发明第二实施方式的电压调节器的一例的电路图。第二实施方式的电压调节器300相比图1的电压调节器100,将相位补偿电容测试电路20变更为相位补偿电容测试电路40,并追加了导通/截止端子105、OR电路41、NMOS晶体管42和反相器电路43。
相位补偿电容测试电路40将开关晶体管22与恒流电路23的连接点作为输出端子。反相器电路43的输入端子与导通/截止端子105连接。OR电路41的输入端子连接有反相器电路43的输出端子和相位补偿电容测试电路40的输出端子,输出端子与NMOS晶体管42的栅极连接。NMOS晶体管42的漏极与输出端子103连接,源极与地端子101连接。
在通常动作时,导通/截止端子105输入高电平信号,反相器电路43输出低电平信号。相位补偿电容测试电路40从输出端子输出低电平信号。因此,OR电路41输出低电平信号,NMOS晶体管42截止。
此外,在向导通/截止端子105输入了低电平信号时,OR电路41输出高电平信号而使NMOS晶体管42导通,释放外装的输出电容的电荷。
在相位补偿电路的测试时,开关晶体管22导通,所以相位补偿电容测试电路40的输出端子输出的信号根据相位补偿电容12的状态而发生变化。
在相位补偿电容12的状态正常时,节点VA的电压为高电平,所以相位补偿电容测试电路40从输出端子输出高电平信号。OR电路41输出高电平信号,使NMOS晶体管42为导通状态。这时,电流从输出端子103流向NMOS晶体管42,所以消耗电流增加。
在相位补偿电容12为连接不良时,相位补偿电容测试电路40从输出端子输出低电平信号,NMOS晶体管42维持截止状态,因此消耗电流不增加。
因此,电压调节器300根据消耗电流的大小来判定相位补偿电容12的合格与否,所以能够容易地进行测试。
如以上所说明那样,本发明的电压调节器在相位补偿电路处具有相位补偿电容测试电路,在外部输出电压调整端子处具有负电压检测电路,因此能够不损害作为调节器的稳定性地进行相位补偿电容的测试,且无需追加测试用焊盘,因此芯片面积不增加。并且,由于使用外部输出电压调整端子,所以在组装到封装以后的出厂检查中也能够进行测试。
另外,本发明的电压调节器不限于上述电路图,可以在不脱离本发明主旨的范围内进行各种变更。
例如,在以上实施方式中以电压三级放大的电压调节器为例,但也可以是电压二级放大的电压调节器。图4示出电压调节器400的电路图,作为在二级放大的电压调节器中应用了本发明的例子。

Claims (6)

1.一种电压调节器,其具有第一输出端子和第二输出端子,该电压调节器的特征在于,具有:
分压电路,其设置于所述第二输出端子,输出基于输出电压的反馈电压;
差动放大器,其对基准电压和所述反馈电压进行比较;
输出晶体管,该输出晶体管的漏极与所述第一输出端子连接,根据基于输入到源极的电源电压和输入到栅极的所述差动放大器的输出电压的电压,输出所述输出电压;
相位补偿电路和相位补偿电容测试电路,它们设置于所述差动放大器的输出端子;以及
负电压检测电路,其连接在所述第二输出端子和所述相位补偿电容测试电路之间,在检测到所述第二输出端子成为了负电压时,输出检测信号,
所述相位补偿电容测试电路接收所述负电压检测电路的检测信号,将充入到所述相位补偿电路的相位补偿电容的电荷释放到接地端子。
2.根据权利要求1所述的电压调节器,其特征在于,具有:
第一晶体管,该第一晶体管的栅极与所述差动放大器的输出端子连接,漏极与所述输出晶体管的栅极连接;以及
第一恒流电路,其与所述第一晶体管的漏极连接,
所述相位补偿电容的一端与所述第一晶体管的漏极连接,另一端与所述相位补偿电容测试电路连接。
3.根据权利要求2所述的电压调节器,其特征在于,
所述相位补偿电容测试电路具有:
第一开关晶体管,其设置于所述差动放大器的输出端子和所述相位补偿电容的一端之间;以及
第二开关晶体管和第二恒流电路,它们串联设置于所述相位补偿电容的一端和接地端子之间,
所述第一开关晶体管和所述第二开关晶体管的栅极与所述负电压检测电路的输出端子连接,
在接收到所述负电压检测电路的检测信号时,所述第一开关晶体管截止,所述第二开关晶体管导通。
4.根据权利要求1所述的电压调节器,其特征在于,
所述相位补偿电容的一端与所述差动放大器的输出端子连接,另一端与所述相位补偿电容测试电路连接。
5.根据权利要求4所述的电压调节器,其特征在于,
所述相位补偿电容测试电路具有:
第一开关晶体管,其设置于所述相位补偿电容的另一端和所述输出晶体管的漏极之间;以及
第二开关晶体管和第二恒流电路,它们串联设置于所述相位补偿电容的另一端和接地端子之间,
所述第一开关晶体管和所述第二开关晶体管的栅极与所述负电压检测电路的输出端子连接,
在接收到所述负电压检测电路的检测信号时,所述第一开关晶体管截止,所述第二开关晶体管导通。
6.根据权利要求3或5所述的电压调节器,其特征在于,
所述相位补偿电容测试电路在所述第二开关晶体管与所述第二恒流电路的连接点处设置输出端子,
所述电压调节器具有第二晶体管,该第二晶体管的栅极与所述相位补偿电容测试电路的输出端子连接,漏极与所述第一输出端子连接,源极与接地端子连接。
CN201710160211.5A 2016-03-23 2017-03-17 电压调节器 Active CN107229301B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058854 2016-03-23
JP2016058854A JP6619274B2 (ja) 2016-03-23 2016-03-23 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
CN107229301A CN107229301A (zh) 2017-10-03
CN107229301B true CN107229301B (zh) 2020-01-17

Family

ID=59898839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710160211.5A Active CN107229301B (zh) 2016-03-23 2017-03-17 电压调节器

Country Status (5)

Country Link
US (1) US10236775B2 (zh)
JP (1) JP6619274B2 (zh)
KR (1) KR102275666B1 (zh)
CN (1) CN107229301B (zh)
TW (1) TWI701539B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115939B2 (ja) 2018-09-04 2022-08-09 エイブリック株式会社 ボルテージレギュレータ
JP7289973B2 (ja) * 2018-09-04 2023-06-12 エイブリック株式会社 ボルテージレギュレータ
CN110221644B (zh) * 2019-05-23 2021-02-26 上海艾为电子技术股份有限公司 一种芯片及其外置rset电阻开路监测电路
US11557971B2 (en) 2019-11-07 2023-01-17 Mediatek Inc. Switching regulator using protection circuit for avoiding voltage stress and associated power management integrated circuit
DE102020213559B4 (de) * 2020-10-28 2022-05-05 Infineon Technologies Ag Bestimmung einer Information über eine Verbindung einer Schaltungskomponente

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035922B2 (ja) * 1989-07-06 2000-04-24 松下電器産業株式会社 電源回路の保護装置
JP3068482B2 (ja) * 1997-01-30 2000-07-24 日本電気アイシーマイコンシステム株式会社 定電圧回路
JP2004062374A (ja) 2002-07-26 2004-02-26 Seiko Instruments Inc ボルテージ・レギュレータ
TWI255088B (en) * 2004-05-24 2006-05-11 Anpec Electronics Corp DC converting controller with mode-switching and over-current protection by using multifunctional pin and its method
JP4212560B2 (ja) * 2005-01-21 2009-01-21 パナソニック株式会社 電源回路
GB2432471A (en) * 2005-11-01 2007-05-23 Zetex Semiconductors Plc A CMOS support IC for a DBS LNA
JP2007187489A (ja) * 2006-01-12 2007-07-26 Renesas Technology Corp 半導体集積回路
JP4855913B2 (ja) * 2006-12-01 2012-01-18 セイコーインスツル株式会社 ボルテージレギュレータ
JP2009074850A (ja) * 2007-09-19 2009-04-09 Denso Corp 半導体集積回路の検査方法及び半導体集積回路
KR101514459B1 (ko) * 2007-11-09 2015-04-22 세이코 인스트루 가부시키가이샤 볼티지 레귤레이터
JP2009232486A (ja) * 2008-03-19 2009-10-08 Renesas Technology Corp 電圧発生回路および半導体記憶装置のテスト方法
US7876060B2 (en) * 2008-06-10 2011-01-25 Osram Sylvania Inc. Multi-lamps instant start electronic ballast
JP5715587B2 (ja) * 2012-03-21 2015-05-07 株式会社東芝 レギュレータ
US9753473B2 (en) * 2012-10-02 2017-09-05 Northrop Grumman Systems Corporation Two-stage low-dropout frequency-compensating linear power supply systems and methods
JP2015005054A (ja) * 2013-06-19 2015-01-08 セイコーインスツル株式会社 ボルテージレギュレータ
JP6211916B2 (ja) * 2013-12-24 2017-10-11 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ
JP6316632B2 (ja) * 2014-03-25 2018-04-25 エイブリック株式会社 ボルテージレギュレータ
US9041378B1 (en) * 2014-07-17 2015-05-26 Crane Electronics, Inc. Dynamic maneuvering configuration for multiple control modes in a unified servo system

Also Published As

Publication number Publication date
US20170279358A1 (en) 2017-09-28
US10236775B2 (en) 2019-03-19
TW201805757A (zh) 2018-02-16
TWI701539B (zh) 2020-08-11
CN107229301A (zh) 2017-10-03
JP6619274B2 (ja) 2019-12-11
KR20170110534A (ko) 2017-10-11
JP2017174116A (ja) 2017-09-28
KR102275666B1 (ko) 2021-07-09

Similar Documents

Publication Publication Date Title
CN107229301B (zh) 电压调节器
US7212022B2 (en) System and method for measuring time dependent dielectric breakdown with a ring oscillator
US7235998B1 (en) System and method for measuring time dependent dielectric breakdown with a ring oscillator
US6310487B1 (en) Semiconductor integrated circuit and testing method thereof
US7863942B2 (en) Voltage detecting circuit
CN103424686A (zh) 用于测试集成电路的系统和方法
CN110928348B (zh) 电压调节器和电压调节器的测试方法
US9209747B1 (en) Crystal oscillator with resistorless feedback biasing
US20080157860A1 (en) Internal voltage generation circuit for generating stable internal voltages withstanding varying external conditions
US10983160B2 (en) Circuit and method for measuring working current of circuit module
US20190086355A1 (en) Semiconductor apparatus including a capacitance measuring circuit
US10006958B2 (en) Semiconductor device and method of inspecting a semiconductor device
CN103684394A (zh) 半导体装置
JP4016854B2 (ja) 演算増幅回路を有する半導体装置
US11327112B2 (en) Semiconductor device for detecting characteristics of semiconductor element and operating method thereof
US20080024237A1 (en) Oscillator
US11249504B2 (en) Current generation circuit
EP3229355A1 (en) Load driving device and in-vehicle control device using same
US8344779B2 (en) Comparator circuit with hysteresis, test circuit, and method for testing
US11726511B2 (en) Constant voltage circuit that causes different operation currents depending on operation modes
US11728642B2 (en) Semiconductor device and protection circuit
US11422582B2 (en) Low power reference voltage generating circuit
KR100791623B1 (ko) 집적회로 장치에 흐르는 전류를 테스트하기 위한 내장형전류 검사 회로
KR20000060215A (ko) 문턱전압 측정 회로
JPH04123395A (ja) 高電圧検出回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Chiba County, Japan

Applicant after: ABLIC Inc.

Address before: Chiba County, Japan

Applicant before: DynaFine Semiconductor Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Nagano

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: ABLIC Inc.