CN107229113A - 变焦透镜及摄像装置 - Google Patents

变焦透镜及摄像装置 Download PDF

Info

Publication number
CN107229113A
CN107229113A CN201710139967.1A CN201710139967A CN107229113A CN 107229113 A CN107229113 A CN 107229113A CN 201710139967 A CN201710139967 A CN 201710139967A CN 107229113 A CN107229113 A CN 107229113A
Authority
CN
China
Prior art keywords
lens
focal length
lens group
zoom
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710139967.1A
Other languages
English (en)
Other versions
CN107229113B (zh
Inventor
富冈右恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of CN107229113A publication Critical patent/CN107229113A/zh
Application granted granted Critical
Publication of CN107229113B publication Critical patent/CN107229113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

本发明提供一种高变倍比且长焦端的球差及轴上色差得到良好校正而具有高性能的变焦透镜及具备该变焦透镜的摄像装置。变焦透镜从物体侧依次包括正的第1透镜组(G1)、负的第2透镜组(G2)、正的第3透镜组(G3)、光圈及第4透镜组(G4)。在进行变倍时,只有第2透镜组(G2)及第3透镜组(G3)移动。第1透镜组(G1)从物体侧依次包括将凸面朝向物体侧的负新月形透镜及正透镜接合的双合透镜、正透镜、及负透镜。满足与第1透镜组(G1)的从物体侧第1~3个透镜的合成焦距(f1a)及第4个透镜的焦距(f1b)有关的条件式(1):‑0.8<f1a/f1b<0。

Description

变焦透镜及摄像装置
技术领域
本发明涉及一种变焦透镜及摄像装置,尤其涉及一种适合于远距离用监控摄像机的变焦透镜及具备该变焦透镜的摄像装置。
背景技术
以往,监控摄像机用于犯罪预防或记录等目的,近年来其设置数量逐渐增加。作为监控摄像机用的透镜系统,在要求高通用性的场合优选使用变焦透镜。作为以往已知的变焦透镜,例如有下述专利文献1中所记载那样的从物体侧依次具备第1透镜组~第4透镜组这4个透镜组且将其中的第1透镜组以3片透镜来构成的透镜系统。并且,作为其他4组结构的变焦透镜,例如能够举出下述专利文献2~4中所记载的透镜。
专利文献1:日本特开2006-39005号公报
专利文献2:日本特开2003-262780号公报
专利文献3:日本特开昭62-100722号公报
专利文献4:日本特开平2-244110号公报
近年来,远距离用监控摄像机因多用途需求逐渐增加,并且要求能够使用于这种监控摄像机的高变倍比的变焦透镜。同时,也要求图像的高像素化,因此对透镜系统要求高性能。
然而,专利文献1中所记载的透镜系统虽然具有高变倍比,但若要充分应对今年来高像素化的要求,则对长焦端中的球差及轴上色差的校正还存在改善的余地。并且,专利文献2~4中所记载的透镜系统的变倍比存在不足。
发明内容
本发明是鉴于上述情况而完成的,其目的在于提供一种既有高变倍比且长焦端中的球差及轴上色差得到良好校正而具有高光学性能的变焦透镜及具备该变焦透镜的摄像装置。
本发明的变焦透镜的特征为从物体侧依次包括具有正屈光力的第1透镜组、具有负屈光力的第2透镜组、具有正屈光力的第3透镜组、光圈及第4透镜组,在进行变倍时,第1透镜组及第4透镜组相对于图像面固定,第2透镜组及第3透镜组以光轴方向的相互间隔不同的方式移动,第1透镜组从物体侧依次包括将具有负屈光力且将凸面朝向物体侧的新月形状的第1透镜及具有正屈光力的第2透镜从物体侧依次接合而成的双合透镜、具有正屈光力的第3透镜、及具有负屈光力的第4透镜,并且满足下述条件式(1)。
-0.8<f1a/f1b<0 (1)
其中,
f1a:第1透镜、第2透镜及第3透镜的合成焦距;
f1b:第4透镜的焦距。
本发明的变焦透镜中,优选满足下述条件式(2)~(7)及(1-1)~(7-1)中的至少1个。
-0.01<θgF2-θgF1<0.015 (2)
5<νd2-νd1<40 (3)
2.5<fT/f1<4.5 (4)
-50<fT/f2<-10 (5)
5<fT/f3<30 (6)
-15<fT/f4<3 (7)
-0.7<f1a/f1b<-0.2 (1-1)
-0.008<θgF2-θgF1<0.01 (2-1)
7<νd2-νd1<35 (3-1)
2.8<fT/f1<4 (4-1)
-40<fT/f2<-20 (5-1)
7<fT/f3<25 (6-1)
-12<fT/f4<2 (7-1)
其中,
θgF1:第1透镜的g线与F线之间的部分色散比;
θgF2:第2透镜的g线与F线之间的部分色散比;
νd1:第1透镜的d线基准的色散系数;
νd2:第2透镜的d线基准的色散系数;
fT:长焦端中的整体系统的焦距;
f1:第1透镜组的焦距;
f2:第2透镜组的焦距;
f3:第3透镜组的焦距;
f4:第4透镜组的焦距;
f1a:第1透镜、第2透镜及第3透镜的合成焦距;
f1b:第4透镜的焦距。
本发明的变焦透镜中,优选在从广角端向长焦端进行变倍时,第3透镜组与第4透镜组的间隔始终增大,第2透镜组及第3透镜组同时通过各自的横向倍率成为-1倍的点。
本发明的变焦透镜中,第4透镜组可以以具有负屈光力的方式构成,或第4透镜组也可以以具有正屈光力的方式构成。
并且,本发明的变焦透镜中,也可以以通过移动第1透镜组整体来进行对焦的方式构成。
本发明的摄像装置具备本发明的变焦透镜。
另外,上述“包括~”表示除了包括作为构成要件所举出的构件以外,还可以包括实际上没有屈光力的透镜、光圈和/或盖玻璃等透镜以外的光学要件、物镜法兰盘、镜筒和/或手抖校正机构等机构部分等。
另外,上述“具有正屈光力的~透镜组”表示作为透镜组整体具有正屈光力。对于上述的“具有负屈光力的~透镜组”也相同。关于上述透镜组的屈光力的符号、透镜的屈光力的符号及透镜的面形状,当包括非球面时,设为在近轴区域中考虑。“透镜组”并不一定是指由多个透镜构成的透镜组,还可以包括仅由1片透镜构成的透镜组。
另外,上述的条件式(1)、(3)~(7)、(1-1)及(3-1)~(7-1)的值为以d线(波长587.6nm)为基准且对焦于无限远物体的状态下的值。
另外,某一透镜的g线与F线之间的部分色散比θgF是指将该透镜的g线(波长435.8nm)、F线(波长486.1nm)及C线(波长656.3nm)的折射率分别设为Ng、NF及NC时,以θgF=(Ng-NF)/(NF-NC)来定义的值。
发明效果
根据本发明,在从物体侧依次包括正的第1透镜组、负的第2透镜组、正的第3透镜组、光圈及第4透镜组的透镜系统中,在进行变倍时使第2透镜组及第3透镜组移动,且详细地设定第1透镜组的结构,并以满足规定的条件式的方式构成,因此能够提供一种既有高变倍比且长焦端中的球差及轴上色差得到良好校正而具有高光学性能的变焦透镜及具备该变焦透镜的摄像装置。
附图说明
图1是表示本发明的实施例1的变焦透镜的结构及光路的剖视图。
图2是表示本发明的实施例2的变焦透镜的结构及光路的剖视图。
图3是表示本发明的实施例3的变焦透镜的结构及光路的剖视图。
图4是表示本发明的实施例4的变焦透镜的结构及光路的剖视图。
图5是表示本发明的实施例5的变焦透镜的结构及光路的剖视图。
图6是表示本发明的实施例6的变焦透镜的结构及光路的剖视图。
图7是表示本发明的实施例7的变焦透镜的结构及光路的剖视图。
图8是表示本发明的实施例8的变焦透镜的结构及光路的剖视图。
图9是表示本发明的实施例9的变焦透镜的结构及光路的剖视图。
图10是表示本发明的实施例10的变焦透镜的结构及光路的剖视图。
图11是表示本发明的实施例11的变焦透镜的结构及光路的剖视图。
图12是本发明的实施例1的变焦透镜的各像差图。
图13是本发明的实施例2的变焦透镜的各像差图。
图14是本发明的实施例3的变焦透镜的各像差图。
图15是本发明的实施例4的变焦透镜的各像差图。
图16是本发明的实施例5的变焦透镜的各像差图。
图17是本发明的实施例6的变焦透镜的各像差图。
图18是本发明的实施例7的变焦透镜的各像差图。
图19是本发明的实施例8的变焦透镜的各像差图。
图20是本发明的实施例9的变焦透镜的各像差图。
图21是本发明的实施例10的变焦透镜的各像差图。
图22是本发明的实施例11的变焦透镜的各像差图。
图23是本发明的一实施方式所涉及的摄像装置的概略结构图。
符号说明
1-变焦透镜,2w、2t-轴上光束,3w、3t-最大视场角的轴外光束,4-信号处理部,5-变倍控制部,6-聚焦控制部,7-滤光片,8-成像元件,10-摄像装置,G1-第1透镜组,G2-第2透镜组,G3-第3透镜组,G4-第4透镜组,G5-第5透镜组,L11-第1透镜,L12-第2透镜,L13-第3透镜,L14-第4透镜,L21~L24、L31~L34、L41~L45-透镜,PP-光学部件,Sim-图像面,St-孔径光圈,Z-光轴。
具体实施方式
以下,参考附图对本发明的实施方式进行详细的说明。图1~图11是表示本发明的实施方式所涉及的变焦透镜的结构的剖视图,分别与后述的实施例1~11相对应。图1~图11中示出了对焦于无限远物体的状态,左侧为物体侧,右侧为图像侧,在标注有WIDE的上段示出了广角端的各状态,在标注有TELE的下段示出了长焦端的各状态。并且,图1中一并示出了广角端中的轴上光束2w与最大视场角的轴外光束3w及长焦端中的轴上光束2t与最大视场角的轴外光束3t。图1~图11所示的例子的基本结构及图示方法相同,因此以下主要参考图1所示的例子进行说明。
该变焦透镜沿光轴Z从物体侧朝向图像侧依次包括具有正屈光力的第1透镜组G1、具有负屈光力的第2透镜组G2、具有正屈光力的第3透镜组G3、孔径光圈St及第4透镜组G4。
另外,图1所示的孔径光圈St并不一定表示大小或形状,而是表示光轴Z上的位置。并且,图1中示出了在透镜系统与图像面Sim之间配置有平行平板状的光学部件PP的例子。光学部件PP是假定红外截止滤波器、低通滤波器、其他各种滤光片和/或盖玻璃等的部件。在本发明中,也可以将光学部件PP配置在与图1的例子不同的位置,并且也可以是省略光学部件PP的结构。
在该变焦透镜中,在进行变倍时,第1透镜组G1及第4透镜组G4相对于图像面Sim固定,第2透镜组G2及第3透镜组G3以光轴方向的相互间隔不同的方式移动。在图1中,在上段与下段之间用箭头示出了从广角端向长焦端进行变倍时移动的第2透镜组G2及第3透镜组G3各自的示意性的移动轨迹。
如上所述,在本实施方式中,采用了变倍时的2个可动透镜组具有互为相反符号的屈光力的变倍方式。作为高变倍比的4组结构的变焦透镜的变倍方式中与本实施方式不同的方式,有变倍时的2个可动透镜组均具有负屈光力的方式,但该方式中2个可动透镜组均具有使轴上光线发散的作用,因此越成为高变倍比,轴上光线越翘起,其结果,会导致最靠近图像侧的第4透镜组大型化。通常,高变倍比的透镜系统易于大型化,但若考虑到设置空间的制约、因伴随大型化的重量增加而强化设置强度并由此产生的成本增加以及室外使用时需要考虑强风影响等的监控摄像机等摄像装置中的适用,则优选既为高变倍比且透镜系统的大型化尽可能得到抑制。如本实施方式,在从物体侧依次具备具有负屈光力的可动透镜组(与第2透镜组G2相对应)及具有正屈光力的可动透镜组(与第3透镜组G3相对应)的4组结构的变焦透镜中,具有负屈光力的可动透镜组中一度翘起的轴上光线在具有正屈光力的可动透镜组中被收敛,因此第4透镜组G4不易大型化,从而成为符合市场要求的高变倍比变焦透镜中适宜的结构。
在从广角端向长焦端进行变倍时,优选第3透镜组G3与第4透镜组G4的间隔始终增大,第2透镜组G2及第3透镜组G3同时通过各自的横向倍率成为-1倍的点。通过如此构成,得到在从广角端向长焦端进行变倍时使第3透镜组G3与第4透镜组G4的间隔始终增大的同时将焦点位置保持恒定的方式,从而能够始终增加第3透镜组G3的横向倍率的绝对值。因此,能够由第2透镜组G2及第3透镜组G3来分担变倍作用,从而变得有利于高变倍比化。另外,在图1中,将第2透镜组G2及第3透镜组G3各自的横向倍率同时成为-1倍的位置用水平虚线来示于移动轨迹图中。
该变焦透镜的第1透镜组G1从物体侧依次包括将具有负屈光力且将凸面朝向物体侧的新月形状的第1透镜L11及具有正屈光力的第2透镜L12从物体侧依次接合而成的双合透镜、具有正屈光力的第3透镜L13、及具有负屈光力的第4透镜L14。
通过将正负屈光力由包括第1透镜L11及第2透镜L12的组和包括第3透镜L13及第4透镜L14的组这2组来分担,即使是高变倍比变焦透镜也能够兼顾长焦端中的球差及轴上色差的校正。通过接合第1透镜L11及第2透镜L12,能够减小接合面的曲率半径的绝对值,从而变得有利于色差的校正。并且,通过将第1透镜L11设为新月形透镜,能够减小接合面的曲率半径的绝对值,因此将第2透镜L12的正屈光力设在适当的范围内变得容易,从而能够良好地校正球差。
该变焦透镜以满足下述条件式(1)的方式构成。
-0.8<f1a/f1b<0 (1)
其中,
f1a:第1透镜、第2透镜及第3透镜的合成焦距;
f1b:第4透镜的焦距。
通过将从第1透镜L11至第3透镜L13的合成屈光力与第4透镜L14的屈光力之比限制在条件式(1)的范围内,能够适宜地校正长焦端的球差。
若要提高与条件式(1)有关的效果,则优选满足下述条件式(1-1),更优选满足下述条件式(1-2)。
-0.7<f1a/f1b<-0.2 (1-1)
-0.6<f1a/f1b<-0.3 (1-2)
并且,该变焦透镜优选满足下述条件式(2)。
-0.01<θgF2-θgF1<0.015 (2)
其中,
θgF1:第1透镜的g线与F线之间的部分色散比;
θgF2:第2透镜的g线与F线之间的部分色散比。
通过将第1透镜组G1的构成双合透镜的第1透镜L11与第2透镜L12的部分色散比的差设在条件式(2)的范围内,能够将第1透镜L11及第2透镜L12中所发生的轴上的2阶色差调整在适宜的范围内,并能够良好地校正长焦端中的1阶及2阶的轴上色差。
若要提高与条件式(2)有关的效果,则更优选满足下述条件式(2-1),进一步更优选满足下述条件式(2-2)。
-0.008<θgF2-θgF1<0.01 (2-1)
0<θgF2-θgF1<0.009 (2-2)
并且,该变焦透镜优选满足下述条件式(3)。
5<νd2--νd1<40 (3)
其中,
νd1:第1透镜的d线基准的色散系数;
νd2:第2透镜的d线基准的色散系数。
通过以免成为条件式(3)的下限以下的方式进行设定,无需减小第1透镜L11与第2透镜L12的接合面的曲率半径的绝对值,便能够校正1阶的色差。若想将第1透镜L11的色散系数与第2透镜L12的色散系数的差未设在适当的范围内来校正1阶的色差,则需要减小接合面的曲率半径的绝对值,如此一来会导致高阶的球差的增大。通过以免成为条件式(3)的上限以上的方式进行设定,能够组合当前实际存在的光学材料来抑制2阶色差的增大并良好地进行像差校正。若想在成为条件式(3)的上限以上的情况下,组合当前实际存在的光学材料来构成变焦透镜,则第1透镜L11的部分色散比与第2透镜L12的部分色散比的差变大,从而会导致2阶色差的增大。
若要提高与条件式(3)有关的效果,则更优选满足下述条件式(3-1),进一步更优选满足下述条件式(3-2)。
7<νd2-νd1<35 (3-1)
10<ν d2-νd1<25 (3-2)
并且,该变焦透镜优选满足下述条件式(4)~(7)中的至少1个。
2.5<fT/f1<4.5 (4)
-50<fT/f2<-10 (5)
5<fT/f3<30 (6)
-15<fT/f4<3 (7)
其中,
fT:长焦端中的整体系统的焦距;
f1:第1透镜组的焦距;
f2:第2透镜组的焦距;
f3:第3透镜组的焦距;
f4:第4透镜组的焦距。
通过以免成为条件式(4)的下限以下的方式进行设定,变得有利于缩短总长度。通过以免成为条件式(4)的上限以上的方式进行设定,变得有利于降低长焦端中的球差。若要提高与条件式(4)有关的效果,则更优选满足下述条件式(4-1)。
2.8<fT/f1<4 (4-1)
通过以免成为条件式(5)的下限以下的方式进行设定,能够使第2透镜组G2的屈光力不至于变得过强,并能够抑制变倍时的球差及畸变像差的变动。通过以免成为条件式(5)的上限以上的方式进行设定,能够抑制变倍时的第2透镜组G2的移动量,从而变得有利于缩短总长度。若要提高与条件式(5)有关的效果,则更优选满足下述条件式(5-1)。
-40<fT/f2<-20 (5-1)
通过以免成为条件式(6)的下限以下的方式进行设定,能够抑制变倍时的第3透镜组G3的移动量,从而变得有利于缩短总长度。通过以免成为条件式(6)的上限以上的方式进行设定,能够使第3透镜组G3的正屈光力不至于变得过强,并能够抑制变倍时的球差的变动。若要提高与条件式(6)有关的效果,则更优选满足下述条件式(6-1)。
7<fT/f3<25 (6-1)
通过以免成为条件式(7)的下限以下的方式进行设定,能够防止由第3透镜组G3担负的正屈光力变得过大,从而变得有利于抑制球差。通过以免成为条件式(7)的上限以上的方式进行设定,能够使第4透镜组G4的正屈光力不至于变得过强,从而变得有利于抑制广角端中的球差。
若要提高与条件式(7)有关的效果,则更优选满足下述条件式(7-1),进一步更优选满足下述条件式(7-2)。
-12<fT/f4<2 (7-1)
-10<fT/f4<0 (7-2)
另外,该变焦透镜也可以以通过移动第1透镜组G1整体来进行对焦的方式构成。当如此设定时,在从广角端至长焦端的整个变倍区域中,能够与变倍比无关地统一对任意的被摄体距离进行对焦时的第1透镜组G1的伸出量,并能够以易于控制的方式进行对焦。
例如,第1透镜组G1能够以从物体侧依次包括将凸面朝向物体侧的负新月形透镜及双凸透镜从物体侧依次接合而成的双合透镜、将凸面朝向物体侧的正透镜、及双凹透镜的方式构成。
第2透镜组G2例如能够以包括3片或4片透镜的方式构成。第3透镜组G3例如能够以包括2片以上且4片以下的透镜的方式构成。第4透镜组G4例如能够以包括3片以上且5片以下的透镜的方式构成。
第4透镜组G4也可以以具有负屈光力的方式构成,当如此设定时,能够良好地校正主要在广角端中从第1透镜组G1至第3透镜组G3中所发生的球差。或者,第4透镜组G4也可以以具有正屈光力的方式构成,当如此设定时,变得容易确保后焦距且容易减少第4透镜组G4的构成透镜片数。
例如,第4透镜组G4可以如下方式构成:从物体侧依次包括将凹面朝向物体侧的负新月形透镜、正透镜及将凹面朝向图像侧的负新月形透镜,第4透镜组G4内的最靠近物体侧的负新月形透镜及其图像侧正后面的正透镜配置成在第4透镜组G4内隔开最长的空气间隔。当如此构成时,能够保持较少的透镜片数的同时,用物体侧的2片透镜来使球差及轴上色差保持平衡且确保后焦距。并且,通过隔开较长的空气间隔,能够用轴上边缘光线变低且轴外主光线变高的最靠近图像侧的负新月形透镜来抑制对球差的影响并使像散保持平衡。图2、图6、图7及图11的例中的第4透镜组G4具有上述结构。
或者,第4透镜组G4也可以以如下方式构成:从物体侧依次包括双凹透镜及正透镜接合的第1双合透镜、将凹面朝向图像侧的负新月形透镜及双凸透镜接合的第2双合透镜、及将凹面朝向图像侧的负新月形透镜,第1双合透镜及第2双合透镜配置成在第4透镜组G4内隔开最长的空气间隔。当如此构成时,通过将包括负透镜及正透镜的组分开配置成2组,能够使轴上色差与倍率色差保持平衡。并且,能够用最靠近图像侧的负新月形透镜来抑制对球差的影响并使像散保持平衡。图1及图5的例中的第4透镜组G4具有上述结构。
或者,第4透镜组G4也可以以如下方式构成:从物体侧依次包括负透镜及正透镜接合的第1双合透镜、单透镜即正透镜、及将凹面朝向图像侧的负新月形透镜及双凸透镜接合的第2双合透镜,单透镜即正透镜及第2双合透镜配置成在第4透镜组G4内隔开最长的空气间隔。当如此构成时,通过将包括负透镜及正透镜的组分开配置成2组,能够使轴上色差与倍率色差保持平衡。并且,通过在第1双合透镜与第2双合透镜之间配置正透镜,能够使球差保持平衡。图4的例中的第4透镜组G4具有上述结构。
或者,第4透镜组G4也可以以如下方式构成:从物体侧依次包括负透镜、正透镜、及将凹面朝向图像侧的负新月形透镜及正透镜接合的双合透镜,双合透镜及其物体侧正前面的正透镜配置成在第4透镜组G4内隔开最长的空气间隔。当如此构成时,通过将负透镜及正透镜的组分开配置成2组,能够使轴上色差与倍率色差保持平衡。图3、图8、图9及图10的例中的第4透镜组G4具有上述结构。
上述的优选结构及可能的结构能够任意进行组合,优选根据所要求的规格适当选择来采用。根据本实施方式,能够实现既具有高变倍比且长焦端中的球差及轴上色差得到良好校正而具有高光学性能的变焦透镜。另外,在此所指的“高变倍比”表示变倍比为40倍以上。
接着,对本发明的变焦透镜的数值实施例进行说明。
[实施例1]
实施例1的变焦透镜的透镜结构如图1所示,由于其图示方法与上述相同,在此省略重复说明。作为实施例1的变焦透镜的组结构,采用了如下结构:从物体侧依次包括具有正屈光力的第1透镜组G1、具有负屈光力的第2透镜组G2、具有正屈光力的第3透镜组G3、孔径光圈St及具有负屈光力的第4透镜组G4,在从广角端向长焦端进行变倍时,第1透镜组G1、孔径光圈St及第4透镜组G4相对于图像面Sim固定,第2透镜组G2及第3透镜组G3改变相互间隔而移动。
第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L23,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L45。
将实施例1的变焦透镜的基本透镜数据示于表1中,将规格及可变面间隔示于表2中。在表1的Si栏中示出以将最靠近物体侧的构成要件的物体侧的面设为第1个而随着向图像侧逐渐增加的方式对构成要件的面标注面编号时的第i个(i=1、2、3、……)面编号,在Ri栏中示出第i个面的曲率半径,在Di栏中示出第i个面与第i+1个面的光轴Z上的面间隔。在表1的Ndj栏中示出将最靠近物体侧的构成要件设为第1个而随着向图像侧逐渐增加的第j个(j=1、2、3、……)构成要件的与d线(波长587.6nm)有关的折射率,在vdj栏中示出第j个构成要件的d线基准的色散系数,在θgFj的栏中示出第j个构成要件的g线(波长435.8nm)与F线(波长486.1nm)之间的部分色散比。
在此,关于曲率半径的符号,将凸面朝向物体侧的面形状的情况设为正,将凸面朝向图像侧的面形状的情况设为负。表1中一并示出孔径光圈St及光学部件PP。在表1中,在与孔径光圈St相当的面的面编号的栏中记载有面编号及(St)这一术语。Di的最下栏的值是表中的最靠近图像侧的面与图像面S im的间隔。并且,在表1中,关于变倍时发生变化的可变面间隔,使用DD[]这一记号,在[]中标注该间隔的物体侧的面编号并记入于Di栏中。
表2中以d线基准来示出变倍比Zr、整体系统的焦距f、焦距比数FNo.、最大全视场角2ω及可变面间隔的值。2ω的栏的(°)表示单位为度。在表2中,将广角端、中间焦距状态及长焦端中的各值分别示于以WIDE、MIDDLE及TELE来标记的栏中。表1及表2的值是对焦于无限远物体的状态的值。
各表的数据中,作为角度的单位使用度,作为长度的单位使用mm,但光学系统即使放大比例或缩小比例也能够使用,因此也能够使用其他适当的单位。并且,以下所示的各表中记载有舍入为规定位数的数值。
[表1]
实施例1
Si Ri Di Ndj νdj θgFj
1 216.40568 2.500 1.48749 70.24 0.53007
2 133.94070 14.179 1.49700 81.54 0.53748
3 -353.32521 2.565
4 131.58845 11.363 1.49700 81.54 0.53748
5 1.578
6 -949.58707 4.000 1.72047 34.71 0.58350
7 290.82300 DD[7]
8 -889.82530 1.000 2.00100 29.13 0.59952
9 48.58111 4.359
10 -48.06798 4.748 1.95906 17.47 0.65993
11 -20.24539 1.020 1.91082 35.25 0.58224
12 -403.09308 DD[12]
13 77.91891 2.801 1.61800 63.33 0.54414
14 -105.86057 0.100
15 49.67823 2.773 1.90366 31.31 0.59481
16 24.67803 8.548 1.61800 63.33 0.54414
17 7683.24714 DD[17]
18(St) 4.330
19 -48.45143 4.668 1.59551 39.24 0.58043
20 47.08892 2.099 1.90366 31.31 0.59481
21 527.35653 20.255
22 35.45625 1.988 1.91082 35.25 0.58224
23 16.66460 3.863 1.54814 45.78 0.56859
24 -37.41507 0.148
25 25.82053 1.354 1.49700 81.54 0.53748
26 13.28647 20.000
27 1.500 1.51680 64.20 0.53430
28 11.230
[表2]
实施例1
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.739 80.447 734.401
FNo. 3.89 4.69 7.50
2ω(°) 40.8 6.6 0.8
DD[7] 16.154 114.214 153.602
DD[12] 200.492 86.788 3.456
DD[17] 2.648 18.293 62.237
图12中示出实施例1的变焦透镜对焦于无限远物体的状态下的各像差图。在图12中,在标注有WIDE的上段从左依次示出广角端中的球差、像散、畸变像差(失真)及倍率色差(倍率的色差),在标注有MIDDLE的中段从左依次示出中间焦距状态下的球差、像散、畸变像差及倍率色差,在标注有TELE的下段从左依次示出长焦端中的球差、像散、畸变像差及倍率色差。在球差图中,将与d线(波长587.6nm)、C线(波长656.3nm)、F线(波长486.1nm)及g线(波长435.8nm)有关的像差分别以实线、长虚线、短虚线及灰色实线来表示。在像散图中,将与弧矢方向的d线有关的像差以实线来表示,将与正切方向的d线有关的像差以短虚线来表示。在畸变像差图中,将与d线有关的像差以实线来表示。在倍率色差图中,将与C线、F线及g线有关的像差分别以长虚线、短虚线及灰色实线来表示。球差图的FNo.表示焦距比数,其他像差图的ω表示半视场角。
关于上述的实施例1的说明中叙述的各数据的记号、含义及记载方法,若无特别说明,则对以下的实施例也相同,因此以下省略重复说明。
[实施例2]
实施例2的变焦透镜的透镜结构如图2所示。实施例2的变焦透镜的组结构与实施例1相同。在实施例2中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L23,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L43。将实施例2的变焦透镜的基本透镜数据示于表3中,将规格及可变面间隔示于表4中,将对焦于无限远物体的状态下的各像差图示于图13中。
[表3]
实施例2
Si Ri Di Ndj νdj θgFj
1 191.96674 2.520 1.51680 64.20 0.53430
2 89.57810 19.306 1.49700 81.54 0.53748
3 -334.49552 0.100
4 124.91815 11.777 1.49700 81.54 0.53748
5 1.186
6 -1114.04803 4.000 1.74950 35.28 0.58704
7 307.73374 DD[7]
8 -127.90411 1.000 2.00069 25.46 0.61364
9 64.96425 4.900
10 -46.51945 6.385 1.94595 17.98 0.65460
11 -21.29165 1.020 1.78590 44.20 0.56317
12 440.99164 DD[12]
13 89.62122 3.704 1.61800 63.33 0.54414
14 -105.03844 0.100
15 54.90015 1.000 1.90366 31.31 0.59481
16 28.23740 5.020 1.61800 63.33 0.54414
17 928.71657 DD[17]
18(St) 4.719
19 -51.62990 1.095 1.51823 58.90 0.54567
20 -103.58156 35.333
21 -195.58114 2.501 1.51823 58.90 0.54567
22 -33.67121 0.993
23 14.14366 2.048 1.80440 39.59 0.57297
24 10.99190 20.000
25 1.500 1.51680 64.20 0.53430
26 11.011
[表4]
实施例2
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.753 80.533 735.192
FNo. 3.90 3.89 7.44
2ω(°) 41.6 6.6 0.8
DD[7] 8.217 99.222 134.665
DD[12] 200.368 90.382 3.471
DD[17] 2.570 21.552 73.020
[实施例3]
实施例3的变焦透镜的透镜结构如图3所示。实施例3的变焦透镜的组结构与实施例1相同。在实施例3中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L23,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L44。将实施例3的变焦透镜的基本透镜数据示于表5中,将规格及可变面间隔示于表6中,将对焦于无限远物体的状态下的各像差图示于图14中。
[表5]
实施例3
Si Ri Di Ndj νdj θgFj
1 215.84986 2.500 1.48749 70.24 0.53007
2 97.80300 17.883 1.49700 81.54 0.53748
3 -349.91122 0.348
4 130.09067 11.504 1.49700 81.54 0.53748
5 1.331
6 -994.32955 4.000 1.80100 34.97 0.58642
7 353.45348 DD[7]
8 895.64822 1.000 2.00069 25.46 0.61364
9 42.17170 5.113
10 -52.08115 6.755 1.95906 17.47 0.65993
11 -20.54709 1.020 1.91082 35.25 0.58224
12 -433.61467 DD[12]
13 84.79772 3.423 1.61800 63.33 0.54414
14 -106.15374 0.100
15 50.65722 1.000 1.90366 31.31 0.59481
16 27.03826 4.475 1.61800 63.33 0.54414
17 341.26564 DD[17]
18(St) 9.070
19 -68.73274 1.000 1.90043 37.37 0.57720
20 365.91418 3.396
21 21.00186 4.721 1.70154 41.24 0.57664
22 36.23985 16.127
23 53.45602 1.402 1.90043 37.37 0.57720
24 10.19297 4.964 1.62004 36.26 0.58800
25 -145.69180 20.000
26 1.500 1.51680 64.20 0.53430
27 9.697
[表6]
实施例3
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.733 80.407 734.038
FNo. 3.90 3.89 7.44
2ω(°) 40.6 6.6 0.8
DD[7] 11.744 107.770 145.586
DD[12] 205.339 91.057 3.146
DD[17] 3.015 21.271 71.366
[实施例4]
实施例4的变焦透镜的透镜结构如图4所示。实施例4的变焦透镜的组结构与实施例1相同。在实施例4中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L23,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L45。将实施例4的变焦透镜的基本透镜数据示于表7中,将规格及可变面间隔示于表8中,将对焦于无限远物体的状态下的各像差图示于图15中。
[表7]
实施例4
Si Ri Di Ndj νdj θgFj
1 217.13137 2.504 1.48749 70.24 0.53007
2 109.11879 16.601 1.49700 81.54 0.53748
3 -334.71666 1.145
4 121.49144 12.130 1.49700 81.54 0.53748
5 1.394
6 -1084.38808 4.000 1.80100 34.97 0.58642
7 314.34496 DD[7]
8 2458.85221 1.000 2.00069 25.46 0.61364
9 41.40489 4.540
10 -50.01329 7.000 1.95906 17.47 0.65993
11 -19.94426 1.020 1.91082 35.25 0.58224
12 -377.31537 DD[12]
13 82.68537 3.339 1.61800 63.33 0.54414
14 -116.39447 0.100
15 53.54060 1.163 1.90366 31.31 0.59481
16 27.63487 5.020 1.61800 63.33 0.54414
17 772.82848 DD[17]
18(St) 7.492
19 -76.22060 1.000 1.89781 38.22 0.57276
20 121.26208 1.829 1.62155 61.30 0.54050
21 -521.93034 6.406
22 20.97422 3.698 1.67616 33.12 0.59129
23 33.20618 17.397
24 54.26052 0.934 1.89226 38.77 0.57135
25 11.17162 3.896 1.58060 39.94 0.57671
26 -82.11234 20.000
27 1.500 1.51680 64.20 0.53430
28 10.288
[表8]
实施例4
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.742 80.467 734.584
FNo. 3.90 3.89 7.44
2ω(°) 40.4 6.6 0.8
DD[7] 15.029 105.616 140.929
DD[12] 199.163 89.699 3.112
DD[17] 2.740 21.617 72.891
[实施例5]
实施例5的变焦透镜的透镜结构如图5所示。实施例5的变焦透镜的组结构与实施例1相同。在实施例5中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L23,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L45。将实施例5的变焦透镜的基本透镜数据示于表9中,将规格及可变面间隔示于表10中,将对焦于无限远物体的状态下的各像差图示于图16中。
[表9]
实施例5
Si Ri Di Ndj νdj θgFj
1 255.97127 2.500 1.48749 70.24 0.53007
2 106.34514 16.235 1.49700 81.54 0.53748
3 -417.09106 0.398
4 142.63823 13.180 1.49700 81.54 0.53748
5 -483.92274 4.000 1.80100 34.97 0.58642
6 570.72629 DD[6]
7 -115.58671 1.000 2.00069 25.46 0.61364
8 59.59656 3.708
9 -47.54120 4.759 1.94595 17.98 0.65460
10 -19.28998 1.020 1.80440 39.59 0.57297
11 -1412.36901 DD[11]
12 77.13335 3.026 1.61800 63.33 0.54414
13 -100.02536 0.100
14 49.34256 1.000 1.90366 31.31 0.59481
15 25.08987 4.196 1.61800 63.33 0.54414
16 1056.49837 DD[16]
17(St) 5.019
18 -55.50822 3.319 1.66680 33.05 0.59578
19 44.99991 6.659 1.84666 23.78 0.62054
20 1430.50742 22.976
21 35.84652 1.598 1.88100 40.14 0.57010
22 25.83913 2.828 1.59522 67.73 0.54426
23 -67.82242 0.827
24 24.65415 0.918 1.61800 63.33 0.54414
25 13.14361 20.000
26 1.500 1.51680 64.20 0.53430
27 17.529
[表10]
实施例5
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.729 80.383 733.822
FNo. 3.89 4.71 7.49
2ω(°) 41.6 6.6 0.8
DD[6] 8.597 108.499 148.669
DD[11] 202.845 87.388 3.534
DD[16] 2.529 18.084 61.768
[实施例6]
实施例6的变焦透镜的透镜结构如图6所示。实施例6的变焦透镜的组结构与实施例1相同。在实施例6中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L24,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L43。将实施例6的变焦透镜的基本透镜数据示于表11中,将规格及可变面间隔示于表12中,将对焦于无限远物体的状态下的各像差图示于图17中。
[表11]
实施例6
Si Ri Di Ndj νdj θgFj
1 162.83295 2.520 1.51680 64.20 0.53430
2 97.03196 18.237 1.49700 81.54 0.53748
3 -320.11075 0.100
4 120.70708 11.938 1.49700 81.54 0.53748
5 1.669
6 -715.57927 4.000 1.72342 37.95 0.58370
7 249.37292 DD[7]
8 3498.29151 1.000 2.00069 25.46 0.61364
9 21.68831 4.483 1.92286 20.88 0.62825
10 48.22412 4.262
11 -46.03674 6.728 1.95906 17.47 0.65993
12 -19.65817 1.020 1.90366 31.31 0.59481
13 -454.92022 DD[13]
14 89.74452 3.425 1.61800 63.33 0.54414
15 -106.98162 0.100
16 54.76088 1.000 1.90366 31.31 0.59481
17 28.56140 4.535 1.61800 63.33 0.54414
18 684.86066 DD[18]
19(St) 5.444
20 -48.94954 1.096 1.51680 64.20 0.53430
21 -112.20951 32.772
22 90.78467 2.327 1.51680 64.20 0.53430
23 -46.73242 1.337
24 16.21666 1.856 1.83481 42.72 0.56514
25 12.24512 20.000
26 1.500 1.51680 64.20 0.53430
27 11.750
[表12]
实施例6
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.746 80.494 734.831
FNo. 3.90 3.89 7.45
2ω(°) 40.8 6.6 0.8
DD[7] 8.232 95.653 129.445
DD[13] 197.009 89.986 3.371
DD[18] 4.020 23.622 76.446
[实施例7]
实施例7的变焦透镜的透镜结构如图7所示。实施例7的变焦透镜的组结构与实施例1相同。在实施例7中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L24,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L43。将实施例7的变焦透镜的基本透镜数据示于表13中,将规格及可变面间隔示于表14中,将对焦于无限远物体的状态下的各像差图示于图18中。
[表13]
实施例7
Si Ri Di Ndj νdj θgFj
1 161.41564 2.520 1.48749 70.24 0.53007
2 125.68133 15.158 1.43875 94.94 0.53433
3 -319.57785 9.708
4 133.17648 14.534 1.49700 81.54 0.53748
5 2.064
6 -580.86386 4.000 1.80100 34.97 0.58642
7 426.05938 DD[7]
8 97.93224 2.410 2.00069 25.46 0.61364
9 23.45298 3.298 1.94595 17.98 0.65460
10 33.79631 5.553
11 -36.93320 7.000 1.95906 17.47 0.65993
12 -20.44514 1.020 1.91082 35.25 0.58224
13 -236.55113 DD[13]
14 79.29405 2.745 1.61800 63.33 0.54414
15 -109.22288 0.100
16 50.98889 1.000 1.90366 31.31 0.59481
17 26.11840 3.565 1.61800 63.33 0.54414
18 1936.71499 DD[18]
19(St) 5.386
20 -43.27393 1.000 1.51680 64.20 0.53430
21 -355.60325 22.850
22 578.08958 2.074 1.51680 64.20 0.53430
23 -37.48658 6.336
24 14.93558 2.128 1.83481 42.72 0.56514
25 11.93520 20.000
26 1.500 1.51680 64.20 0.53430
27 14.505
[表14]
实施例7
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.740 80.456 734.488
FNo. 3.90 4.71 7.50
2ω(°) 40.4 6.6 0.8
DD[7] 2.871 94.551 130.752
DD[13] 194.778 86.151 3.335
DD[18] 4.183 21.130 67.746
[实施例8]
实施例8的变焦透镜的透镜结构如图8所示。实施例8的变焦透镜的组结构与实施例1相同。在实施例8中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L24,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L44。将实施例8的变焦透镜的基本透镜数据示于表15中,将规格及可变面间隔示于表16中,将对焦于无限远物体的状态下的各像差图示于图19中。
[表15]
实施例8
Si Ri Di Ndj νdj θgFj
1 186.09758 2.520 1.51680 64.20 0.53430
2 96.71443 18.466 1.49700 81.54 0.53748
3 -306.22286 0.100
4 123.65574 11.809 1.49700 81.54 0.53748
5 1.574
6 -783.08822 4.000 1.72342 37.95 0.58370
7 247.05220 DD[7]
8 60.02624 4.984 2.00069 25.46 0.61364
9 25.90943 2.745 1.92286 20.88 0.63900
10 31.67503 6.393
11 -43.41605 1.020 1.85150 40.78 0.56958
12 29.45792 4.397 1.95906 17.47 0.65993
13 144.55491 DD[13]
14 166.49179 2.955 1.71300 53.87 0.54587
15 -92.22339 0.100
16 61.30233 1.000 1.67270 32.10 0.59891
17 23.32657 5.020 1.61800 63.33 0.54414
18 370.88352 DD[18]
19(St) 3.100
20 -69.66425 4.619 1.90366 31.31 0.59481
21 -445.77037 5.000
22 18.68007 5.817 1.66680 33.05 0.59578
23 23.38243 10.001
24 126.79348 0.900 1.91082 35.25 0.58224
25 12.44186 5.010 1.62004 36.26 0.58800
26 -46.30750 20.000
27 1.500 1.51680 64.20 0.53430
28 18.213
[表16]
实施例8
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.739 80.448 734.418
FNo. 3.90 3.89 7.44
2ω(°) 40.8 6.6 0.8
DD[7] 5.265 99.062 136.093
DD[13] 203.358 91.344 3.941
DD[18] 2.678 20.895 71.266
[实施例9]
实施例9的变焦透镜的透镜结构如图9所示。实施例9的变焦透镜的组结构与实施例1相同。在实施例9中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L24,第3透镜组G3从物体侧依次包括透镜L31~L32,第4透镜组G4从物体侧依次包括透镜L41~L44。将实施例9的变焦透镜的基本透镜数据示于表17中,将规格及可变面间隔示于表18中,将对焦于无限远物体的状态下的各像差图示于图20中。
[表17]
实施例9
Si Ri Di Ndj νdj θgFj
1 180.92676 2.520 1.51680 64.20 0.53430
2 94.52577 19.006 1.49700 81.54 0.53748
3 -284.04969 1.173
4 110.32871 13.036 1.49700 81.54 0.53748
5 1.726
6 -783.87662 4.124 1.72342 37.95 0.58370
7 212.69797 DD[7]
8 144.41987 2.025 2.00069 25.46 0.61364
9 30.00032 4.702 1.92286 20.88 0.63900
10 54.64235 4.667
11 -55.60288 1.020 1.83400 37.16 0.57759
12 23.68466 4.883 1.95906 17.47 0.65993
13 66.90974 DD[13]
14 94.08195 3.950 1.71300 53.87 0.54587
15 -25.23538 1.000 1.90366 31.31 0.59481
16 -53.80885 DD[16]
17(St) 3.100
18 -63.14015 1.000 1.77250 49.60 0.55212
19 -527.19303 0.100
20 22.09258 4.835 1.61800 63.33 0.54414
21 34.67478 12.727
22 47.56759 4.984 1.88300 40.76 0.56679
23 12.20283 3.178 1.59551 39.24 0.58043
24 -230.44814 20.000
25 1.500 1.51680 64.20 0.53430
26 22.848
[表18]
实施例9
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.748 80.507 734.949
FNo. 3.90 4.90 7.81
2ω(°) 40.8 6.6 0.8
DD[7] 7.431 92.639 124.983
DD[13] 206.335 98.372 5.460
DD[16] 1.511 24.266 84.834
[实施例10]
实施例10的变焦透镜的透镜结构如图10所示。实施例10的变焦透镜的组结构与实施例1相同。在实施例10中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L24,第3透镜组G3从物体侧依次包括透镜L31~L34,第4透镜组G4从物体侧依次包括透镜L41~L44。将实施例10的变焦透镜的基本透镜数据示于表19中,将规格及可变面间隔示于表20中,将对焦于无限远物体的状态下的各像差图示于图21中。
[表19]
实施例10
Si Ri Di Ndj νdj θgFj
1 200.70404 2.520 1.51680 64.20 0.53430
2 96.40830 17.892 1.49700 81.54 0.53748
3 -363.13872 0.117
4 128.03255 12.263 1.49700 81.54 0.53748
5 -1482.97512 4.084
6 -742.62325 4.000 1.76200 40.10 0.57655
7 253.89024 DD[7]
8 73.32512 5.000 1.95375 32.32 0.59015
9 19.79985 8.020 1.90366 31.31 0.59481
10 31.04454 5.129
11 -44.00180 1.020 1.88100 40.14 0.57010
12 20.00014 5.207 1.92286 20.88 0.63900
13 121.71146 DD[13]
14 -309.58271 2.422 1.49700 81.54 0.53748
15 -54.76137 2.444
16 366.48003 2.259 1.49700 81.54 0.53748
17 -92.63774 3.057
18 47.74722 1.500 1.62588 35.70 0.58935
19 18.11373 4.728 1.61800 63.33 0.54414
20 514.97999 DD[20]
21(St) 3.725
22 -51.82775 1.385 1.88300 40.80 0.56557
23 77.99680 3.857
24 20.13447 6.000 1.63980 34.47 0.59233
25 41.31384 17.958
26 118.21005 0.900 1.85150 40.78 0.56958
27 10.34443 5.010 1.59551 39.24 0.58043
28 -39.13153 20.000
29 1.500 1.51680 64.20 0.53430
30 9.032
[表20]
实施例10
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.705 80.231 732.437
FNo. 3.92 4.94 7.80
2ω(°) 40.0 6.6 0.8
DD[7] 5.497 106.159 147.464
DD[13] 192.124 80.129 6.472
DD[20] 3.497 14.830 47.182
[实施例11]
实施例11的变焦透镜的透镜结构如图11所示。实施例11的变焦透镜的组结构除了第4透镜组G4具有正屈光力的点以外与实施例1相同。在实施例11中,第1透镜组G1从物体侧依次包括第1透镜L11~第4透镜L14,第2透镜组G2从物体侧依次包括透镜L21~L24,第3透镜组G3从物体侧依次包括透镜L31~L33,第4透镜组G4从物体侧依次包括透镜L41~L43。将实施例11的变焦透镜的基本透镜数据示于表21中,将规格及可变面间隔示于表22中,将对焦于无限远物体的状态下的各像差图示于图22中。
[表21]
实施例11
Si Ri Di Ndj νdj θgFj
1 152.99867 5.045 1.60300 65.44 0.54022
2 118.52506 16.094 1.43875 94.94 0.53433
3 -279.64991 3.911
4 121.55702 11.839 1.43875 94.94 0.53433
5 2.302
6 -533.75176 4.000 1.72047 34.71 0.58350
7 490.51125 DD[7]
8 183.01113 1.000 2.00100 29.13 0.59952
9 33.88346 2.478 1.92286 20.88 0.63900
10 44.86951 5.186
11 -36.83072 3.456 1.95906 17.47 0.65993
12 -22.62341 1.020 1.77250 49.60 0.55212
13 308.41883 DD[13]
14 83.16488 2.786 1.61800 63.33 0.54414
15 -109.60590 0.100
16 53.66158 3.621 1.90366 31.31 0.59481
17 26.29923 4.297 1.61800 63.33 0.54414
18 621.66934 DD[18]
19(St) 3.378
20 -53.25428 1.779 1.51680 64.20 0.53430
21 -347.22370 31.685
22 317.29896 2.463 1.51680 64.20 0.53430
23 -40.37450 0.758
24 14.97223 1.467 1.83481 42.72 0.56514
25 12.75900 20.000
26 1.500 1.51680 64.20 0.53430
27 18.794
[表22]
实施例11
WIDE middle TELE
Zr 1.0 6.3 57.6
f 12.755 80.549 735.335
FNo. 3.89 4.65 7.51
2ω(°) 41.0 6.6 0.8
DD[7] 3.353 90.765 124.753
DD[13] 197.320 90.588 4.009
DD[18] 2.690 22.011 74.601
表23中示出实施例1~11的变焦透镜的条件式(1)~(7)的对应值。除了条件式(2)的对应值以外,表23所示的值均以d线为基准。
[表23]
从以上数据可知,关于实施例1~11的变焦透镜,变倍比为57.6倍,具有高变倍比,且包括长焦端中的球差及轴上色差的各像差得到良好地校正,从而实现了高光学性能。
接着,对本发明的实施方式所涉及的摄像装置进行说明。在图23中,作为本发明的实施方式的摄像装置的一例,示出使用了本发明的实施方式所涉及的变焦透镜1的摄像装置10的概略结构图。作为摄像装置10,例如能够举出监控摄像机、摄像机或电子静止照相机等。
摄像装置10具备变焦透镜1、配置于变焦透镜1的图像侧的滤光片7、捕获通过变焦透镜成像的被摄体图像的成像元件8、对来自成像元件8的输出信号进行运算处理的信号处理部4、用于进行变焦透镜1的变倍的变倍控制部5及用于进行变焦透镜1的对焦的聚焦控制部6。另外,在图23中,概念性地图示了各透镜组。成像元件8是捕获通过变焦透镜1所形成的被摄体图像并转换为电信号的元件,其成像面以与变焦透镜1的图像面一致的方式配置。作为成像元件8,例如能够使用CCD(Charge Coupled Device)或CMOS(Complement ary MetalOxide Semiconductor)等。另外,在图23中,仅图示了1个成像元件8,但本发明的摄像装置并不限定于此,也可以是具有3个成像元件的所谓的3片方式的摄像装置。
以上,举出实施方式及实施例对本发明进行了说明,但本发明并不限定于上述实施方式及实施例,能够进行各种变形。例如,各透镜的曲率半径、面间隔、折射率及色散系数等并不限定于上述各数值实施例中所示的值,也可以采用其他值。

Claims (19)

1.一种变焦透镜,其特征在于,
所述变焦透镜从物体侧依次包括具有正屈光力的第1透镜组、具有负屈光力的第2透镜组、具有正屈光力的第3透镜组、光圈及第4透镜组,
在进行变倍时,所述第1透镜组及所述第4透镜组相对于图像面固定,所述第2透镜组及所述第3透镜组以光轴方向的相互间隔不同的方式移动,
所述第1透镜组从物体侧依次包括将具有负屈光力且凸面朝向物体侧的新月形状的第1透镜及具有正屈光力的第2透镜从物体侧依次接合而成的双合透镜、具有正屈光力的第3透镜、及具有负屈光力的第4透镜,
并且满足下述条件式(1):
-0.8<f1a/f1b<0 (1)
其中,
f1a:所述第1透镜、所述第2透镜及所述第3透镜的合成焦距;
f1b:所述第4透镜的焦距。
2.根据权利要求1所述的变焦透镜,其中,
满足下述条件式(2):
-0.01<θgF2-θgF1<0.015 (2)
其中,
θgF1:所述第1透镜的g线与F线之间的部分色散比;
θgF2:所述第2透镜的g线与F线之间的部分色散比。
3.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(3):
5<νd2-νd1<40 (3)
其中,
νd1:所述第1透镜的d线基准的色散系数;
νd2:所述第2透镜的d线基准的色散系数。
4.根据权利要求1或2所述的变焦透镜,其中,
在从广角端向长焦端进行变倍时,所述第3透镜组与所述第4透镜组的间隔始终增大,所述第2透镜组及所述第3透镜组同时通过各自的横向倍率成为-1倍的点。
5.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(4):
2.5<fT/f1<4.5 (4)
其中,
fT:长焦端中的整体系统的焦距;
f1:所述第1透镜组的焦距。
6.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(5):
-50<fT/f2<-10 (5)
其中,
fT:长焦端中的整体系统的焦距;
f2:所述第2透镜组的焦距。
7.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(6):
5<fT/f3<30 (6)
其中,
fT:长焦端中的整体系统的焦距;
f3:所述第3透镜组的焦距。
8.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(7):
-15<fT/f4<3 (7)
其中,
fT:长焦端中的整体系统的焦距;
f4:所述第4透镜组的焦距。
9.根据权利要求1或2所述的变焦透镜,其中,
所述第4透镜组具有负屈光力。
10.根据权利要求1或2所述的变焦透镜,其中,
所述第4透镜组具有正屈光力。
11.根据权利要求1或2所述的变焦透镜,其中,
通过移动所述第1透镜组整体来进行对焦。
12.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(1-1):
-0.7<f1a/f1b<-0.2 (1-1)。
13.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(2-1):
-0.008<θgF2-θgF1<0.01 (2-1)
其中,
θgF1:所述第1透镜的g线与F线之间的部分色散比;
θgF2:所述第2透镜的g线与F线之间的部分色散比。
14.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(3-1):
7<νd2-νd1<35 (3-1)
其中,
νd1:所述第1透镜的d线基准的色散系数;
νd2:所述第2透镜的d线基准的色散系数。
15.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(4-1):
2.8<fT/f1<4 (4-1)
其中,
fT:长焦端中的整体系统的焦距;
f1:所述第1透镜组的焦距。
16.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(5-1):
-40<fT/f2<-20 (5-1)
其中,
fT:长焦端中的整体系统的焦距;
f2:所述第2透镜组的焦距。
17.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(6-1):
7<fT/f3<25 (6-1)
其中,
fT:长焦端中的整体系统的焦距;
f3:所述第3透镜组的焦距。
18.根据权利要求1或2所述的变焦透镜,其中,
满足下述条件式(7-1):
-12<fT/f4<2 (7-1)
其中,
fT:长焦端中的整体系统的焦距;
f4:所述第4透镜组的焦距。
19.一种摄像装置,其具备权利要求1至18中任一项所述的变焦透镜。
CN201710139967.1A 2016-03-25 2017-03-09 变焦透镜及摄像装置 Active CN107229113B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061108 2016-03-25
JP2016061108A JP2017173650A (ja) 2016-03-25 2016-03-25 ズームレンズおよび撮像装置

Publications (2)

Publication Number Publication Date
CN107229113A true CN107229113A (zh) 2017-10-03
CN107229113B CN107229113B (zh) 2020-12-15

Family

ID=59897942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710139967.1A Active CN107229113B (zh) 2016-03-25 2017-03-09 变焦透镜及摄像装置

Country Status (3)

Country Link
US (1) US10295807B2 (zh)
JP (1) JP2017173650A (zh)
CN (1) CN107229113B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572436A (zh) * 2017-03-07 2018-09-25 富士胶片株式会社 变焦镜头及摄像装置
CN110007449A (zh) * 2017-12-20 2019-07-12 富士胶片株式会社 变焦透镜及摄像装置
CN110208959A (zh) * 2018-02-28 2019-09-06 富士胶片株式会社 成像镜头及摄像装置
CN112859310A (zh) * 2019-11-12 2021-05-28 富士胶片株式会社 变焦镜头及摄像装置
CN113448071A (zh) * 2020-03-09 2021-09-28 杭州海康威视数字技术股份有限公司 光学模组
CN113544565A (zh) * 2020-03-16 2021-10-22 华为技术有限公司 变焦镜头、摄像头模组及移动终端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564563B2 (en) * 2018-02-17 2023-01-31 Aizhong Zhang Apparatus and method of a multifunctional ophthalmic instrument
JP7043384B2 (ja) * 2018-10-16 2022-03-29 富士フイルム株式会社 ズームレンズ及び撮像装置
US11754818B2 (en) 2019-10-11 2023-09-12 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP7387373B2 (ja) 2019-10-11 2023-11-28 キヤノン株式会社 ズームレンズおよび撮像装置
CN111025609B (zh) * 2019-12-06 2022-02-18 浙江大华技术股份有限公司 一种镜头
CN113671675B (zh) * 2021-08-27 2022-10-28 西安应用光学研究所 一种变f#连续变焦电视光学系统
CN117406411B (zh) * 2023-12-14 2024-03-12 武汉宇熠科技有限公司 一种变焦安防监控镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214667A1 (en) * 2009-02-26 2010-08-26 Nikon Corporation Zooming optical system, optical apparatus and zooming optical system manufacturing method
CN103631005A (zh) * 2012-08-22 2014-03-12 三星泰科威株式会社 变焦镜头系统及具有该变焦镜头系统的拍摄装置
CN204945480U (zh) * 2015-08-03 2016-01-06 凯迈(洛阳)测控有限公司 大靶面连续变焦光学系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100722A (ja) 1985-10-28 1987-05-11 Canon Inc 高変倍のズ−ムレンズ
JPH02244110A (ja) * 1989-03-17 1990-09-28 Canon Inc ズームレンズ
JP3599730B2 (ja) 2002-01-04 2004-12-08 キヤノン株式会社 ズーム光学系
JP4610959B2 (ja) 2004-07-23 2011-01-12 富士フイルム株式会社 ズームレンズ
US8503097B2 (en) * 2009-05-27 2013-08-06 Nikon Corporation Lens system, optical apparatus and manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214667A1 (en) * 2009-02-26 2010-08-26 Nikon Corporation Zooming optical system, optical apparatus and zooming optical system manufacturing method
CN103631005A (zh) * 2012-08-22 2014-03-12 三星泰科威株式会社 变焦镜头系统及具有该变焦镜头系统的拍摄装置
CN204945480U (zh) * 2015-08-03 2016-01-06 凯迈(洛阳)测控有限公司 大靶面连续变焦光学系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572436A (zh) * 2017-03-07 2018-09-25 富士胶片株式会社 变焦镜头及摄像装置
CN108572436B (zh) * 2017-03-07 2021-09-10 富士胶片株式会社 变焦镜头及摄像装置
CN110007449B (zh) * 2017-12-20 2022-09-13 富士胶片株式会社 变焦透镜及摄像装置
CN110007449A (zh) * 2017-12-20 2019-07-12 富士胶片株式会社 变焦透镜及摄像装置
US11774712B2 (en) 2017-12-20 2023-10-03 Fujifilm Corporation Zoom lens and imaging apparatus
US11754805B2 (en) 2017-12-20 2023-09-12 Fujifilm Corporation Zoom lens and imaging apparatus
CN110208959A (zh) * 2018-02-28 2019-09-06 富士胶片株式会社 成像镜头及摄像装置
CN110208959B (zh) * 2018-02-28 2022-03-15 富士胶片株式会社 成像镜头及摄像装置
CN112859310A (zh) * 2019-11-12 2021-05-28 富士胶片株式会社 变焦镜头及摄像装置
CN113448071B (zh) * 2020-03-09 2022-11-18 杭州海康威视数字技术股份有限公司 光学模组
CN113448071A (zh) * 2020-03-09 2021-09-28 杭州海康威视数字技术股份有限公司 光学模组
CN113544565B (zh) * 2020-03-16 2022-05-24 华为技术有限公司 变焦镜头、摄像头模组及移动终端
CN113544565A (zh) * 2020-03-16 2021-10-22 华为技术有限公司 变焦镜头、摄像头模组及移动终端

Also Published As

Publication number Publication date
CN107229113B (zh) 2020-12-15
US20170276915A1 (en) 2017-09-28
US10295807B2 (en) 2019-05-21
JP2017173650A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
CN107229113A (zh) 变焦透镜及摄像装置
CN104865683B (zh) 变焦透镜以及摄像装置
CN104919355B (zh) 变焦透镜及摄像装置
CN104094156B (zh) 广角镜头和摄像装置
CN104620152B (zh) 变焦透镜和摄像装置
CN101726841B (zh) 变焦透镜及摄像装置
CN103403603B (zh) 变焦镜头和成像设备
CN108572436A (zh) 变焦镜头及摄像装置
CN104094157A (zh) 超广角镜头和摄像装置
CN205157866U (zh) 摄影透镜以及具备摄影透镜的摄影装置
CN108508583B (zh) 变焦镜头及摄像装置
CN104094152B (zh) 摄像镜头以及摄像装置
CN106405802A (zh) 变倍光学系统以及摄像装置
CN108279488A (zh) 变焦透镜及摄像装置
CN104094153B (zh) 摄像透镜和使用了它的摄像装置
CN107544129A (zh) 变焦透镜及摄像装置
CN107102427A (zh) 成像透镜及摄像装置
CN113534426A (zh) 变焦镜头
CN108279487A (zh) 变焦镜头及摄像装置
WO2017130478A1 (ja) ズームレンズおよび撮像装置
CN104620153A (zh) 变焦镜头以及摄像装置
CN201662647U (zh) 变焦透镜及摄像装置
CN105388595A (zh) 变焦透镜以及摄像装置
CN105204147A (zh) 变焦透镜及摄像装置
CN104769475B (zh) 变焦透镜和摄像装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant