CN107209798A - 用于确定医学数据采集系统的质量评价数据的方法和布置 - Google Patents
用于确定医学数据采集系统的质量评价数据的方法和布置 Download PDFInfo
- Publication number
- CN107209798A CN107209798A CN201580074149.7A CN201580074149A CN107209798A CN 107209798 A CN107209798 A CN 107209798A CN 201580074149 A CN201580074149 A CN 201580074149A CN 107209798 A CN107209798 A CN 107209798A
- Authority
- CN
- China
- Prior art keywords
- data
- mdas
- msub
- data acquisition
- mrow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000001303 quality assessment method Methods 0.000 title 1
- 230000000875 corresponding effect Effects 0.000 claims description 50
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 16
- 238000002591 computed tomography Methods 0.000 claims description 9
- 238000005481 NMR spectroscopy Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 238000007418 data mining Methods 0.000 claims description 7
- 230000007613 environmental effect Effects 0.000 claims description 7
- 238000013441 quality evaluation Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 description 11
- 230000036541 health Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 3
- 208000031361 Hiccup Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/40—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
一种用于确定医学数据采集系统(MDAS)的质量评价数据(QRD)的方法和布置。所述方法和布置包括接收第一数据,所述第一数据包括在通过MDAS的数据采集部件对患者执行数据采集流程(DAP)以采集医学数据期间发生的使用错误。所述方法和布置还包括根据所述第一数据来生成第二数据。所述第二数据指示所述使用错误的类别,其中,至少一个使用错误基于预定参数被分配给对应的类别。所述方法和布置还包括根据MDAS使用的总数、针对对应的错误类别的预定系数、以及在对应错误类别中的使用错误的数量来确定所述QRD。
Description
技术领域
医学机构可能具有被配置为生成与各种医学流程相对应的医学数据的多种医学数据采集系统(MDAS)。例如,MDAS可以是被用于对身体的内部结构进行可视化的成像设备。例如,所述成像设备可以是磁共振成像(MRI)设备。从使用该技术收集的数据可以提供可以生成解剖学图像的基础。具体地,可以以二维图像来表示身体的内部结构的截面、轴向图像或者可以生成更为复杂的图像作为三维图像。以这种方式,提供了用于对软组织进行成像的无创、无剂量的模态。所述图像可以由诸如医师、技术人员等的用户用于根据确定是否存在任何异常来确定在所述图像中捕获的内部结构是否是健康的、受损伤的等。这样,所述成像设备是复杂的,并且可能经历各种问题和故障。
背景技术
使用MDAS单元对患者的临床检查意味着对患者和医院双方的时间和金钱,并且因此,重要地研究了导致开启扫描、扫描自身、以及对从扫描采集的图像的后处理的故障的状况。检查装备的故障会导致客户(例如医院)的损失,并且可能导致装备服务花费,达数千美元。因此,可靠性度量被用于确定MDAS的可信度。
如故障间平均时间(MTBF)和崩溃间平均时间(MTBC)的可靠性度量是关于随时间的故障而测量到的操作性度量。如B10生命(L10)的其他度量关注电子-机械部件的故障并且可能与软件关系不大。这再次是基于时间的度量,其确定产品的群体的10%发生故障的时间。由于这两种度量涉及时间并且指示最优操作极限,不清楚系统是否能够幸免于该极限和/或在执行能力上超出。
因此,期望确定关于所执行的临床检查并且独立于时间的可靠性度量。
发明内容
示范性实施例涉及一种用于确定医学数据采集系统(MDAS)的质量评价数据(QRD)的方法和布置。
根据本发明的一方面,所述方法包括接收第一数据,所述第一数据包括在由所述MDAS的数据采集部件在患者上执行数据采集流程(DAP)以采集医学数据期间发生的使用错误(utilization error)。所述方法还包括根据所述第一数据来确定第二数据。所述第二数据指示所述使用错误的类别,其中,至少一个使用错误基于预定参数被分配给对应的类别。所述方法还包括根据所述MDAS使用的总数、针对对应的错误类别的预定系数、以及在对应的错误类别中的使用错误的数量来确定QRD。
在另一方面中,所述QRD是根据下式来确定的:
其中,N是MDAS使用的总数,Fn是与使用错误类别相对应的系数,Ln是在错误类别中的使用错误的数量,并且k是使用错误类别的总数。
在另一方面中,所述MDAS包括以下中的一项:磁共振成像(MRI)设备、计算机断层摄影(CT)设备、超声设备、X射线设备、以及核磁共振(NMR)设备。
在另一方面中,所述使用错误类别包括以下中的至少一项:类别L1,其包括致命使用错误;类别L2,其包括大的使用错误;类别L3,其包括可恢复的使用错误;以及类别L4,其包括小的使用错误。
在另一方面中,对应的系数F1是0.5,对应的系数F2是0.35,对应的系数F3是0.01,并且对应的系数F4是0.006。
在另一方面中,所述第一数据还包括以下中的至少一项:数据采集部件或MDAS的序列参考码(SRN)、在DAP期间发生的使用错误的时间戳/日期戳、使用MDAS执行DAP的技术人员的识别码、以及在DAP期间在使用错误的时间/日期处的数据采集部件的环境数据。
在另一方面中,所述方法还包括根据QRD来确定对应的动作。
在另外的方面中,所述对应的动作包括以下中的至少一项:将指令发送到MDAS;远程地关闭所述数据采集部件;发出维护推荐;重新启动所述MDAS;推荐对患者进行重新定位;安排维护;推荐对所述数据采集部件进行替换;在所述数据采集部件上运行诊断测试;以及调节所述数据采集部件的部件。
在另一方面中,所述接收还包括利用数据挖掘过程来检索所述第一数据。
在另一方面中,所述对应的系数包括通过利用神经网络类型的计算模型来确定。
附图说明
图1示出了根据示范性实施例的健康护理服务系统。
图2示出了根据示范性实施例的MDAS。
图3示出了根据示例性实施例的QRD系统。
图4示出了根据示范性实施例的用于记录和发送操作数据的方法。
图5示出了根据示范性实施例的用于确定QRD的方法。
图6示出了根据示范性实施例的操作数据。
具体实施方式
参考对示范性实施例的以下描述和相关的附图可以进一步地理解示范性实施例,其中,相似的要素被提供有相同的附图标记。所述示范性实施例涉及确定质量评价数据(QRD)的方法和布置。具体而言,所述示范性实施例能够参考医学数据采集系统(MDAS)来实施所述方法和布置。如将在下文更为详细地描述的,所述QRD可以被用作可靠性度量以评估和比较MDAS的性能。应当注意到,所述示范性实施例将参考用户。所述用户可以包括,但不限于,MDAS技术人员、医师、或者能够利用MDAS的其他人员。
图1示出了根据示范性实施例的健康护理服务系统100。健康护理服务系统100的服务之一是采集与患者有关的医学数据。例如,患者可能要求要在特定身体部分上执行的成像扫描。系统100包括至少一个MDAS 110、通信网络150、以及QRD系统160。
MDAS 110被用于执行数据采集流程(DAP)以生成患者的医学数据。在DAP期间,也将生成其他数据。本领域技术人员将理解,系统100可以包括多个MDAS 110、120。
通信网络150被用于辅助在MDAS 110与QRD系统160之间的通信。根据示范性实施例,通信网络150可以是使用对具有处理器的一个或多个远程计算机的逻辑连接的网络环境。逻辑连接可以包括局域网(LAN)和广域网(WAN),其通过范例而非限制的方式来呈现。这样的网络化环境普遍存在于办公室范围或企业范围的计算机网络、内联网和互联网中,并且可以使用各种各样不同的通信协议。本领域技术人员将意识到,这样的网络计算环境通常涵盖许多类型的计算机系统配置,包括个人计算机、手持设备、多处理器系统、基于微处理器或可编程的消费电子器件、网络PC、微型计算机、大型计算机等。本发明的示范性实施例还可以在分布式计算环境中实践,其中,由通过通信网络链接的(或者通过有线链接、无线链接、或者通过有线或无线链接的组合)的本地和远程处理设备来执行任务。在分布式计算环境中,程序模块可以被定位在本地和远程存储器存储设备两者中。
QRD系统160被用于基于由MDAS 110提供的数据以及由第三方提供的其他数据(诸如制造商的数据和历史数据)来生成QRD。QRD系统160还可以基于QRD来控制MDAS 110的各具体方面。
图2示出了根据示范性实施例的MDAS 110。MDAS 110包括处理器210、存储器220、数据采集部件230、输入设备240、输出设备250、接收器260、以及发射器270。
数据采集部件230是生成患者的医学数据的部件。数据采集部件230可以包括,但不限于:磁共振成像(MRI)设备、计算机断层摄影(CT)设备、超声机器、X射线设备、核磁共振(NMR)设备等。尽管所述示范性系统和方法可以被应用于任何数据采集部件230,但是示范性实施例将参考MRI设备。
处理器210可以接合数据采集部件230以执行DAP,以及接合MDAS110的其他部件。存储器220存储患者的医学数据以及与DAP和数据采集部件230有关的其他数据。
输入设备240可以接收来自用户的输入,并且包括键盘、鼠标、触摸屏、和/或其他输入设备。输出设备250可以经由监视器、打印机、和/或其他输出设备将数据传送至用户。接收器260和发送器270可以被用于诸如与通信网络150的有线和/或无线通信。在示范性实施例中,MDAS 110可以包括组合的收发器,以提供接收器260和发送器270的功能。
图3示出了根据示范性实施例的图1的QRD系统160。QRD系统160包括收发器161、存储器162、处理器163、以及输出设备164。如上文所论述的,QRD系统160可以被配置为经由通信网络150与MDAS 110进行通信。
处理器163可以接合收发器161以与MDAS 110进行通信。存储器162存储从MDAS110接收的数据以及操作QRD系统160所必须的其他数据和程序。存储器162还可以存储所接收的来自多个第三方的数据。处理器163还可以确定QRD。在示范性实施例中,处理器163可以基于QRD来控制MDAS 110的具体功能。输出部164可以在监测器、打印机、和/或其他输出设备上输出所述QRD。
图4示出了根据示范性实施例的用于生成和发送操作数据(例如,第一数据)600的方法400。操作数据600能够包括所收集的关于DAP的各种数据,并且下文将更为详细地描述。将关于图1的健康护理服务系统100来描述方法400。
在步骤410中,用户通过引导系统开启和重启数据采集部件230来执行DAP的准备阶段。一旦所述系统开启完成,则系统设置可以开始校准数据采集部件230。
在步骤420中,用户执行DAP的检查阶段。具体而言,在检查阶段期间,患者被放置在预定位置中。随后,用户激活数据采集部件以生成患者的医学数据。
在步骤430中,执行DAP的后检查阶段。具体地,在步骤420期间所获得的医学数据被处理并且被存储在存储器220中。另外,操作数据600被生成并且被存储在存储器220中。
图6示出了操作数据600的样本记录,其可以包括序列参考码(SRN)601、使用错误602、时间戳/日期戳603、技术人员ID 604、以及环境数据605。本领域技术人员将理解,其他字段可以被包括在操作数据600中。
SRN 601可以被用于识别数据采集部件230和/或MDAS 110。例如,SRN 610可以被用于识别数据采集部件220的制造商、模型编号、在系统110内的物理位置、以及数据采集部件230和/或MDAS 110的其他识别信息。
使用错误602包括瑕疵、小故障、以及在DAP期间已经发生的任何其他故障。例如,参考MRI设备,使用错误可以包括淬火磁体错误、淬火加热器状态磁体错误、低氦磁体错误、不足氦气超压磁体错误、通信错误、患者桌台/支撑体错误、系统重启、系统挂起、系统崩溃、线圈错误、系统快速登录、扫描中止、系统呃逆、系统用户恢复的崩溃、系统启动、工作完成的失败、自动恢复的崩溃、以及系统冲突。本领域技术人员将理解,除了所列举的错误,还可以发生其他错误。针对使用错误602的更为具体的实施例将在下文参考图5来描述。
时间/数据戳603记录在DAP期间发生的每个使用错误602的时间和日期。技术人员ID 604记录使用MDAS 110执行DAP的技术人员的身份。环境数据605包括在DAP期间在使用错误602的时间/日期处的数据采集部件230的特定操作状况。具体而言,环境数据605可以涉及在数据采集部件230所位于的位置中的温度、压力、湿度水平、以及其他环境状况。
返回图4,在步骤440中,MDAS 110将操作数据600发送到QRD系统160。操作数据600的发送可以响应于来自QRD系统160的请求来完成,或者所述操作数据可以被自动地发送(例如,基于预定安排)。
在备选实施例中,QRD系统160可以利用数据挖掘过程来检索来自MDAS 110的操作数据600。所述数据挖掘过程是提取数据并将其汇总为有用信息的过程。例如,QRD系统160可以经由ETL(提取、翻译和加载)工具来使用数据挖掘过程。ETL工具将提取来自MDAS 110的操作数据600,对其进行变换以用于以恰当的格式进行存储,并将其加载到存储器162上。然而,本领域技术人员将理解,“数据挖掘”是被用于描述提取和变换数据的过程的一般性术语,并且存在实现该目标的许多种方法。
图5示出了根据示范性实施例的用于确定QRD的方法500。将参考图1的健康护理系统100来描述所述方法。在步骤510中,QRD系统160接收来自MDAS 110的操作数据600。如上文所提到的,操作数据600是关于DAP所收集的各种数据。
在步骤520中,QRD系统160根据所述操作数据600来生成归类的数据(例如,第二数据)。经归类的数据可以指示操作数据600的类别。具体地,处理器163分析使用错误602并对其进行归类。使用错误602中的每个被分配给预定的类别。例如,基于诸如使用错误602的严重度的多个因素来确定预定的类别。
在示范性实施例中,可能存在如下四种类别。类别1(L1)可以包括致命使用错误,诸如数据采集部件230错误、通信错误、以及数据采集部件230关闭。L1包括将需要专业修复服务介入以修理MDAS 100的错误,,其将迫使消除多个可能的DAP。
在示范性实施例中,参考MRI设备,L1可以包括磁体错误、患者桌台或支撑体错误、系统范围的快速重启错误、以及系统范围的挂起错误。
类别2(L2)可以包括大的故障错误,例如,参考MRI设备,系统范围的崩溃、线圈错误、以及系统范围的快速登录。L2包括将迫使对数据采集部件230的重启或者对患者进行重新定位的错误。
类别3(L3)可以包括可恢复的使用错误,例如,参考MRI设备,扫描中止、重建中止、系统范围的用户恢复的崩溃、系统范围的启动、以及系统范围的工作完全失败。L3包括可能在短的时间段内干扰DAP的工作流程的错误。
类别4(L4)可以包括小的使用错误,例如,自动恢复的崩溃,协议定义冲突、以及系统范围的呃逆。L4包括几乎不干扰DAP的工作流程的错误。本领域技术人员将理解,类别的数量或关于所述类别的使用错误的位置可以被更改以增加准确度和效率。
在步骤530中,处理器163根据操作数据600来确定QRD,所述操作数据600具体而言是使用错误602、归类的数据、以及每个类别的对应的系数。每个类别的系数可以是预定的。QRD是根据下式来确定的:
其中:N=MDAS使用的总数
F=对应的类别系数
L=每类别的错误的数量
k=类别的总数
在示范性实施例中,以上等式被简化为以下实施例,其中,QRD可以由如下公式来限定:
QRD=N/(F1*L1+F2*L2+F3*L3+F4*L4)
其中:F1=0.5 L1=L1使用错误的数量
F2=0.35 L2=L2使用错误的数量
F3=0.01 L3=L3使用错误的数量
F4=0.006 L4=L4使用错误的数量
初始地,对应的系数可以基于试错来确定。例如,可以分析来自多个MDAS 110、120的一百五十(150)次使用,并且确定对应的系数。所述多个MDAS 110、120将需要在功能方面是相似的,例如所述多个MDAS 110、120将仅包括MRI设备或者仅包括CT设备。本领域技术人员将理解,可以针对不同类型的多个MDAS 110、120(例如,MRI设备、CT设备)中的每个来设定不同的对应的系数。备选地,所述对应的系数可以在每次MDAS 110使用之后被实时地修改。这使得能够在先前MDAS 110使用的累计次数上调节对应的系数。
在示范性实施例中,通过QRD系统利用神经网络类型的计算模型来确定对应的系数。所述神经网络是能够提取模式并且检测趋势的信息处理范式。具体而言,所述神经网络可以分析用户对来自多个相似MDAS 110、120的使用错误602的响应,并且周期性地调节对应的系数。本领域技术人员将理解,所述神经网络可以在调节对应的系数的过程中分析其他因子。
在步骤540中,处理器163可以基于QRD来确定对应的动作。在示范性实施例中,QRD与预定阈值范围进行比较。本领域技术人员还将理解,可以使用多个阈值范围,并且每个阈值可以与不同的对应的动作相关。所述阈值范围可以是与对应的动作相关的两个数的边界。因此,如果QRD被确定为处在阈值范围之内,则约定对应的动作。
具体而言,所述对应的动作可以是将指令发送到MDAS 110的动作,其将推荐关闭数据采集部件230。在备选方案中,处理器163可以远程地实时关闭数据采集部件230,以防止MDAS 110遭受损伤。
此外,QRD系统160可以具有在多个MDAS 110、120上的系统范围的控制。处理器163可以根据操作数据600、具体而言根据SRN 601在多个MDAS 110、120之间进行区分。
本领域技术人员将理解,对应的动作也可以包括发出维护推荐、重启MDAS 110、推荐对患者进行重新定位、安排维护,推荐对数据采集部件230进行替换、运行诊断测试,调节数据采集部件230的部件或其他对应的动作。
QRD可以被用作可靠性度量以评估和比较多个MDAS 110、120的性能。例如,参考MRI设备,其制造商可以将其设备的QRD与其他MRI设备的QRD进行比较。这将示出潜在消费者如何将制造商的MRI设备与其他MRI设备进行比较。
QRD系统160可以通过提供系统范围的诊断信息并且使得能够在多个MDAS 110、120的具体方面上进行控制而被用在产品服务中。例如,如果针对MDAS 110的QRD落到特定的阈值范围中,则可以在QRD系统160上、具体在输出设备164上发出警告。QRD系统160的操作者可以访问具体MDAS 110的操作数据600,并查看与数据采集部件230的特定部件有关的多个使用错误602。操作者然后或者可以将警告发送至MDAS 110并推荐替换特定的部件,或者操作者可以远程地关闭数据采集部件230直到特定的部件被修复。
备选地,操作者可以访问操作数据600,并且查看在存在具体MDAS 110技术人员的情况下发生的使用错误602的不成比例的量。操作者然后可以发出如下推荐,具体MDAS 110技术人员在再次初始化MDAS 110之前接收额外的训练。这将通过减少执行DAP所花费的时间来改善工作流。
QRD系统160还可以被用在数据采集部件230及其部件的产品开发以及制造中。例如,数据采集部件230的制造商可以使用实时数据来查看哪些部分发生故障以及多长时间一次,其将使得制造商能够基于故障率来更好地制造各部分,并且确保所述部分有足够的库存以用于可能到来的修复。此外,这将增加对数据采集部件230的修复率,其将导致对MDAS 110的更少的停机时间和改善的工作流。因此,存在改善的消费者满意度以及MDAS110的降低的操作成本。
本领域技术人员将意识到,可以在不脱离本公开的精神或范围的情况下对示范性实施例做出各种修改。因此,目的是,本发明覆盖本发明的修改和变化,只要它们在所附权利要求及其等同物的范围之内。
Claims (20)
1.一种用于确定医学数据采集系统(MDAS)(110)的质量评价数据(QRD)的方法(500),包括:
接收第一数据(600),所述第一数据包括在由所述MDAS(110)的数据采集部件(230)对患者执行数据采集流程(DAP)以采集医学数据期间发生的使用错误(602);
根据所述第一数据(600)来生成第二数据(520),所述第二数据指示所述使用错误(602)的类别,其中,至少一个使用错误(602)基于预定参数被分配给对应的类别;并且
根据MDAS(110)使用的总数、针对对应的使用错误类别的对应的系数、以及在对应的错误类别中的使用错误(602)的数量来确定所述QRD(530)。
2.根据权利要求1所述的方法(500),其中,所述QRD是根据下式来确定的:
<mrow>
<mi>Q</mi>
<mi>R</mi>
<mi>D</mi>
<mo>=</mo>
<mfrac>
<mi>N</mi>
<mrow>
<msubsup>
<mi>&Sigma;</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>k</mi>
</msubsup>
<msub>
<mi>F</mi>
<mi>n</mi>
</msub>
<msub>
<mi>L</mi>
<mi>n</mi>
</msub>
<mo>+</mo>
<msub>
<mi>F</mi>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>L</mi>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>+</mo>
<mo>...</mo>
<mo>+</mo>
<msub>
<mi>F</mi>
<mi>k</mi>
</msub>
<msub>
<mi>L</mi>
<mi>k</mi>
</msub>
</mrow>
</mfrac>
</mrow>
其中,N是所述MDAS(110)使用的所述总数;Fn是与所述使用错误类别相对应的所述系数,Ln是所述错误类别中的使用错误(602)的数量,并且k是所述使用错误类别的总数。
3.根据权利要求1所述的方法(500),其中,所述MDAS(110)包括以下中的一项:磁共振成像(MRI)设备、计算机断层摄影(CT)设备、超声设备、X射线设备、以及核磁共振(NMR)设备。
4.根据权利要求1所述的方法(500),其中,所述使用错误类别包括以下中的至少一项:
类别L1,其包括致命使用错误;
类别L2,其包括大的使用错误;
类别L3,其包括可恢复的使用;以及
类别L4,其包括小的使用错误。
5.根据权利要求4所述的方法,其中,对应的系数F1是0.5,对应的系数F2是0.35,对应的系数F3是0.01,并且对应的系数F4是0.006。
6.根据权利要求1所述的方法(500),其中,所述第一数据(600)还包括以下中的至少一项:所述数据采集部件230或所述MDAS(110)的序列参考码(SRN)(601)、在所述DAP期间发生的所述使用错误(602)的时间戳/日期戳(603)、使用所述MDAS(110)执行所述DAP的技术人员的识别码(604)、以及在所述DAP期间在所述使用错误(602)的时间/日期处的所述数据采集部件(230)的环境数据(605)。
7.根据权利要求1所述的方法(500),还包括:
根据所述QRD来确定对应的动作。
8.根据权利要求7所述的方法,其中,所述对应的动作包括以下中的至少一项:
向所述MDAS(110)发送指令;
远程地关闭所述数据采集部件(230);
发出维护推荐;
重启所述MDAS(110);
推荐对所述患者进行重新定位;
安排维护;
推荐对所述数据采集部件(230)进行替换;
在所述数据采集部件(230)上运行诊断测试;并且
调节所述数据采集部件(230)的部件。
9.根据权利要求1所述的方法(500),其中,所述接收还包括使用数据挖掘过程来检索所述第一数据(600)。
10.根据权利要求1所述的方法(500),其中,所述对应的系数包括通过使用神经网络类型的计算模型来确定。
11.一种用于确定医学数据采集系统(MDAS)(110)的质量评价数据(QRD)的布置,包括:
存储器,其接收第一数据(600),所述第一数据包括在由所述MDAS(110)的数据采集部件(230)对患者执行数据采集流程(DAP)以采集医学数据期间发生的使用错误(602);
处理器,其根据所述第一数据(600)来生成第二数据(520),所述第二数据指示所述使用错误(602)的类别,其中,至少一个使用错误(602)基于预定参数被分配给对应的类别,
其中,所述处理器根据MDAS(110)使用的总数、针对对应的使用错误类别的对应的系数、以及在所述对应的错误类别中的使用错误(602)的数量来确定所述QRD(530)。
12.根据权利要求11所述的布置,其中,所述QRD是根据下式来确定的:
<mrow>
<mi>Q</mi>
<mi>R</mi>
<mi>D</mi>
<mo>=</mo>
<mfrac>
<mi>N</mi>
<mrow>
<msubsup>
<mi>&Sigma;</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>k</mi>
</msubsup>
<msub>
<mi>F</mi>
<mi>n</mi>
</msub>
<msub>
<mi>L</mi>
<mi>n</mi>
</msub>
<mo>+</mo>
<msub>
<mi>F</mi>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>L</mi>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>+</mo>
<mo>...</mo>
<mo>+</mo>
<msub>
<mi>F</mi>
<mi>k</mi>
</msub>
<msub>
<mi>L</mi>
<mi>k</mi>
</msub>
</mrow>
</mfrac>
</mrow>
其中,N是所述MDAS(110)使用的所述总数,Fn是与所述使用错误类别相对应的所述系数,Ln是所述错误类别中的使用错误(602)的数量,并且k是所述使用错误类别的总数。
13.根据权利要求11所述的布置(500),其中,所述MDAS(110)包括以下中的一项:磁共振成像(MRI)设备、计算机断层摄影(CT)设备、超声设备、X射线设备、以及核磁共振(NMR)设备。
14.根据权利要求11所述的布置,其中,所述使用错误类别包括以下中的至少一项:
类别L1,其包括致命使用错误;
类别L2,其包括大的使用错误;
类别L3,其包括可恢复的使用;以及
类别L4,其包括小的使用错误。
15.根据权利要求14所述的布置,其中,对应的系数F1是0.5,对应的系数F2是0.35,对应的系数F3是0.01,并且对应的系数F4是0.006。
16.根据权利要求10所述的布置,其中,所述第一数据(600)还包括以下中的至少一项:所述数据采集部件230或所述MDAS 110的序列参考码(SRN)(601)、在所述DAP期间发生的所述使用错误(602)的时间戳/日期戳(603)、使用所述MDAS(110)执行所述DAP的技术人员的识别码(604)、以及在所述DAP期间在所述使用错误(602)的时间/日期处的所述数据采集部件(230)的环境数据(605)。
17.根据权利要求11所述的布置,其中,所述处理器根据所述QRD来确定对应的动作。
18.根据权利要求17所述的布置,其中,所述对应的动作包括以下中的至少一项:
向所述MDAS(110)发送指令;
远程地关闭所述数据采集部件(230);
发出维护推荐;
重启所述MDAS(110);
推荐对所述患者进行重新定位;
安排维护;
推荐对所述数据采集部件(230)进行替换;
在所述数据采集部件(230)上运行诊断测试;并且
调节所述数据采集部件(230)的部件。
19.根据权利要求11所述的布置,其中,所述接收还包括使用数据挖掘过程来检索所述第一数据(600)。
20.根据权利要求11所述的布置,其中,所述对应的系数包括通过使用神经网络类型的计算模型来确定。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN6457CH2014 | 2014-12-22 | ||
IN6457/CHE/2014 | 2014-12-22 | ||
PCT/IB2015/059608 WO2016103106A1 (en) | 2014-12-22 | 2015-12-15 | Method and arrangement for determining a quality rating data for a medical data acquisition system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107209798A true CN107209798A (zh) | 2017-09-26 |
Family
ID=55025300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580074149.7A Pending CN107209798A (zh) | 2014-12-22 | 2015-12-15 | 用于确定医学数据采集系统的质量评价数据的方法和布置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10734111B2 (zh) |
EP (1) | EP3238062B1 (zh) |
JP (1) | JP6457112B2 (zh) |
CN (1) | CN107209798A (zh) |
WO (1) | WO2016103106A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7299881B2 (ja) * | 2018-05-18 | 2023-06-28 | コーニンクレッカ フィリップス エヌ ヴェ | 医用イメージングデバイスの信頼性を向上するためのシステム及び方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1855771A (zh) * | 2005-01-27 | 2006-11-01 | 株式会社东芝 | 无线通信装置以及在其中使用的半导体集成电路装置 |
US20080132770A1 (en) * | 2006-12-05 | 2008-06-05 | Starr Life Sciences Corp. | Research data classification and quality control for data from non-invasive physiologic sensors |
CN101203910A (zh) * | 2005-03-15 | 2008-06-18 | 皇家飞利浦电子股份有限公司 | 用于确定用于在光学记录载体上记录数据的写策略参数以及用于确定用于从光学记录载体读出数据的读参数的装置和方法 |
CN102203783A (zh) * | 2008-10-22 | 2011-09-28 | 皇家飞利浦电子股份有限公司 | 执行受检者测量 |
US20120191383A1 (en) * | 2011-01-20 | 2012-07-26 | Steven James Huff | Method and system for acquiring and analyzing coil data |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7016539B1 (en) * | 1998-07-13 | 2006-03-21 | Cognex Corporation | Method for fast, robust, multi-dimensional pattern recognition |
US9183351B2 (en) * | 2000-05-30 | 2015-11-10 | Vladimir Shusterman | Mobile system with network-distributed data processing for biomedical applications |
US6738798B1 (en) * | 2000-06-01 | 2004-05-18 | Ge Medical Technology Services, Inc. | Automated monitoring of collection of operational data from medical imaging devices |
JP2003190105A (ja) * | 2001-12-27 | 2003-07-08 | Toshiba Corp | 画像蓄積サービスプロバイダ向けの医用画像診断装置の運用管理装置及び方法 |
US8423113B2 (en) * | 2003-07-25 | 2013-04-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8423125B2 (en) * | 2004-11-09 | 2013-04-16 | Spectrum Dynamics Llc | Radioimaging |
US20070118399A1 (en) * | 2005-11-22 | 2007-05-24 | Avinash Gopal B | System and method for integrated learning and understanding of healthcare informatics |
US7398132B2 (en) | 2006-01-06 | 2008-07-08 | Gm Global Technology Operations, Inc. | Method and system for analyzing throughput |
US8538776B2 (en) * | 2006-10-25 | 2013-09-17 | Bruce Reiner | Method and apparatus of providing a radiation scorecard |
US20190171714A1 (en) * | 2008-03-21 | 2019-06-06 | Safermed, LLC d/b/a SaferMD, LLC | Artificial Intelligence Quality Measures Data Extractor |
US20110276346A1 (en) * | 2008-11-03 | 2011-11-10 | Bruce Reiner | Automated method for medical quality assurance |
JP5361750B2 (ja) * | 2009-02-06 | 2013-12-04 | 株式会社東芝 | 医用情報通信接続管理装置及び医用情報通信接続管理方法 |
JP2011036560A (ja) * | 2009-08-17 | 2011-02-24 | Toshiba Corp | 医用システム |
CA2781566A1 (en) * | 2009-12-29 | 2011-07-28 | Advanced Brain Monitoring, Inc. | Systems and methods for assessing team dynamics and effectiveness |
US20120253847A1 (en) * | 2011-03-31 | 2012-10-04 | General Electric Company | Health information telecommunications system and method |
US8682049B2 (en) * | 2012-02-14 | 2014-03-25 | Terarecon, Inc. | Cloud-based medical image processing system with access control |
CN106170246A (zh) * | 2014-01-17 | 2016-11-30 | 阿特瑞斯公司 | 用于四维(4d)流磁共振成像的设备、方法和产品 |
US11443847B2 (en) * | 2014-11-26 | 2022-09-13 | Koninklijke Philips N.V. | Analyzing efficiency by extracting granular timing information |
EP3329433A1 (en) * | 2015-07-29 | 2018-06-06 | Illinois Tool Works Inc. | System and method to facilitate welding software as a service |
KR102480856B1 (ko) * | 2016-06-17 | 2022-12-23 | 삼성전자주식회사 | 블루투스 기반의 무선 통신 시스템에서 스트리밍 데이터의 통신 방법 및 장치 |
-
2015
- 2015-12-15 US US15/537,903 patent/US10734111B2/en active Active
- 2015-12-15 WO PCT/IB2015/059608 patent/WO2016103106A1/en active Application Filing
- 2015-12-15 EP EP15816891.4A patent/EP3238062B1/en not_active Not-in-force
- 2015-12-15 JP JP2017551385A patent/JP6457112B2/ja not_active Expired - Fee Related
- 2015-12-15 CN CN201580074149.7A patent/CN107209798A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1855771A (zh) * | 2005-01-27 | 2006-11-01 | 株式会社东芝 | 无线通信装置以及在其中使用的半导体集成电路装置 |
CN101203910A (zh) * | 2005-03-15 | 2008-06-18 | 皇家飞利浦电子股份有限公司 | 用于确定用于在光学记录载体上记录数据的写策略参数以及用于确定用于从光学记录载体读出数据的读参数的装置和方法 |
US20080132770A1 (en) * | 2006-12-05 | 2008-06-05 | Starr Life Sciences Corp. | Research data classification and quality control for data from non-invasive physiologic sensors |
CN102203783A (zh) * | 2008-10-22 | 2011-09-28 | 皇家飞利浦电子股份有限公司 | 执行受检者测量 |
US20120191383A1 (en) * | 2011-01-20 | 2012-07-26 | Steven James Huff | Method and system for acquiring and analyzing coil data |
Also Published As
Publication number | Publication date |
---|---|
US10734111B2 (en) | 2020-08-04 |
JP2018509720A (ja) | 2018-04-05 |
JP6457112B2 (ja) | 2019-01-23 |
WO2016103106A1 (en) | 2016-06-30 |
EP3238062A1 (en) | 2017-11-01 |
EP3238062B1 (en) | 2019-02-20 |
US20180004906A1 (en) | 2018-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12059217B2 (en) | Systems and methods for providing guidance for a robotic medical procedure | |
US7895055B2 (en) | Method and system to optimize and automate clinical workflow | |
CN110114834B (zh) | 用于医疗程序的深度学习医疗系统和方法 | |
CN100533446C (zh) | 图像质量管理系统 | |
KR20190105210A (ko) | 통합 의료 진단 서비스 제공 시스템 및 그 방법 | |
US7729524B2 (en) | Assessment of radiographic systems and operators using task-based phantom | |
US20160110510A1 (en) | Medical Workflow Determination And Optimization | |
WO2010071802A2 (en) | System for performing clinical trials | |
US20070150314A1 (en) | Method for carrying out quality control of medical data records collected from different but comparable patient collectives within the bounds of a medical plan | |
CN102272795A (zh) | 基于图像的临床试验评估 | |
JP2010262384A (ja) | 健康管理システム、健康管理方法及び健康管理プログラム | |
CN107209798A (zh) | 用于确定医学数据采集系统的质量评价数据的方法和布置 | |
CN105578958B (zh) | 用于背景感知成像的系统和方法 | |
JP4599148B2 (ja) | 画質管理システム | |
US20220199229A1 (en) | Method and system for enhancing medical ultrasound imaging devices with computer vision, computer aided diagnostics, report generation and network communication in real-time and near real-time | |
JP6827925B2 (ja) | 緻密なタイミング情報を抽出することによる効率の分析 | |
US12014823B2 (en) | Methods and systems for computer-aided diagnosis with deep learning models | |
CN115280420A (zh) | 放射科医生指纹 | |
CN104337549B (zh) | 利用多幅人像和b超图像同屏显示、组合对比防伪的查环查孕系统及其查检终端 | |
KR20220053382A (ko) | 파킨슨병 진단 장치 및 그 방법 | |
ICRP PUBLICATION 154 | Optimisation of Radiological Protection in Digital Radiology Techniques for Medical Imaging | |
BG4346U1 (bg) | Проактивна интелигентна система за ранна диагностика на аномалии на щитовидната жлеза | |
Ratnaningtyas et al. | Information quality prediction model based on six sigma in biomedical engineering: A study of hospital information system in the immanuel hospital | |
Ma et al. | An online real-time DICOM web-based computer-aided diagnosis system for bone age assessment of children in a PACS environment | |
KR20090093118A (ko) | 생체역학 파라미터 디스플레이 방법 및 상기 방법을수행하기 위한 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |