CN107208256A - 使用牺牲支持体的三维金属结构体的打印 - Google Patents

使用牺牲支持体的三维金属结构体的打印 Download PDF

Info

Publication number
CN107208256A
CN107208256A CN201680005719.1A CN201680005719A CN107208256A CN 107208256 A CN107208256 A CN 107208256A CN 201680005719 A CN201680005719 A CN 201680005719A CN 107208256 A CN107208256 A CN 107208256A
Authority
CN
China
Prior art keywords
metal material
metal
support structure
object construction
body support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680005719.1A
Other languages
English (en)
Other versions
CN107208256B (zh
Inventor
Z.科特勒
M.泽努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OVBOTECH Ltd
Original Assignee
OVBOTECH Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OVBOTECH Ltd filed Critical OVBOTECH Ltd
Publication of CN107208256A publication Critical patent/CN107208256A/zh
Application granted granted Critical
Publication of CN107208256B publication Critical patent/CN107208256B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/12Etching of semiconducting materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/428Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种3D打印方法,其包括将第一金属材料打印到基板上作为支持结构体(48)。将比所述第一金属材料阳极性低的第二金属材料以与所述支持结构体接触的方式打印到所述基板上作为目标结构体(46)。通过应用原电池效应以选择性地腐蚀所述第一金属材料而将所述支持结构体从所述目标结构体以化学方式除去。

Description

使用牺牲支持体的三维金属结构体的打印
相关申请的交叉引用
此申请要求2015年1月19日提交的U.S.临时专利申请62/104,866的权益,其通过引用并入本文。
技术领域
本发明一般地涉及三维(3D)结构体的打印,并且特别地涉及通过复杂的3D拓扑技术制作结构体的方法和系统。
背景技术
在激光直写(LDW)技术中,使用激光束通过受控的材料烧蚀(切除)或沉积形成具有空间分辨的3D结构的图案化表面。激光诱导向前转移(LIFT)为可应用于在表面上沉积微图案的LDW技术。
在LIFT中,激光光子提供将小体积的材料从供体膜弹射到受体基板的驱动力。典型地,所述激光束与涂覆于非吸收性载体基板上的供体膜的内侧相互作用。换言之,入射激光束在光子被所述膜的内表面吸收之前传播通过透明载体。在高于某一能量阈值下,将材料从供体膜喷向基板的表面,该基板通常以与所述供体膜紧密靠近或甚至与其接触的方式放置在现有技术中已知的LIFT系统中。为了控制在经照射的膜的体积内产生的向前推动的推力,可改变所施加的激光能量。Nagel和Lippert在发表于Nanomaterials:Processingand Characterization with Lasers中的“Laser-Induced Forward Transfer for theFabrication of Devices,”(Singh等人编的(Wiley-VCH Verlag GmbH&Co.KGaA,2012)的第255-316页)中提供LIFT在微制作方面的原理和应用的有用调查,。
使用金属供体膜的LIFT技术已经开发用于多种应用例如电路修复。例如,PCT国际公布WO 2010/100635(其公开内容通过引用并入本文)描述了修复电路的系统和方法,其中使用激光预处理在电路基板上形成的导体的导体修复区域。将激光束施加到供体基板,其方式导致供体基板的一部分从其分离并且转移到预定导体位置。
作为另一实例,(在本专利申请的优先权日之后公布的)PCT国际公布WO 2015/056253(其公开内容通过引用并入本文)描述了材料沉积方法,其中透明供体基板具有反向的第一和第二表面以及在第二表面上的多个含有不同的相应材料的供体膜。供体基板位于受体基板的附近,其中所述第二表面面向所述受体基板。引导激光辐射的脉冲穿过供体基板的第一表面并且撞击到供体膜上以诱导包含所述不同材料的大量混合物的熔滴从供体膜喷出到受体基板上。这种LIFT技术的进一步细节描述于PCT国际公布WO2015/181810(也在本专利申请的优先权日之后公布)中,其公开内容同样通过引用并入本文。
一些3D制作技术使用牺牲支持体产生期望的结构体。例如,U.S.专利申请公布2015/0197862描述添加剂金属沉积工艺,其中构造零件根据由期望部件的三维限定所产生的构造计划制造。所述构造计划具有对应于期望部件的第一组维度(尺寸)且包括支持结构体。所述建造零件(经受)化学蚀刻剂使得支持结构体从建造零件除去并且将对应于期望部件的建造零件的维度减小到第二组维度。
发明内容
下文描述的本发明的实施方式提供用于打印三维(3D)结构体的改进方法和设备。
因此,根据本发明一实施方式提供3D打印方法,其包括在基板上打印第一金属材料作为支持结构体,和在所述基板上以与支持结构体接触的方式打印比所述第一金属材料阳极性低的第二金属材料作为目标结构体。通过应用原电池效应以选择性地腐蚀第一金属材料而将支持结构体以化学方式从目标结构体除去。
在一些实施方式中,第一材料和第二材料中的一种包括纯金属,且第一材料和第二材料中的另一种包括该纯金属的合金。典型地,所述纯金属构成所述合金的至少90%。所述第一材料为纯金属且所述第二材料为合金;或所述第二材料为纯金属且所述第一材料为合金;或所述第一材料和第二材料为纯金属的不同合金。
在一些实施方式中,打印第一金属材料和第二金属材料包括将激光辐射的脉冲分别引导到第一和第二薄膜上以诱导第一材料和第二材料的熔滴激光诱导向前转移(LIFT)到所述基板上。在公开的实施方式中,第一金属材料和第二金属材料的至少一种包括至少两种组分材料的混合物,并且引导激光辐射的脉冲包括提供其上重叠包括所述组分材料各自的相应层的多个薄膜层的透明供体基板,和用激光辐射的脉冲照射供体基板以诱导其中所述组分材料混合在一起的熔滴的喷出。
在一个实施方式中,所述方法包括在第一金属材料和第二金属材料的至少一种上打印第三材料,其中所述目标结构体在除去支持结构体之后包括第二金属材料和第三材料。例如,第三材料可包括介电材料。
在其它实施方式中,在第一金属材料上打印第二金属材料使得目标结构体具有容纳所述第一金属材料的空腔,并且以化学方式除去所述支持结构体包括通过原电池效应将第一金属材料从空腔蚀刻出来。在一个实施方式中,所述方法包括打印比第一金属材料的阳极性(负极性,anodic)低的阴极蚀刻-辅助结构体使其嵌入到空腔中的第一金属材料内以在蚀刻期间促进原电池效应,且所述方法包括在将第一金属材料蚀刻出来之后将蚀刻-辅助结构体从空腔除去。
在另外的实施方式中,打印第一金属材料和第二金属材料包括打印第一金属材料和第二金属材料的散布粒子,并且以化学方式除去所述支持结构体包括通过原电池效应将所述第二金属材料的粒子蚀刻掉,使得在除去所述支持结构体之后残留的目标结构体是多孔的。在一个实施方式中,打印所述散布粒子包括改变所述目标结构体的区域上的第一金属材料的粒子的相对密度,使得在除去所述支持结构体之后残留的第二金属材料具有在所述目标结构体的区域上变化的孔隙率。
根据本发明的一实施方式还提供制作设备,其包括打印台,其配置成在基板上打印第一金属材料作为支持结构体和在基板上以与支持结构体接触的方式打印比所述第一金属材料阳极性低的第二金属材料作为目标结构体。蚀刻台配置成通过应用原电池效应用以选择性地腐蚀第一金属材料而将支持结构体从目标结构体中以化学方式除去。
结合附图通过以下实施方式的详细描述将更充分地理解本发明,在图中:
附图说明
图1为根据本发明一实施方式的3D打印系统的示意性侧视图和方块图;
图2为显示根据本发明一实施方式的具有不同组成的液滴的LIFT打印的示意性细节视图;
图3A为根据本发明一实施方式的经打印的3D结构体和牺牲支持体的示意性图形表示;
图3B为根据本发明一实施方式的图3A的在电蚀刻牺牲支持体之后的经打印的3D结构体的示意性图形表示;
图4A为根据本发明一实施方式的包括填充有阳极牺牲支持体的空腔和在空腔中的阴极蚀刻-辅助结构体的经打印的3D结构体的示意性截面视图;
图4B为根据本发明一实施方式在电蚀刻牺牲支持体的加工期间的图4A的经打印的3D结构体的示意性截面视图;
图4C为根据本发明一实施方式在完成蚀刻-辅助结构体的电蚀刻和除去之后的图4A的经打印的3D结构体的示意性截面视图;
图5A为根据本发明一实施方式的其中散布阳极牺牲材料的液滴和阴极材料的液滴的经打印的3D结构体的示意性截面视图;和
图5B为根据本发明一实施方式的通过将阳极牺牲材料从图5A的结构体电蚀刻(掉)而产生的多孔3D结构体的示意性截面视图。
具体实施方式
概述
用复杂拓扑技术打印3D结构体通常需要使用牺牲材料。例如,当由某种原材料(初始材料,primary material)制成的目标结构体含有凹陷(例如空腔或下部切槽(undercut))时,首先在凹陷的地方打印牺牲材料,并且将原材料打印于其上。然后通过物理和/或化学手段将牺牲材料除去。这样的牺牲材料的打印和除去工艺通常是复杂且昂贵的,并且对于这样的工艺可用的材料的选择可为有限的。
本文描述的本发明的实施方式提供用于3D打印金属结构体的改进技术。可使用这些技术以高分辨率打印具有宽范围的形状、材料和物理性质的3D结构体。在公开的实施方式中,在基板上打印牺牲金属材料作为支持结构体,并且在所述基板上以与所述支持结构体接触的方式打印原金属材料作为目标结构体。选择相比于原金属材料具有较低的电极电位(较低的电负性,其意味着牺牲材料是更高阳极性)的牺牲金属材料。结果,在打印目标结构体之后,可借助原电池效应(其选择性地腐蚀牺牲金属材料)将支持结构体以化学方式除去。该加工步骤在本文中称为电腐蚀或等同地称为电蚀刻。
原电池效应已经被知晓几个世纪,但是通常视为不期望的,当不同金属和电解质相接触时导致可能是灾难性的腐蚀。当使两种金属彼此接触时,在所述金属之间形成取决于它们的相对电负性(也称为它们的阳极指数)水平的电压。该电压驱动电流在两种金属之间流动。当所述金属浸没在导电溶液中时,形成驱动腐蚀性原电池效应的有效电路。该过程导致较高阳极性的金属即具有较低电负性水平的较惰性金属被消耗和腐蚀,而阴极金属基本上不受影响。该过程可在没有任何外部驱动电位的情况下进行,只要存在用于携带电流并且闭合电路的合适介质(例如溶液或蒸气)。
在公开的实施方式中,如下文进一步描述的,可使用相同的打印技术例如LIFT、可能甚至在相同的加工步骤中一起打印原金属和牺牲金属。以这种方式使用LIFT使得可以高精度、高效地制造目标结构体和支持结构体两者。在此上下文中可使用LIFT打印打印作为组分材料的混合物、例如组分金属的合金的材料。在该打印阶段中可使用的LIFT技术描述于例如以上提到的PCT国际公布WO 2015/056253中。还可以打印另外的材料,在电蚀刻之后作为目标结构体的一部分保留,其不仅包括另外的金属材料而且包括非金属材料例如电介质。
虽然下述实施方式具体基于LIFT打印,但是本发明的原理可使用本领域已知的其它适宜的3D打印技术例如熔融金属喷射在加以必要的变更的情况下实现。这样的替代性打印技术在本上下文中的使用也视为落入本发明的范围内。
典型地,通过电蚀刻除去支持结构体的工艺通过将完成的经打印的3D结构体浸没在导电液体溶液中实施。增大溶液的浓度可加快腐蚀速率。可用于更快地驱动双金属腐蚀反应的其它因素,包括调节电解质的组成、pH和电导率。在涉及氧还原的水溶液中,还可增加通风和氧气供应以增大腐蚀速率。
在这样的腐蚀性电过程中,速率和选择性还取决于原材料和牺牲材料之间的表面积之比。例如,如果原材料比牺牲材料具有大得多的表面积,则蚀刻速率将加快。替代地,在本发明的一些实施方式中,当牺牲材料部分比原材料具有大的表面积时,可以以与支持结构体电接触的方式打印由阴极性较高的材料制成的蚀刻-辅助结构体以驱动更快的腐蚀。进一步替代地或另外地,可施加受控的外部电位偏压以加快原电池效应。
在本发明的一些实施方式中,原金属材料和牺牲金属材料在组成上非常类似。例如,材料之一(其可为原材料或牺牲材料)可为纯金属,而另一种包括该纯金属的合金。选择合金以给出原材料和牺牲材料之间的期望的电负性差。替代地,原材料和牺牲材料两者可为合金、例如相同纯金属和少量不同组分的合金,其给出期望的电负性差。
为了发生期望的电腐蚀,典型地只需要原材料和牺牲材料之间在组成上的小的差异。典型地,纯金属可构成所述合金的至少90%,并且在很多情形中甚至构成合金的大于95%。这些类似材料的使用简化打印工艺,因为纯金属和合金两者将具有类似的物理性质,其继而决定打印性质。这样的物理性质包括例如热性质(例如熔融温度、导热性、热容)、润湿性(在经打印的结构体上)、表面张力(作为液化金属)和机械性质(例如硬度)。
系统描述
图1为根据本发明一实施方式的3D打印系统10的方块图和侧视图。系统10包括LIFT台20,其在受体基板22上以与支持结构体48接触的方式打印由两种不同金属材料制成的目标结构体46。蚀刻台50通过施加原电池效应以选择性地腐蚀支持结构体的金属材料而将支持结构体48从目标结构体46以化学方式除去。
LIFT台20包括其中激光26发出脉冲辐射的光学组装体24,该脉冲辐射通过适宜的光学器件30聚焦到LIFT供体板32上。供体板32包括具有至少一个沉积于其上的供体膜36的透明供体基板34。定位组装体38确定供体基板34和/或受体基板22的位置使得供体基板靠近受体基板的上表面,其中供体膜36面向受体基板和在其间存在小的间隙(典型地不超过几百微米,且如果可能的话,更小)。虽然定位组装体38在图1中示出,但是出于简洁,作为在受体基板22下面的基础X-Y-Z坐标(stage),实际上LIFT台20中的定位组装体另外或替代地能够确定供体基板34和/或光学组装体24的元件的位置,其对于本领域技术人员将是显然的。
供体基板34典型地包括玻璃或塑料板或其它适宜的透明材料,而供体膜36包括适宜的供体材料,例如一种或多种纯金属和/或金属合金。典型地,供体膜的厚度不超过几微米。以下参考图2进一步地描述供体膜36的结构和组成。在本文描述的技术的一些应用中,供体膜可另外包括一种或多种介电材料以及半导体和/或流变材料或这样的材料的组合。
光学器件30聚焦来自激光26的光束42使其穿过供体基板34的外表面并撞击到供体膜36上,从而导致流体的液滴44从供体膜36喷出并飞越间隙而着陆到受体基板22上。所述流体包括供体膜36中的熔融态材料,其然后在受体表面上硬化而形成具有由打印图案限制的形状的固体零件、例如目标结构体46和支持结构体48。在控制单元40的控制下的扫描器28、例如旋转镜和/或声-光光束偏转器扫描激光束42以照射供体膜36上的不同位点并且因此在受体基板22上的适当位置处产生期望形状的结构体。
激光26包括例如具有倍频输出的脉冲Nd:YAG激光,其允许通过控制单元40方便地控制的脉冲振幅。典型地,控制单元40包括通用计算机,其具有用于控制和接收来自光学组装体24、运动组装体38和LIFT台20的其它元件的反馈的适宜界面。本发明人已经发现,为了良好的LIFT沉积结果,最佳脉冲持续时间在0.1ns-1ns的范围,但是取决于应用要求可使用更长或更短的脉冲。为了调节通过激光束在供体膜36上形成的焦点的尺寸,可类似地控制光学器件30。
液滴44的尺寸特别地由激光脉冲能量、持续时间以及供体膜的焦点尺寸和厚度决定。前述PCT国际公布2015/181810描述LIFT技术和这样的参数:可应用其使得各激光脉冲导致单个的、相对大的液滴从供体膜中喷出。可在LIFT台20中有利地应用这些技术和参数,因为液滴以准确的方向性喷向受体基板22,使得可在液滴的喷出期间保持供体膜36离受体基板至少100μm的距离并且精确地产生期望的结构体。
在公开的实施方式中,LIFT台20导致两种或更多种具有不同组成的流体的液滴44从不同的供体膜36喷出。典型地,通过引导来自激光26的光束42撞击到供体膜36(在相同供体基板34或不同供体基板上)的包含不同材料的不同区域上而喷出不同流体。可将不同流体顺序地喷向受体基板22上的相同位置和/或喷向不同位置,以打印期望的支持和目标结构体。用该方式以基本上任何期望的图案和层级(等级,gradation)来混合材料的能力是本技术相比于本领域已知的制作方法的显著优势。
如之前指出的,为了使沉积的供体材料积累到期望厚度,控制单元40控制扫描器28和光学组装体24的其它元件以将来自膜36的供体材料写入到受体基板22上的适当位置并且按需实现多个通道。例如,LIFT台20可以该方式操作以制造具有一个或多个小于1mm的维度(尺寸)(高度、宽度和厚度)的多种3D形状的固体零件。这些维度的至少一个可小于100μm,并且在一些情形下小于10μm,由此产生精确形状的微型(或者甚至显微)零件。替代地,可操作LIFT台20以打印实质上更大尺寸的结构体。用这种方式在期望位置上依次使用原(材料)供体膜和牺牲(材料)供体膜可以相继通过(pass)打印原材料和牺牲材料的多个交叉层。
在蚀刻台50中,将在LIFT台20中已经将目标结构体46和支持结构体48形成于其上的基板22浸没到含有适宜的电解质溶剂52的槽中。如上解释的,在目标结构体46中的原金属材料和支持结构体48中阳极性比原金属材料高的牺牲材料之间的接触导致支持结构体48在溶剂52中的电腐蚀,同时保留目标结构体46基本未受影响。结果,通过台50将支持结构体以化学方式除去,在其位置处留下空腔54。于是,目标结构体46准备进一步加工。
虽然为了说明的意图,目标结构体46和空腔54在图中作为简单的拓扑形状示出,但是在系统10中可类似地制造更复杂的结构体。当所述结构体具有内部空腔时,通过LIFT台20打印的目标和支持结构体设计成保留用于溶剂52到达为了除去支持结构体而计划在其上进行腐蚀性电作用的位置的连续路径。也可打印另外的蚀刻-辅助结构体,如以下在图4A-C中说明的。
原材料和牺牲材料
如上解释的,出于制作的容易性和可靠性,可期望(虽然非必须),打印支持结构体48的牺牲材料为与用于打印目标结构体46的原材料具有类似组成的金属或金属合金。例如通过使原金属和阳极性较高的金属合金化可使牺牲材料变得阳极性更高,从而提供所需的电位差以在蚀刻台50中在所需方向上驱动腐蚀性过程。替代地,所述原材料可为使其相对于牺牲材料阴极性更高的合金。在任一情形中,典型地选择原材料以给予目标结构体某些期望的材料性质(例如高电导率或高抗张强度)。于是选择这样的牺牲材料:其在期望地拥有和原材料类似的热性质和其它物理性质的同时比原材料的阳极性高。由于该原因,纯金属和该相同金属的合金通常成为良好的组合,或如果可能的话的化,该相同纯金属的两种不同合金。
作为第一类型的组合(纯金属原材料和牺牲合金)的实例,为了打印铜3D目标结构体,可使用纯铜金属作为原材料,并且Cu/Al合金可充当阳极性较高的牺牲材料。为了以正确的方向驱动电腐蚀反应只需要低百分比的铝,典型地小于10%且可能甚至小于5%。其它合金例如Cu/Mg可用于类似的效果。然而,如果支持结构体具有比目标结构体显著更大的表面积,则可期望的是,例如可通过增加铝浓度来增大原材料和牺牲材料之间的电负性差。该情形中的溶剂52可包括例如盐酸水溶液或氯化铁水溶液中的氯化铜。
作为以上提到的第二类型的替代性实例,可使用铜金属作为牺牲材料,并且Cu/Ag合金作为阴极性较高的原结构材料。该选择将导致由Cu/Ag制成的3D结构体。同样地,典型地需要低百分比的银来驱动蚀刻台50中的反应。替代地,金或钯可与铜合金化以产生原材料。
作为其它替代方案,原材料和牺牲材料两者均可为合金,或者两者均可为纯金属,只要实现适当的电负性差。
下表I显示原材料和牺牲材料的组合以及适宜溶剂的一些另外实例。其它组合对于本领域技术人员在阅读本说明书之后是显然的,并且视为落在本发明的范围内。
表I–打印材料和溶剂的实例
还可使用系统10打印由几种原材料成分而不是单一原金属制成的3D结构体。在该情形中,选择牺牲材料的组成以提供所需的电负性差,其中该牺牲材料比目标结构体中的所有原金属和金属合金的阳极性高。例如,目标结构体可打印自纯铜和阴极性较高的铜合金、例如Cu97%/Ag3%,而选择比Cu和Cu/Ag两者的阳极性高的单一的常见牺牲材料、例如Cu97%/Al3%。LIFT台20以所选择的设计打印原材料和牺牲材料使得在所有组件之间保持电接触。只要牺牲材料比所有原金属的阳极性高,牺牲材料在蚀刻台50中将首先降解并除去。
另外或替代地,可使用系统10制造复杂金属/介电结构体,而不只是金属结构体。例如,通过适当地选择和使用供体膜36,LIFT台20可打印两个金属组件(其一为牺牲的)和在蚀刻台50的腐蚀加工中惰性的第三非导电材料。结果将是由金属(原材料)和介电构成的3D结构体。设计目标和支持结构体使得在通过LIFT台20打印的金属部件之间保持电接触。
作为另一选项,使用系统10制作由三种或更多种不同金属制成的3D结构体,其中两个不同的腐蚀加工在蚀刻台50上相继地进行。在各自的蚀刻步骤中,除去单种牺牲材料。例如,LIFT台20可制造由金属材料A和B(其中B的阳极性比A高)以及金属材料C和D(其中D的阳极性比C高)构成的结构体。金属对(A/B和C/D)各自在所选择的溶剂SB或SD中具有不同的腐蚀路径,该溶剂对于另一对是无效的(无作用的)。通过这种方式,蚀刻台50施加溶剂SB以除去材料B,并且然后变更为SD以除去材料D,从而保留由材料A和C构成的复杂结构体。
纯金属和混合物的LIFT喷出
图2为显示根据本发明一实施方式的具有不同组成的液滴44A和44B的LIFT打印的示意性细节视图。在成像化(pictured)实例中,液滴44A包括从供体膜36A喷出的纯金属56、例如铜,而液滴44B包括包括从另一供体膜36B喷出的金属56与另一金属58、例如铝或银的合金。膜36A和36B可方便地形成在相同供体基板34的不同区上,由此使得控制单元40能够以使得可将液滴44A和44B快速交替地在适当位置处喷出和引向受体基板22的方式移动供体板32并且扫描激光束42。替代地,膜36A和36B可形成在交替地嵌入到光学组装体24中的位置中的不同供体基板上。
图2说明用激光脉冲照射供体膜36A和36B的效果,所述激光脉冲的持续时间和对于热扩散通过所述膜所需的时间相当。在包括在供体基板34上重叠的金属层56和58的膜36B的情形中,将所述两种金属通过激光脉冲同时液化并且在液滴44B内混合以形成期望合金。金属56和58在所述合金中的相对浓度由膜36B中相应层的厚度决定。该工艺的细节描述于前述PCT国际公布WO 2015/056253中,并且它们在这里仅将简要地概述。替代地,膜36B可包括单个、均匀的供体膜中的适当浓度的期望金属的预混合的合金、例如金属56和58的合金。作为另外的替代方案,金属56和58之一或两者本身可为合金。
激光26将包括亚纳秒激光脉冲串的光束42引向供体板32。在一种实例实施方式中,激光26在532nm波长下发出持续时间400ps的脉冲,其中在其总厚度典型地在0.3μm-1.5μm范围内的供体膜36A和36B处大约0.75J/cm2的通量。典型地确定供体基板34的位置使得供体膜距受体基板22的距离为约0.1mm或可能更大。激光脉冲和膜参数的上述选择在供体膜中产生“火山(volcano)”图案60。该“火山-喷出”方案导致单一(单个)液滴44A/B响应于各自激光脉冲以高方向性、典型地在相对于膜表面的法向约5mrad内发出。液滴的尺寸可通过调节能量、脉冲持续时间和激光束42在供体膜36A/B上的焦点尺寸以及供体膜的厚度而控制。取决于这些参数设定,可典型地在10-100毫微微升(飞升,femtoliter)范围内调节液滴44A/B的体积。
液滴喷出的高方向性的重要结果是,可允许供体板32和受体基板22之间的相对大的间隙而不损害打印准确性。当激光辐射的脉冲撞击到供体膜上时,可容易地将在这些条件下的供体基板34定位成膜36A/B距离受体基板至少0.1mm,并且可典型地定位成距离受体基板至少0.2mm或甚至远至0.5mm。
液滴44A/B的LIFT-驱动的喷出只有当激光通量超过取决于供体膜厚度、激光脉冲持续时间和其它因素的给定阈值时才进行。对于短的激光脉冲(0.1–1ns的持续时间,如上所述),单一液滴的“火山-喷射”喷出将在从所述LIFT阈值扩展到高至上限的激光通量值范围内发生,该上限典型地比所述阈值通量高出大约50%。高于该通量上限,各激光脉冲将趋于诱导很多具有纳米级液滴维度的小液滴从供体膜喷出。此后一高通量方案对于其它意图可能是有用的,但是本文描述的精确3D打印应用类别中不太有效。
液滴44A和44B穿过供体膜36A/B和基板22之间的间隙,并且然后分别作为金属粒子62和64在基板表面上快速凝固。在该实例中,粒子62包括纯金属56,而粒子64包括金属56和58的完全混合的合金。其它类别的混合物、例如三种或更多种金属的合金以及金属和非金属材料的混合物可以类似的方式制造。粒子62和64的直径取决于产生它们的液滴的尺寸以及粒子穿过的间隙的尺寸。典型地,在火山-喷出方案中,粒子62和64具有小于5μm的直径,并且通过适当地设定上述LIFT参数可将该直径减小到小于2μm。在沉积图2中所示的粒子62和64的初始层之后,LIFT台20在受体基板22的相同区域上扫描多次以根据期望的设计和维度构建目标结构体46和支持结构体48。
在图2所示的打印配置中,期望的是,牺牲材料的LIFT打印参数和用于原材料打印的条件尽可能地接近或甚至相同。在本上下文中相关的打印参数包括脉冲能量、激光点在供体板32上的尺寸、激光脉冲形状(时间的和空间的)和用于打印的波长。这样的对照射供体膜36A和供体膜36B两者的相同或近乎相同的参数的使用在允许光学组装体24在液滴44A和44B的喷出之间来回地快速变换以在基板22上高效地打印复杂图案上是尤其有利的。膜36B的层结构在该方面上是有益的,因为激光束的能量在材料56中几乎完全被吸收,并且因此可预期膜36B在液滴喷出方面以和膜36A几乎相同的方式运转(behave)。替代地,可足够快地改变激光束42的一些参数以实现这些参数的变换而不妨碍打印性能。
供体膜36A和36B的成像化配置的另一优势在于,液滴44A和44B以及所得的粒子62和64将在热性质上十分类似。例如,供体膜的导热性影响最佳激光脉冲宽度的选择,而熔融温度和熔化热影响脉冲能量的选择。液滴44A和44B的体积将取决于供体膜36A和36B的厚度和光束42的空间宽度,这两者取决于最佳液滴喷出的热参数。因此,图2中示出的供体层的配置不仅使得可对于两个供体膜使用类似的LIFT激光参数,而且产生类似尺寸和性质的液滴44A和44B,和由此的类似尺寸和性质的粒子62和64。上述粒子尺寸以及热和机械性质的一致性使得能够将支持结构体48和目标结构体46精确且可靠地在彼此之上打印。
实例结构体
现在参考图3A和3B,其是根据本发明一实施方式的目标结构体46在不同制造阶段时的示意性的图示说明。这些图基于具有所示维度的真实LIFT-打印的结构体的扫描电子显微镜(SEM)图像。图3A显示通过LIFT台20制造的目标结构体46以及牺牲支持结构体48,而图3B显示在将牺牲支持体在蚀刻台50中进行电蚀刻之后具有内部空腔54的目标结构体46。
在该实例中,目标结构体46以及周围的基底(base)包含Cu/Ag(~98.5%/1.5%)合金,而支持结构体48包含纯铜。目标结构体46具有拥有内半径60μm的半圆顶(half dome)的形态,其最初在半球形支持结构体48上打印(图3A)。将该整个结构体在电解质溶剂52、例如氯化铁溶液中浸没八分钟以溶解支持结构体并且产生半球形空腔54,如图3B中所示。
当电腐蚀过程开始时,支持结构体48通常开始从其固相降解为离子溶解形式。该降解在牺牲材料和原材料之间的界面处发生,其中在所述材料之间存在电接触。在一段时间之后,支持结构体的一大部分可完全分离,于是其从目标结构体的周围壁脱离,并且电蚀刻过程停止。为此,通常必须在目标结构体中保留至少一个小的出孔以容许溶液的流入和流出,使得蚀刻可进行。
图4A-4C是经打印的3D结构体70的示意性截面视图,其说明根据本发明一实施方式的目标结构体72的制作技术中的相继阶段。如图4A所示,在LIFT台20中,在牺牲材料74上打印目标结构体72中的原金属材料使得所得目标结构体具有容纳牺牲材料的空腔。然后,为了通过电腐蚀除去牺牲材料74,将结构体70嵌入到蚀刻台50中,在目标结构体72内保持空腔78开口,如图4C中所示。
然而,在深空腔的情形中,由于在残余的牺牲材料和空腔外侧的原材料之间缺少足够的导电性,在所有的牺牲材料已经溶解之前电过程可能停止。
用于解决该问题的方式是在LIFT台20中打印另外的蚀刻-辅助结构体76使其嵌入到空腔中的牺牲材料74内,如图4A中所示。蚀刻-辅助结构体76可打印自与目标结构体72相同的原材料或可打印自另一种比牺牲材料74的阳极性低的适宜的金属材料。如图4B中说明的,蚀刻-辅助结构体76促进牺牲材料74的电腐蚀,因为一旦它们暴露于溶剂,它们提供和牺牲材料的另外的电接触区域。当空腔78中的所有牺牲材料74已经从空腔蚀刻出来时,蚀刻-辅助结构体76也被除去,如图4C中所示。例如,当周围的牺牲材料已经溶解时蚀刻-辅助结构体76可以变松(come loose)并从空腔78洗去的方式打印,或者可以化学方式将蚀刻-辅助结构体蚀刻出来。
图5A和5B为经打印的3D结构体86的示意性截面视图,其说明根据本发明一实施方式的多孔目标结构体的制作技术的相继阶段。如图5A所示,LIFT台20最初通过打印散布有阳极牺牲材料粒子84的阴极原材料粒子82产生结构体86。然后,蚀刻台50通过电腐蚀将粒子84蚀刻掉,使得在除去由粒子84提供的“支持结构体”之后残留的目标结构体是多孔的,如图5B所示。
图5A/B中说明的工艺可应用于例如制造具有独特的机械性质的铝泡沫体中。为此,粒子84(和用于形成它们的液滴)可包含纯铝,而粒子82包含具有少量的用于使其阴极性较高的另一种金属的铝合金(例如Al98%/Cu2%)。然后,蚀刻台50选择性地除去铝,从而留下Al/Cu泡沫体。该技术可用于制造软的但是仍然高稳定的材料(小的杨氏模量),因为它们包含金属而不是有机化合物。
用该方式可制造非常细的孔,其具有大致液滴维度(小于5μm)水平的维度。此外,可简单地通过调节粒子82和84的相对打印密度而调节孔隙率。
具有分级孔隙率–即在目标结构体的区域上变化的孔隙率–的结构体可通过改变粒子84在所述目标结构体的区域上的相对密度而制造。因此,可制造分级的软度和硬度的3D结构体以及具有非各向同性的机械性质,例如沿着不同方向的不同伸长性质的结构体。该技术可尤其用于制造用于生物医药应用的多孔钛。
将认识到,上述实施方式以举例的方式引用,且本发明不限于上文具体展示及描述的内容。而是,本发明的范围包括上文所述的各种特征的组合和子组合两者,以及本领域技术人员在阅读前述描述之后将想到且未在现有技术中公开的变化及修改。

Claims (28)

1.3D打印方法,其包括:
在基板上打印第一金属材料作为支持结构体;
在所述基板上以与所述支持结构体接触的方式打印比所述第一金属材料阳极性低的第二金属材料作为目标结构体;和
通过应用原电池效应以选择性地腐蚀所述第一金属材料而将所述支持结构体从所述目标结构体以化学方式除去。
2.根据权利要求1的方法,其中第一材料和第二材料中的一种包括纯金属,且第一材料和第二材料中的另一种包括该纯金属的合金。
3.根据权利要求2的方法,其中所述纯金属构成所述合金的至少90%。
4.根据权利要求2的方法,其中所述第一材料为纯金属,且所述第二材料为合金。
5.根据权利要求2的方法,其中所述第二材料为纯金属,且所述第一材料为合金。
6.根据权利要求2的方法,其中所述第一材料和第二材料为纯金属的不同合金。
7.根据权利要求1-6任一项的方法,其中打印第一金属材料和第二金属材料包括将激光辐射的脉冲分别引导到第一和第二薄膜上以诱导第一材料和第二材料的熔滴激光诱导向前转移(LIFT)到所述基板上。
8.根据权利要求7的方法,其中第一金属材料和第二金属材料的至少一种包括至少两种组分材料的混合物,且其中引导所述激光辐射的脉冲包括:
提供其上重叠包括所述组分材料各自的相应层的多个薄膜层的透明供体基板;和
用所述激光辐射的脉冲照射所述供体基板以诱导其中所述组分材料混合在一起的熔滴的喷出。
9.根据权利要求1-6任一项的方法,且其包括在第一金属材料和第二金属材料的至少一个上打印第三材料,由此所述目标结构体在除去所述支持结构体之后包括所述第二金属材料和所述第三材料。
10.根据权利要求9的方法,其中所述第三材料包括介电材料。
11.根据权利要求1-6任一项的方法,其中将所述第二金属材料打印到所述第一金属材料上使得所述目标结构体具有容纳所述第一金属材料的空腔,且其中以化学方式除去所述支持结构体包括通过原电池效应将第一金属材料从所述空腔蚀刻出来。
12.根据权利要求10的方法,且其包括打印比所述第一金属材料阳极性低的阴极蚀刻-辅助结构体,使其嵌入到在所述空腔中的所述第一金属材料内以在蚀刻期间促进原电池效应,且其中所述方法包括在将所述第一金属材料蚀刻出来之后从所述空腔除去所述蚀刻-辅助结构体。
13.根据权利要求1-6任一项的方法,其中打印第一金属材料和第二金属材料包括打印第一金属材料和第二金属材料的散布粒子,且其中以化学方式除去所述支持结构体包括通过原电池效应将所述第二金属材料的粒子蚀刻掉,使得在除去所述支持结构体之后残留的目标结构体为多孔的。
14.根据权利要求13的方法,其中打印所述散布粒子包括改变在所述目标结构体的区域上的所述第一金属材料的粒子的相对密度,使得在除去所述支持结构体之后残留的第二金属材料具有在所述目标结构体的区域上变化的孔隙率。
15.制作设备,其包括:
打印台,其配置成在基板上打印第一金属材料作为支持结构体、和在所述基板上以与所述支持结构体接触的方式打印比所述第一金属材料阳极性低的第二金属材料作为目标结构体;和
蚀刻台,其配置成通过应用原电池效应以选择性地腐蚀所述第一金属材料而以化学方式从所述目标结构体除去所述支持结构体。
16.根据权利要求16的设备,其中第一材料和第二材料中的一种包括纯金属,且第一材料和第二材料中的另一种包括该纯金属的合金。
17.根据权利要求16的设备,其中所述纯金属构成所述合金的至少90%。
18.根据权利要求16的设备,其中所述第一材料为纯金属,且所述第二材料为合金。
19.根据权利要求16的设备,其中所述第二材料为纯金属,且所述第一材料为合金。
20.根据权利要求16的设备,其中所述第一材料和第二材料为纯金属的不同合金。
21.根据权利要求15-20任一项的设备,其中所述打印台配置成通过将激光辐射的脉冲分别引导到第一薄膜和第二薄膜上以诱导第一材料和第二材料的熔滴激光诱导向前转移(LIFT)到所述基板上来打印第一金属材料和第二金属材料。
22.根据权利要求21的设备,其中第一金属材料和第二金属材料的至少一种包括至少两种组分材料的混合物,且其中所述打印台包括其上重叠包括所述组分材料各自的相应层的多个薄膜层的透明供体基板,并且配置成用所述激光辐射的脉冲照射所述供体基板以诱导其中所述组分材料混合在一起的熔滴的喷出。
23.根据权利要求15-20任一项的设备,其中所述打印台配置成在第一金属材料和第二金属材料的至少一种上打印第三材料,由此所述目标结构体在除去所述支持结构体之后包括所述第二金属材料和所述第三材料。
24.根据权利要求23的设备,其中所述第三材料包括介电材料。
25.根据权利要求15-20任一项的设备,其中所述打印台配置成在第一金属材料上打印第二金属材料,使得所述目标结构体具有容纳所述第一金属材料的空腔,且其中所述蚀刻台配置成通过原电池效应将第一金属材料从所述空腔蚀刻出来。
26.根据权利要求25的设备,其中所述打印台配置成打印比第一金属材料阳极性低的蚀刻-辅助结构体,使其嵌入到所述空腔中的第一金属材料内以在蚀刻期间促进原电池效应,其中在将第一金属材料蚀刻出来之后将所述蚀刻-辅助结构体从所述空腔除去。
27.根据权利要求15-20任一项的设备,其中所述打印台配置成打印第一金属材料和第二金属材料的散布粒子,且其中所述蚀刻台配置成通过原电池效应将所述第二金属材料的粒子蚀刻掉,使得在除去所述支持结构体之后残留的目标结构体是多孔的。
28.根据权利要求27的设备,其中所述打印台配置成改变所述目标结构体的区域上的第一金属材料的粒子的相对密度,使得在除去所述支持结构体之后残留的第二金属材料具有在所述目标结构体的区域上变化的孔隙率。
CN201680005719.1A 2015-01-19 2016-01-14 使用牺牲支持体的三维金属结构体的打印 Expired - Fee Related CN107208256B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562104866P 2015-01-19 2015-01-19
US62/104,866 2015-01-19
PCT/IL2016/050037 WO2016116924A1 (en) 2015-01-19 2016-01-14 Printing of three-dimensional metal structures with a sacrificial support

Publications (2)

Publication Number Publication Date
CN107208256A true CN107208256A (zh) 2017-09-26
CN107208256B CN107208256B (zh) 2020-08-11

Family

ID=56416518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680005719.1A Expired - Fee Related CN107208256B (zh) 2015-01-19 2016-01-14 使用牺牲支持体的三维金属结构体的打印

Country Status (6)

Country Link
US (1) US10633758B2 (zh)
EP (1) EP3247816A4 (zh)
KR (1) KR102282860B1 (zh)
CN (1) CN107208256B (zh)
IL (1) IL253091B (zh)
WO (1) WO2016116924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666169A (zh) * 2019-09-25 2020-01-10 南京农业大学 一种多材料激光诱导向前转移3d打印装置及方法
CN114851564A (zh) * 2021-02-05 2022-08-05 苏州铼赛智能科技有限公司 剥离板、制备方法、及所适用的容器、3d打印设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102279622B1 (ko) * 2013-10-14 2021-07-20 오르보테크 엘티디. 다중 복합 재료 구조 lift 인쇄
EP3207772B1 (en) 2014-10-19 2024-04-17 Orbotech Ltd. Lift printing of conductive traces onto a semiconductor substrate
KR20180030609A (ko) * 2015-07-09 2018-03-23 오르보테크 엘티디. Lift 토출 각도의 제어
US10688692B2 (en) 2015-11-22 2020-06-23 Orbotech Ltd. Control of surface properties of printed three-dimensional structures
KR20180035127A (ko) * 2016-09-28 2018-04-05 오르보테크 엘티디. 고-점도 프린팅 방법 및 장치
CA3043791A1 (en) * 2016-11-23 2018-05-31 Institut National De La Recherche Scientifique Method and system of laser-driven impact acceleration
US10330404B2 (en) * 2016-12-16 2019-06-25 Hamilton Sundstrand Corporation Heat exchanger component with embedded sensor
US11351627B2 (en) 2017-01-31 2022-06-07 Eshfartech Ltd. Three-dimensional laminated metallic objects, method and system of making same
TW201901887A (zh) 2017-05-24 2019-01-01 以色列商奧寶科技股份有限公司 於未事先圖樣化基板上電器互連電路元件
EP3710275B1 (en) 2017-11-15 2021-03-31 Granat Research Ltd. Metal droplet jetting system
KR102129322B1 (ko) * 2018-05-09 2020-07-03 중앙대학교 산학협력단 레이저를 이용한 3차원 금속 프린팅 장치 및 방법
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
JP7283933B2 (ja) * 2019-03-26 2023-05-30 株式会社松風 歯科用三次元造形物の作製に用いる歯科用光造形式三次元印刷材料
US11440241B2 (en) * 2019-06-14 2022-09-13 Io Tech Group Ltd. Additive manufacturing of a free form object made of multicomponent materials
CN111390169A (zh) * 2020-03-26 2020-07-10 南京尚吉增材制造研究院有限公司 金属立体成型异质支撑与化学铣切复合制备悬垂结构的方法
US11400714B2 (en) 2020-12-22 2022-08-02 Xerox Corporation Method for magnetohydrodynamic (MHD) printhead/nozzle reuse
US11999107B2 (en) * 2020-12-23 2024-06-04 Cornell University Controlled molten metal deposition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203584A1 (en) * 2006-02-14 2007-08-30 Amit Bandyopadhyay Bone replacement materials
US20080041725A1 (en) * 2006-08-21 2008-02-21 Micron Technology, Inc. Method of selectively removing conductive material
US20100021638A1 (en) * 2008-07-28 2010-01-28 Solidscape, Inc. Method for fabricating three dimensional models
US8216931B2 (en) * 2005-03-31 2012-07-10 Gang Zhang Methods for forming multi-layer three-dimensional structures
US8262916B1 (en) * 2009-06-30 2012-09-11 Microfabrica Inc. Enhanced methods for at least partial in situ release of sacrificial material from cavities or channels and/or sealing of etching holes during fabrication of multi-layer microscale or millimeter-scale complex three-dimensional structures
US20140160452A1 (en) * 2011-08-16 2014-06-12 Asml Netherlands B.V Lithographic apparatus, programmable patterning device and lithographic method

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963852A (en) 1973-08-04 1976-06-15 Moore Business Forms, Inc. Clay-coated record material of improved image durability
AU8657882A (en) * 1981-10-09 1983-04-28 Imperial Clevite Inc. High strength powder metal material
JPS61260603A (ja) 1985-05-14 1986-11-18 三菱電機株式会社 電子部品
US4752455A (en) 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
US4891183A (en) 1986-12-03 1990-01-02 Chrysler Motors Corporation Method of preparing alloy compositions
US4970196A (en) 1987-01-15 1990-11-13 The Johns Hopkins University Method and apparatus for the thin film deposition of materials with a high power pulsed laser
US4931323A (en) 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
US4895735A (en) 1988-03-01 1990-01-23 Texas Instruments Incorporated Radiation induced pattern deposition
US4977038A (en) * 1989-04-14 1990-12-11 Karl Sieradzki Micro- and nano-porous metallic structures
US4987006A (en) 1990-03-26 1991-01-22 Amp Incorporated Laser transfer deposition
US5173441A (en) 1991-02-08 1992-12-22 Micron Technology, Inc. Laser ablation deposition process for semiconductor manufacture
JPH04269801A (ja) 1991-02-25 1992-09-25 Juichiro Ozawa 抵抗膜作成用材料
US5292559A (en) 1992-01-10 1994-03-08 Amp Incorporated Laser transfer process
JPH0634283A (ja) 1992-06-16 1994-02-08 Ishikawajima Harima Heavy Ind Co Ltd 宇宙用熱交換器の製作方法
DE4232373A1 (de) 1992-09-03 1994-03-10 Deutsche Forsch Luft Raumfahrt Verfahren zum Auftragen strukturierter Schichten
DE4229399C2 (de) 1992-09-03 1999-05-27 Deutsch Zentr Luft & Raumfahrt Verfahren und Vorrichtung zum Herstellen einer Funktionsstruktur eines Halbleiterbauelements
US5308737A (en) 1993-03-18 1994-05-03 Minnesota Mining And Manufacturing Company Laser propulsion transfer using black metal coated substrates
US5683601A (en) 1994-10-24 1997-11-04 Panasonic Technologies, Inc. Laser ablation forward metal deposition with electrostatic assisted bonding
EP1239535B1 (en) 1994-11-04 2004-12-15 Andrew Corporation Cellular base station telecommunication system with an antenna control arrangement and antenna control arrangement
US5935758A (en) 1995-04-20 1999-08-10 Imation Corp. Laser induced film transfer system
WO1998041189A1 (en) 1997-03-20 1998-09-24 Therics, Inc. Fabrication of tissue products using a mold formed by solid free-form methods
US6025110A (en) 1997-09-18 2000-02-15 Nowak; Michael T. Method and apparatus for generating three-dimensional objects using ablation transfer
US6159832A (en) 1998-03-18 2000-12-12 Mayer; Frederick J. Precision laser metallization
JP3871096B2 (ja) 1998-05-21 2007-01-24 株式会社ティラド 蒸発器、吸収器および過冷却器の組合せ一体型熱交換器と、その製造方法
US6155330A (en) 1998-11-04 2000-12-05 Visteon Global Technologies, Inc. Method of spray forming metal deposits using a metallic spray forming pattern
US6815015B2 (en) 1999-01-27 2004-11-09 The United States Of America As Represented By The Secretary Of The Navy Jetting behavior in the laser forward transfer of rheological systems
US6805918B2 (en) 1999-01-27 2004-10-19 The United States Of America As Represented By The Secretary Of The Navy Laser forward transfer of rheological systems
US6177151B1 (en) 1999-01-27 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
US6348295B1 (en) 1999-03-26 2002-02-19 Massachusetts Institute Of Technology Methods for manufacturing electronic and electromechanical elements and devices by thin-film deposition and imaging
US6792326B1 (en) 1999-05-24 2004-09-14 Potomac Photonics, Inc. Material delivery system for miniature structure fabrication
WO2000072222A1 (en) 1999-05-24 2000-11-30 Potomac Photonics, Inc. Apparatus for fabrication of miniature structures
US6440503B1 (en) 2000-02-25 2002-08-27 Scimed Life Systems, Inc. Laser deposition of elements onto medical devices
US6649861B2 (en) 2000-05-24 2003-11-18 Potomac Photonics, Inc. Method and apparatus for fabrication of miniature structures
DE50014868D1 (de) 2000-09-25 2008-01-31 Voxeljet Technology Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
DE10062683A1 (de) 2000-12-15 2002-06-20 Heidelberger Druckmasch Ag Mehrstrahl-Abtastvorrichtung
US6412143B1 (en) 2001-01-08 2002-07-02 Cheng-Lu Chen Structure of material for forming a stop at an end of lashing string
US7087200B2 (en) 2001-06-22 2006-08-08 The Regents Of The University Of Michigan Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof
GB2379083A (en) 2001-08-20 2003-02-26 Seiko Epson Corp Inkjet printing on a substrate using two immiscible liquids
EP1427266A4 (en) 2001-09-11 2006-10-04 Daiken Chemical Co Ltd PROCESS FOR IMAGING ON AN OBJECT SURFACE WITH A SWITCHING SUBSTRATE
SG122749A1 (en) 2001-10-16 2006-06-29 Inst Data Storage Method of laser marking and apparatus therefor
GR1004059B (el) 2001-12-31 2002-11-15 Ιωαννα Ζεργιωτη Κατασκευη βιοπολυμερικων σχηματων μεσω εναποθεσης με λειζερ.
US7188492B2 (en) 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
DE10210146A1 (de) 2002-03-07 2003-09-25 Aurentum Innovationstechnologi Qualitätsdruckverfahren und Druckmaschine sowie Drucksbustanz hierfür
US7316748B2 (en) 2002-04-24 2008-01-08 Wisconsin Alumni Research Foundation Apparatus and method of dispensing small-scale powders
DE10237732B4 (de) 2002-08-17 2004-08-26 BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH Laserstrahlmarkierungsverfahren sowie Markierungsvorrichtung zur Laserstrahlmarkierung eines Zielsubstrats
US6921626B2 (en) 2003-03-27 2005-07-26 Kodak Polychrome Graphics Llc Nanopastes as patterning compositions for electronic parts
US6873398B2 (en) 2003-05-21 2005-03-29 Esko-Graphics A/S Method and apparatus for multi-track imaging using single-mode beams and diffraction-limited optics
US6899988B2 (en) 2003-06-13 2005-05-31 Kodak Polychrome Graphics Llc Laser thermal metallic donors
US7277770B2 (en) 2003-07-15 2007-10-02 Huang Wen C Direct write process and apparatus
US7682970B2 (en) 2003-07-16 2010-03-23 The Regents Of The University Of California Maskless nanofabrication of electronic components
WO2005024908A2 (en) 2003-09-05 2005-03-17 Si2 Technologies, Inc. Laser transfer articles and method of making
US7521651B2 (en) 2003-09-12 2009-04-21 Orbotech Ltd Multiple beam micro-machining system and method
US20050095367A1 (en) 2003-10-31 2005-05-05 Babiarz Alec J. Method of noncontact dispensing of viscous material
US7540996B2 (en) 2003-11-21 2009-06-02 The Boeing Company Laser sintered titanium alloy and direct metal fabrication method of making the same
US7294449B1 (en) 2003-12-31 2007-11-13 Kovio, Inc. Radiation patternable functional materials, methods of their use, and structures formed therefrom
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7557367B2 (en) 2004-06-04 2009-07-07 The Board Of Trustees Of The University Of Illinois Stretchable semiconductor elements and stretchable electrical circuits
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7236334B2 (en) 2004-08-31 2007-06-26 Hitachi Global Storage Technologies Netherlands B.V. Repeatable ESD protection utilizing a process for unshorting a first shorting material between electrical pads and reshorting by recreating the short
WO2006033822A2 (en) 2004-09-07 2006-03-30 Massachusetts Institute Of Technology Fabrication of electronic and photonic systems on flexible substrates by layer transfer method
US7358169B2 (en) 2005-04-13 2008-04-15 Hewlett-Packard Development Company, L.P. Laser-assisted deposition
US7784173B2 (en) 2005-12-27 2010-08-31 Palo Alto Research Center Incorporated Producing layered structures using printing
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US7608308B2 (en) 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
TWI431380B (zh) 2006-05-12 2014-03-21 Photon Dynamics Inc 沉積修復設備及方法
TWI348338B (en) 2006-05-24 2011-09-01 Unimicron Technology Corp Method for repairing the circuitry of circuit board
US20080006966A1 (en) 2006-07-07 2008-01-10 Stratasys, Inc. Method for building three-dimensional objects containing metal parts
US7569832B2 (en) 2006-07-14 2009-08-04 Carestream Health, Inc. Dual-screen digital radiographic imaging detector array
WO2008014519A2 (en) 2006-07-28 2008-01-31 Microcontinuum, Inc. Addressable flexible patterns
US20080099515A1 (en) 2006-10-11 2008-05-01 Nordson Corporation Thin line conformal coating apparatus and method
US8420978B2 (en) 2007-01-18 2013-04-16 The Board Of Trustees Of The University Of Illinois High throughput, low cost dual-mode patterning method for large area substrates
US20080233291A1 (en) 2007-03-23 2008-09-25 Chandrasekaran Casey K Method for depositing an inorganic layer to a thermal transfer layer
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
WO2008157666A1 (en) 2007-06-19 2008-12-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Sub-micron laser direct write
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US20090061112A1 (en) 2007-08-27 2009-03-05 Mu-Gahat Enterprises, Llc Laser circuit etching by subtractive deposition
US8728589B2 (en) 2007-09-14 2014-05-20 Photon Dynamics, Inc. Laser decal transfer of electronic materials
US7534544B2 (en) 2007-10-19 2009-05-19 E.I. Du Pont De Nemours And Company Method of separating an exposed thermal transfer assemblage
GB2453774B (en) 2007-10-19 2013-02-20 Materials Solutions A method of making an article
US20090130427A1 (en) 2007-10-22 2009-05-21 The Regents Of The University Of California Nanomaterial facilitated laser transfer
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
DE102007055019B4 (de) * 2007-11-14 2019-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer nanoporösen Schicht
TWI375498B (en) 2007-11-21 2012-10-21 Ind Tech Res Inst High perfromance laser-assisted transferring system and transfer component
TW200945339A (en) 2007-12-19 2009-11-01 Koninkl Philips Electronics Nv Optical disk format for direct writing materials on a substrate
CN101909804B (zh) 2008-01-10 2014-10-22 以色列商奥宝科技股份有限公司 于一基板中具有变化同时性的激光钻孔方法
US8056222B2 (en) 2008-02-20 2011-11-15 The United States Of America, As Represented By The Secretary Of The Navy Laser-based technique for the transfer and embedding of electronic components and devices
US8215371B2 (en) 2008-04-18 2012-07-10 Stratasys, Inc. Digital manufacturing with amorphous metallic alloys
CN102067726B (zh) 2008-06-16 2014-06-04 东丽株式会社 图案形成方法及使用其的装置的制造方法以及装置
WO2009153792A2 (en) 2008-06-19 2009-12-23 Utilight Ltd. Light induced patterning
US7942987B2 (en) 2008-06-24 2011-05-17 Stratasys, Inc. System and method for building three-dimensional objects with metal-based alloys
JP2011529126A (ja) 2008-07-24 2011-12-01 コヴィオ インコーポレイテッド アルミニウムインク及びその製造方法、アルミニウムインクを堆積する方法、並びにアルミニウムインクの印刷及び/又は堆積により形成されたフィルム
CN102203674B (zh) 2008-09-22 2015-08-12 Asml荷兰有限公司 光刻设备、可编程图案形成装置和光刻方法
JP2010098526A (ja) 2008-10-16 2010-04-30 Sony Corp 受信装置、コンテンツ受信方法、およびプログラム
IL197349A0 (en) 2009-03-02 2009-12-24 Orbotech Ltd A method and system for electrical circuit repair
US20120025182A1 (en) 2009-04-03 2012-02-02 Sharp Kabushiki Kaisha Donor substrate, process for production of transfer film, and process for production of organic electroluminescent element
DE102009020774B4 (de) 2009-05-05 2011-01-05 Universität Stuttgart Verfahren zum Kontaktieren eines Halbleitersubstrates
US8129088B2 (en) 2009-07-02 2012-03-06 E.I. Du Pont De Nemours And Company Electrode and method for manufacturing the same
US20110136162A1 (en) 2009-08-31 2011-06-09 Drexel University Compositions and Methods for Functionalized Patterning of Tissue Engineering Substrates Including Bioprinting Cell-Laden Constructs for Multicompartment Tissue Chambers
US8743165B2 (en) 2010-03-05 2014-06-03 Micronic Laser Systems Ab Methods and device for laser processing
WO2011126438A1 (en) 2010-04-09 2011-10-13 Frank Niklaus Free form printing of silicon micro- and nanostructures
GB201009847D0 (en) 2010-06-11 2010-07-21 Dzp Technologies Ltd Deposition method, apparatus, printed object and uses
KR101114256B1 (ko) 2010-07-14 2012-03-05 한국과학기술원 패턴 제조 방법
GB201019579D0 (en) 2010-11-19 2010-12-29 Lingvitae Holding As Method and apparatus for direct writing
JP2012190877A (ja) 2011-03-09 2012-10-04 Fujifilm Corp ナノインプリント方法およびそれに用いられるナノインプリント装置
TW201238738A (en) 2011-03-25 2012-10-01 Hon Hai Prec Ind Co Ltd Products shell manufacturing method and structure
US20120247740A1 (en) 2011-03-31 2012-10-04 Denso International America, Inc. Nested heat exchangers
US8815345B2 (en) 2011-05-26 2014-08-26 Solidscape, Inc. Method for fabricating three dimensional models
KR101982887B1 (ko) 2011-07-13 2019-05-27 누보트로닉스, 인크. 전자 및 기계 구조체들을 제조하는 방법들
US9034674B2 (en) 2011-08-08 2015-05-19 Quarkstar Llc Method and apparatus for coupling light-emitting elements with light-converting material
EA024991B1 (ru) 2011-09-12 2016-11-30 ФАРМА ДжРС, Д.О.О. Полиморфная форма питавастатина кальция
RU2539135C2 (ru) 2012-02-27 2015-01-10 Юрий Александрович Чивель Способ получения объемных изделий из порошков и устройство для его осуществления
NL2010176A (en) 2012-02-23 2013-08-26 Asml Netherlands Bv Device, lithographic apparatus, method for guiding radiation and device manufacturing method.
DE102012003866B4 (de) 2012-02-23 2013-07-25 Universität Stuttgart Verfahren zum Kontaktieren eines Halbleitersubstrates, insbesondere zum Kontaktieren von Solarzellen, sowie Solarzellen
EP2660352A1 (en) 2012-05-02 2013-11-06 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Donor sheet and method for light induced forward transfer manufacturing
GB2501918B (en) 2012-05-11 2014-06-18 Rolls Royce Plc Casing
US9044805B2 (en) 2012-05-16 2015-06-02 Apple Inc. Layer-by-layer construction with bulk metallic glasses
US9943996B2 (en) 2012-05-22 2018-04-17 University Of Southern California Process planning of meniscus shapes for fabricating smooth surfaces in mask image projection based additive manufacturing
WO2013182562A1 (en) 2012-06-04 2013-12-12 Micronic Mydata AB Optical writer for flexible foils
US11376349B2 (en) 2012-10-05 2022-07-05 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable iron-containing compositions, methods of preparing and applications therefor
WO2014061024A1 (en) 2012-10-21 2014-04-24 Photon Jet Ltd A multi-technology printing system
ES2471568B1 (es) 2012-11-22 2015-08-21 Abengoa Solar New Technologies S.A. Procedimiento para la creación de contactos eléctricos y contactos así creados
DK2956823T4 (da) 2013-02-12 2019-09-23 Carbon3D Inc Kontinuerlig trykning med væskemellemlag
TWI636717B (zh) 2013-02-18 2018-09-21 奧寶科技有限公司 兩步驟直接寫入之雷射金屬化
US9249015B2 (en) 2013-02-27 2016-02-02 International Business Machines Corporation Mold for forming complex 3D MEMS components
US9192999B2 (en) * 2013-07-01 2015-11-24 General Electric Company Methods and systems for electrochemical machining of an additively manufactured component
US20150024317A1 (en) 2013-07-17 2015-01-22 Stratasys, Inc. High-Performance Consumable Materials for Electrophotography-Based Additive Manufacturing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
KR102279622B1 (ko) 2013-10-14 2021-07-20 오르보테크 엘티디. 다중 복합 재료 구조 lift 인쇄
JP6665386B2 (ja) 2013-12-15 2020-03-13 オーボテック リミテッド プリント回路配線の修復
US20150197063A1 (en) 2014-01-12 2015-07-16 Zohar SHINAR Device, method, and system of three-dimensional printing
WO2015106193A1 (en) 2014-01-13 2015-07-16 Kevin Engel Additive metal deposition process
US9840789B2 (en) * 2014-01-20 2017-12-12 City University Of Hong Kong Etching in the presence of alternating voltage profile and resulting porous structure
KR102345450B1 (ko) 2014-04-10 2021-12-29 오르보테크 엘티디. 펄스-모드 직접-기록 레이저 금속화
KR20170008768A (ko) 2014-05-27 2017-01-24 오르보테크 엘티디. 레이저 유도 순방향 전송에 의한 3d 구조의 인쇄
WO2016020817A1 (en) 2014-08-07 2016-02-11 Orbotech Ltd. Lift printing system
EP3207772B1 (en) 2014-10-19 2024-04-17 Orbotech Ltd. Lift printing of conductive traces onto a semiconductor substrate
KR20170102984A (ko) 2015-01-21 2017-09-12 오르보테크 엘티디. 경사진 lift 제팅
US9887356B2 (en) 2015-01-23 2018-02-06 The Trustees Of Princeton University 3D printed active electronic materials and devices
US10857732B2 (en) 2015-02-05 2020-12-08 Mycronic AB Recurring process for laser induced forward transfer and high throughput and recycling of donor material by the reuse of a plurality of target substrate plates or forward transfer of a pattern of discrete donor dots
US9842831B2 (en) 2015-05-14 2017-12-12 Mediatek Inc. Semiconductor package and fabrication method thereof
KR20180030609A (ko) 2015-07-09 2018-03-23 오르보테크 엘티디. Lift 토출 각도의 제어
US20170021014A1 (en) 2015-07-21 2017-01-26 The Johns Hopkins University Vaccine adjuvants for cytomegalovirus prevention and treatment
EP3166143A1 (fr) 2015-11-05 2017-05-10 Gemalto Sa Procede de fabrication d'un dispositif a puce de circuit integre par depot direct de matiere conductrice
US10688692B2 (en) 2015-11-22 2020-06-23 Orbotech Ltd. Control of surface properties of printed three-dimensional structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216931B2 (en) * 2005-03-31 2012-07-10 Gang Zhang Methods for forming multi-layer three-dimensional structures
US20070203584A1 (en) * 2006-02-14 2007-08-30 Amit Bandyopadhyay Bone replacement materials
US20080041725A1 (en) * 2006-08-21 2008-02-21 Micron Technology, Inc. Method of selectively removing conductive material
US20100021638A1 (en) * 2008-07-28 2010-01-28 Solidscape, Inc. Method for fabricating three dimensional models
US8262916B1 (en) * 2009-06-30 2012-09-11 Microfabrica Inc. Enhanced methods for at least partial in situ release of sacrificial material from cavities or channels and/or sealing of etching holes during fabrication of multi-layer microscale or millimeter-scale complex three-dimensional structures
US20140160452A1 (en) * 2011-08-16 2014-06-12 Asml Netherlands B.V Lithographic apparatus, programmable patterning device and lithographic method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666169A (zh) * 2019-09-25 2020-01-10 南京农业大学 一种多材料激光诱导向前转移3d打印装置及方法
CN110666169B (zh) * 2019-09-25 2022-04-08 南京农业大学 一种多材料激光诱导向前转移3d打印装置及方法
CN114851564A (zh) * 2021-02-05 2022-08-05 苏州铼赛智能科技有限公司 剥离板、制备方法、及所适用的容器、3d打印设备
CN114851564B (zh) * 2021-02-05 2024-05-31 苏州铼赛智能科技有限公司 剥离板、制备方法、及所适用的容器、3d打印设备

Also Published As

Publication number Publication date
US20170365484A1 (en) 2017-12-21
EP3247816A1 (en) 2017-11-29
EP3247816A4 (en) 2018-01-24
WO2016116924A1 (en) 2016-07-28
IL253091A0 (en) 2017-08-31
US10633758B2 (en) 2020-04-28
CN107208256B (zh) 2020-08-11
KR20170103826A (ko) 2017-09-13
IL253091B (en) 2021-01-31
KR102282860B1 (ko) 2021-07-28

Similar Documents

Publication Publication Date Title
CN107208256A (zh) 使用牺牲支持体的三维金属结构体的打印
KR102407668B1 (ko) 인쇄 회로 트레이스 수리
US10957615B2 (en) Laser-seeding for electro-conductive plating
EP2408283A1 (en) Method of fabricating pattern
CN108349120A (zh) 打印的三维结构的表面性质控制
KR20170008768A (ko) 레이저 유도 순방향 전송에 의한 3d 구조의 인쇄
JP2011218398A (ja) 微細構造の形成方法、レーザー照射装置、及び基板
CN104641732A (zh) 一种用于制造用于美学或标记应用的部分金属化的精密合成线方形网眼织物的方法
von Gutfeld et al. Electrochemical microfabrication by laser-enhanced photothermal processes
Davydov et al. Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review)
Piqué Laser transfer techniques for digital microfabrication
Wee et al. Multiple-layer laser direct writing metal deposition in electrolyte solution
US20070034518A1 (en) Method of patterning ultra-small structures
JP2006206950A (ja) 金属構造体及びその製造方法
JP5234448B2 (ja) 放射線源用ターゲット、その製造方法及び放射線発生装置
Datta Microfabrication by high rate anodic dissolution: fundamentals and applications
Ryu et al. Fabrication of stainless steel metal mask with electrochemical fabrication method and its improvement in dimensional uniformity
US20220266382A1 (en) Laser-seeding for electro-conductive plating
Williams et al. The patterning of fine-pitch electrical interconnections on non-planar substrates: a comparison between methods utilising laser ablation and electro-deposited photoresist
WO2021141064A1 (ja) 表面増強ラマン分光法用基板、固定治具、および表面増強ラマン分光法用基板の製造方法
Lee et al. Characteristics of 3D microstructures fabricated using a modified LIFT process
Zehnder et al. Laser-induced chemical liquid-phase deposition of copper on transparent substrates
WO2021084529A1 (en) Photo-thermal laser printing of metals and metal composites in 2d and 3d
Vorobyev et al. Nanomaterials: Laser‐Induced Nano/Microfabrications
Xu et al. Study on the preparation mechanism and property analysis of a localized Au coating by laser-induced cyanide-free electroplating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200811

CF01 Termination of patent right due to non-payment of annual fee