CN107200351A - 钒酸铋纳米棒的制备方法 - Google Patents

钒酸铋纳米棒的制备方法 Download PDF

Info

Publication number
CN107200351A
CN107200351A CN201710432260.XA CN201710432260A CN107200351A CN 107200351 A CN107200351 A CN 107200351A CN 201710432260 A CN201710432260 A CN 201710432260A CN 107200351 A CN107200351 A CN 107200351A
Authority
CN
China
Prior art keywords
nanometer rods
solution
pucherite
preparation
pucherite nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710432260.XA
Other languages
English (en)
Other versions
CN107200351B (zh
Inventor
廖日权
何光耀
于汉玉
熊拯
尹艳镇
钟书明
付满
亢振军
王宝宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinzhou University
Original Assignee
Qinzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinzhou University filed Critical Qinzhou University
Priority to CN201710432260.XA priority Critical patent/CN107200351B/zh
Publication of CN107200351A publication Critical patent/CN107200351A/zh
Application granted granted Critical
Publication of CN107200351B publication Critical patent/CN107200351B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钒酸铋纳米棒的制备方法,包括以下步骤:1)将Bi(NO3)3·5H2O溶于硝酸溶液中,得到A溶液;2)将NH4VO3溶于氨水溶液中,得到B溶液;3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至6.5~8,继续搅拌30~120min,得到混合液;4)向混合液中加入乙二胺四乙酸钠,搅拌,调节PH至8~9,搅拌15~60min后,超声分散,得到前驱液;5)将前驱液加入到高压反应釜中,在160~200℃的条件下进行水热反应,反应时间为3~10h,冷却,过滤,将沉淀物洗涤,离心,干燥,得到钒酸铋纳米棒。本发明制得的钒酸铋纳米棒尺寸小,比表面积大,光催化活性高。

Description

钒酸铋纳米棒的制备方法
技术领域
本发明涉光催化降解有机污染物技术领域,具体涉及一种钒酸铋纳米棒的制备方法。
背景技术
环境污染问题已成为全球问题,不但阻碍社会的快速发展而且威胁着人类健康。在各种环境污染中,化学污染影响最大。光催化技术在室温下可实现,而且利用太阳能,成本低廉,安全环保。半导体材料均具有光催化活性,光催化反应的机理也逐渐被人们认知。在众多半导体光催化剂材料中,二氧化钛最典型,它具有氧化性强,光诱导性好,亲水性好,稳定无毒等优点,在治理环境问题方面有很好的应用。然而,二氧化钛也有其局限性。光生电子-空穴对的复合几率较高,禁带宽度较大,这些不利特性严重阻碍了二氧化钛在光催化氧化领域的推广和应用。
单斜晶相钒酸铋的禁带宽度为2.3-2.4eV,它足够高的价带完全可以实现空穴对有机污染物的降解,并且导带位置也有利于光生电子的还原,具有较高的氧化能力,且其价带氧化电位位于2.4eV附近,从理论上将,能够实现在可见光下分解水和降解有机污染物的目标。钒酸铋的光催化性能与其自身晶体结构、晶粒尺寸以及颗粒形貌有很大的关系。由于常规的钒酸铋晶体粒径大,导致光生电子和空穴迁移到催化剂表面的传输距离长,容易在长距离迁移过程中发生复合,降低光催化效率。其次,常规钒酸铋晶体比表面积小,不能有效吸附污染物,也大大降低了光催化效率。
发明内容
本发明所要解决的技术问题是提供一种钒酸铋纳米棒的制备方法,该方法制得的钒酸铋纳米棒尺寸小,比表面积大,催化活性强。
本发明提供的技术方案是一种钒酸铋纳米棒的制备方法,包括以下步骤:
1)将Bi(NO3)3·5H2O溶于1~4mol/L的硝酸溶液中,得到A溶液;
2)将与Bi(NO3)3·5H2O等摩尔量的NH4VO3溶于1~4mol/L的氨水溶液中,得到B溶液;
3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至6.5~8,继续搅拌30~120min,得到混合液;
4)向混合液中加入乙二胺四乙酸钠,搅拌,调节PH至8~9,搅拌15~60min后,超声分散,得到前驱液;
5)将前驱液加入到高压反应釜中,在160~200℃的条件下进行水热反应,反应时间为3~10h,冷却,过滤,将沉淀物洗涤,离心,干燥,得到钒酸铋纳米棒。
步骤4)中,所述乙二胺四乙酸钠的加入量为Bi(NO3)3·5H2O重量的3~5倍。
步骤1)中,硝酸溶液的浓度为3~4mol/L。
步骤2)中,氨水溶液浓度为2~2.5mol/L。
步骤5)中,所述洗涤是将沉淀物用去离子水和/或乙醇洗涤。
步骤5)中,所述干燥是在40~100℃下干燥4~24h。
与现有技术相比,本发明具有以下有益效果:
1)在碱性条件下,OH-中的O原子的孤对电子会与钒酸铋晶核{010}晶面作用,使得{010}晶面带负电荷,这些带负电荷的晶面通过静电吸附作用,吸附乙二胺四乙酸钠,而乙二胺四乙酸容易与Bi3+形成配合物,从而引导Bi3+与VO3 3-组装在{010}晶面,使得钒酸铋晶体具有{010}取向。最终制得的催化剂的形貌为棒状,该纳米棒直径为20~30nm,长径比为20~40,对可见光有很好的吸收。
2)钒酸铋催化剂具有{010}取向,光生电子会聚集在纳米棒的两端,不仅提高了空穴的分离效率,空穴更稳定的分部在纳米棒侧面,非常有利于有机物的降解。
3)钒酸铋具有{010}取向,而{010}晶面活性高,产生的光生电子氧化能力最强,因而具有{010}取向的钒酸铋纳米棒光催化活性最强。
4)本发明制得的钒酸铋催化剂晶体尺寸小,能够缩短光生电子和空穴迁移到催化剂表面的传输距离,提高光生电子空穴存活率。
附图说明
图1是实施例1所制备的钒酸铋纳米棒在透射电镜下的形貌图;
图2是实施例1所制备的钒酸铋纳米棒的高分辨率图;
图3是实施例1所制备的钒酸铋纳米棒的XRD谱图;
图4是实施例1所制备的钒酸铋纳米棒在可见光条件下降解罗丹明B的速率常数对比,参考为商业性的Degussa P25为光催化剂时的速率常数。
具体实施方式
以下具体实施例对本发明作进一步阐述,但不作为对本发明的限定。
实施例1
1)将Bi(NO3)3·5H2O溶于1mol/L的硝酸溶液中,得到A溶液;
2)将与Bi(NO3)3·5H2O等摩尔量的NH4VO3溶于1mol/L的氨水溶液中,得到B溶液;
3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至6.5,继续搅拌30~120min,得到混合液;
4)向混合液中加入乙二胺四乙酸钠,乙二胺四乙酸钠的加入量为Bi(NO3)3·5H2O重量的3倍,搅拌,调节PH至8,搅拌15min后,超声分散,得到前驱液;
5)将前驱液加入到高压反应釜中,在160℃的条件下进行水热反应,反应时间为3h,冷却,过滤,将沉淀物用去离子水和/或乙醇洗涤洗涤3次,离心,在40℃下干燥4h,得到钒酸铋纳米棒。
由图1可知,钒酸铋纳米棒分散性良好,直径约为20nm,长径比为20~40。由图2可知,垂直于纳米棒生长方向的晶面的晶面间距与钒酸铋{040}晶面间距相吻合,证明该钒酸铋纳米棒是沿着{010}方向延伸的。由图3可知,钒酸铋纳米棒XRD图谱与单斜白钨矿相钒酸铋的标准谱图相比完全吻合,说明实施例1的纳米棒为单斜白钨矿结构。由图4可知,本实施例的纳米棒对罗丹明B的降解速率是P25的89倍,具有非常优越的光催化性能。
实施例2
1)将Bi(NO3)3·5H2O溶于4mol/L的硝酸溶液中,得到A溶液;
2)将与Bi(NO3)3·5H2O等摩尔量的NH4VO3溶于4mol/L的氨水溶液中,得到B溶液;
3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至8,继续搅拌120min,得到混合液;
4)向混合液中加入乙二胺四乙酸钠,乙二胺四乙酸钠的加入量为Bi(NO3)3·5H2O重量的5倍,搅拌,调节PH至9,搅拌60min后,超声分散,得到前驱液;
5)将前驱液加入到高压反应釜中,在200℃的条件下进行水热反应,反应时间为10h,冷却,过滤,将沉淀物用去离子水和/或乙醇洗涤洗涤5次,离心,在100℃下干燥24h,得到钒酸铋纳米棒。
透射电镜结果表明钒酸铋纳米棒为纳米棒状,分散性良好,直径为30nm,长径比为20~40,并沿着{010}方向延伸。X射线衍射结果表明为单斜白钨矿相。
实施例3
1)将Bi(NO3)3·5H2O溶于3mol/L的硝酸溶液中,得到A溶液;
2)将与Bi(NO3)3·5H2O等摩尔量的NH4VO3溶于2mol/L的氨水溶液中,得到B溶液;
3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至7.5,继续搅拌90min,得到混合液;
4)向混合液中加入乙二胺四乙酸钠,乙二胺四乙酸钠的加入量为Bi(NO3)3·5H2O重量的4倍,搅拌,调节PH至8.5,搅拌45min后,超声分散,得到前驱液;
5)将前驱液加入到高压反应釜中,在180℃的条件下进行水热反应,反应时间为6h,冷却,过滤,将沉淀物用去离子水和/或乙醇洗涤洗涤4次,离心,在80℃下干燥12h,得到钒酸铋纳米棒。
透射电镜结果表明钒酸铋纳米棒为纳米棒状,分散性良好,直径为25nm,长径比为20~40,并沿着{010}方向延伸。X射线衍射结果表明为单斜白钨矿相。
实施例4
1)将Bi(NO3)3·5H2O溶于4mol/L的硝酸溶液中,得到A溶液;
2)将与Bi(NO3)3·5H2O等摩尔量的NH4VO3溶于2.5mol/L的氨水溶液中,得到B溶液;
3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至6.5,继续搅拌120min,得到混合液;
4)向混合液中加入乙二胺四乙酸钠,乙二胺四乙酸钠的加入量为Bi(NO3)3·5H2O重量的3倍,搅拌,调节PH至9,搅拌15min后,超声分散,得到前驱液;
5)将前驱液加入到高压反应釜中,在200℃的条件下进行水热反应,反应时间为3h,冷却,过滤,将沉淀物用去离子水和/或乙醇洗涤洗涤5次,离心,在40℃下干燥24h,得到钒酸铋纳米棒。
透射电镜结果表明钒酸铋纳米棒为纳米棒状,分散性良好,直径为25nm,长径比为20~40,并沿着{010}方向延伸。X射线衍射结果表明为单斜白钨矿相。

Claims (6)

1.钒酸铋纳米棒的制备方法,其特征在于:包括以下步骤:
1)将Bi(NO3)3·5H2O溶于1~4mol/L的硝酸溶液中,得到A溶液;
2)将与Bi(NO3)3·5H2O等摩尔量的NH4VO3溶于1~4mol/L的氨水溶液中,得到B溶液;
3)将A溶液缓慢加入到B溶液中,搅匀,调节pH至6.5~8,继续搅拌30~120min,得到混合液;
4)向混合液中加入乙二胺四乙酸钠,搅拌,调节PH至8~9,搅拌15~60min后,超声分散,得到前驱液;
5)将前驱液加入到高压反应釜中,在160~200℃的条件下进行水热反应,反应时间为3~10h,冷却,过滤,将沉淀物洗涤,离心,干燥,得到钒酸铋纳米棒。
2.根据权利要求1所述的钒酸铋纳米棒的制备方法,其特征在于:步骤4)中,所述乙二胺四乙酸钠的加入量为Bi(NO3)3·5H2O重量的3~5倍。
3.根据权利要求1所述的钒酸铋纳米棒的制备方法,其特征在于:步骤1)中,硝酸溶液的浓度为3~4mol/L。
4.根据权利要求1所述的钒酸铋纳米棒的制备方法,其特征在于:步骤2)中,氨水溶液浓度为2~2.5mol/L。
5.根据权利要求1所述的钒酸铋纳米棒的制备方法,其特征在于:步骤5)中,所述洗涤是将沉淀物用去离子水和/或乙醇洗涤。
6.根据权利要求1所述的钒酸铋纳米棒的制备方法,其特征在于:步骤5)中,所述干燥是在40~100℃下干燥4~24h。
CN201710432260.XA 2017-06-09 2017-06-09 钒酸铋纳米棒的制备方法 Active CN107200351B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710432260.XA CN107200351B (zh) 2017-06-09 2017-06-09 钒酸铋纳米棒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710432260.XA CN107200351B (zh) 2017-06-09 2017-06-09 钒酸铋纳米棒的制备方法

Publications (2)

Publication Number Publication Date
CN107200351A true CN107200351A (zh) 2017-09-26
CN107200351B CN107200351B (zh) 2019-03-29

Family

ID=59908273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710432260.XA Active CN107200351B (zh) 2017-06-09 2017-06-09 钒酸铋纳米棒的制备方法

Country Status (1)

Country Link
CN (1) CN107200351B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601562A (zh) * 2017-10-31 2018-01-19 成都先进金属材料产业技术研究院有限公司 一种含钒浸出液制备钒酸铋的方法
CN109778304A (zh) * 2019-03-20 2019-05-21 广州大学 一种钒掺杂硫化铋纳米线晶体薄膜及其制备方法和应用
CN111905712A (zh) * 2020-09-08 2020-11-10 大连民族大学 纳米棒状铝/钒酸铋复合光催化剂及制备方法
CN115779942A (zh) * 2022-08-29 2023-03-14 湖南大学 改性蕨状钒酸铋光催化纳米材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295311B (zh) * 2011-07-22 2013-12-04 河北联合大学 一种微波辐射法制备钒酸铋纳米材料的方法
CN103950978B (zh) * 2014-04-09 2015-03-11 河南师范大学 具有分级结构的钒酸铋可见光催化剂的仿生合成方法
CN104148054B (zh) * 2014-08-27 2016-05-04 哈尔滨工业大学 一种钒酸铋纳米棒束的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295311B (zh) * 2011-07-22 2013-12-04 河北联合大学 一种微波辐射法制备钒酸铋纳米材料的方法
CN103950978B (zh) * 2014-04-09 2015-03-11 河南师范大学 具有分级结构的钒酸铋可见光催化剂的仿生合成方法
CN104148054B (zh) * 2014-08-27 2016-05-04 哈尔滨工业大学 一种钒酸铋纳米棒束的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAIBIN LI ET AL.: "Synthesis and characterization of monoclinic BiVO4 nanorods and nanoplates via microemulsion-mediated hydrothermal method", 《PHYSICA E》 *
WANTING SUN ET AL.: "Synthesis of large surface area nano-sized BiVO4 by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
ZHENGFENG ZHU ET AL.: "An EDTA-assisted hydrothermal synthesis of BiVO4 hollow microspheres and their evolution into nanocages", 《CERAMICS INETRNATIONAL》 *
马伟倩: "BiVO4新型光催化剂的制备及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601562A (zh) * 2017-10-31 2018-01-19 成都先进金属材料产业技术研究院有限公司 一种含钒浸出液制备钒酸铋的方法
CN109778304A (zh) * 2019-03-20 2019-05-21 广州大学 一种钒掺杂硫化铋纳米线晶体薄膜及其制备方法和应用
CN109778304B (zh) * 2019-03-20 2020-07-31 广州大学 一种钒掺杂硫化铋纳米线晶体薄膜及其制备方法和应用
CN111905712A (zh) * 2020-09-08 2020-11-10 大连民族大学 纳米棒状铝/钒酸铋复合光催化剂及制备方法
CN115779942A (zh) * 2022-08-29 2023-03-14 湖南大学 改性蕨状钒酸铋光催化纳米材料及其制备方法和应用
CN115779942B (zh) * 2022-08-29 2024-01-26 湖南大学 改性蕨状钒酸铋光催化纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN107200351B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Feizpoor et al. Novel TiO2/Ag2CrO4 nanocomposites: efficient visible-light-driven photocatalysts with n–n heterojunctions
Zhang et al. Microwave hydrothermal synthesis and photocatalytic properties of TiO2/BiVO4 composite photocatalysts
CN107200351B (zh) 钒酸铋纳米棒的制备方法
CN103143380B (zh) 以溶剂挥发法醇溶剂制备石墨相氮化碳/{001}面暴露锐钛矿相二氧化钛纳米复合材料
CN105800674A (zh) 一种硫化锡材料的制备方法及应用
Meng et al. Fullerene modification CdSe/TiO 2 and modification of photocatalytic activity under visible light
Liu et al. Ag-SrTiO3/TiO2 composite nanostructures with enhanced photocatalytic activity
Yang et al. Self-assembly Z-scheme heterostructured photocatalyst of Ag 2 O@ Ag-modified bismuth vanadate for efficient photocatalytic degradation of single and dual organic pollutants under visible light irradiation
Liu et al. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants
Yang et al. Photocatalytic degradation of Rhodamine B with H3PW12O40/SiO2 sensitized by H2O2
CN105709782A (zh) 一种Ag/AgBr/BiOCl‐(001)纳米复合材料的制备及应用
CN107469804A (zh) 一种纳米颗粒铋负载的二氧化钛基复合光催化材料及其制备方法和应用
CN107552030B (zh) 一种具有多缺陷氟掺杂中空毛刺立方体结构二氧化钛纳米颗粒及制备方法
Chen et al. Fabrication of Ag/AgBr/AgVO3 heterojunctions with improved photocatalytic performance originated from enhanced separation rate of photogenerated carriers
CN105413712A (zh) 金纳米棒-CdS-金纳米粒子复合光催化剂和应用
Lin et al. Fabrication of novel Ag/AgVO3/WO3 homojunction/heterojunction nanomaterials with highly enhanced photocatalytic activity-Investigation on type Ӏ plus Z-scheme mechanism
Abbas et al. Inexpensive synthesis of a high-performance Fe 3 O 4-SiO 2-TiO 2 photocatalyst: Magnetic recovery and reuse
CN103240074A (zh) 一种暴露高活性晶面的钒酸铋光催化剂及其制备方法
Harish et al. Functional properties and enhanced visible light photocatalytic performance of V3O4 nanostructures decorated ZnO nanorods
Ibrahim et al. Synthesis, physicochemical characterization of ZnO and α-MoO3/ZnO heterostructures and their photocatalytic activity for the methylene blue (MB) dye degradation
Zhang et al. Hydrothermal synthesis of iodine-doped nanoplates with enhanced visible and ultraviolet-induced photocatalytic activities
Tang et al. Facile ultrasonic synthesis of novel zinc sulfide/carbon nanotube coaxial nanocables for enhanced photodegradation of methyl orange
Dong et al. Commercial ZnO and its hybrid with Ag nanoparticles: photocatalytic performance and relationship with structure
CN108339574A (zh) 一种可见光催化降解罗丹明b的钛基复合材料及其制备
Deshpande et al. Rapid detoxification of polluted water using ultrastable TiO2 encapsulated CsPbBr3 QDs in collected sunlight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant