CN107195468B - 具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备 - Google Patents

具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备 Download PDF

Info

Publication number
CN107195468B
CN107195468B CN201710375207.0A CN201710375207A CN107195468B CN 107195468 B CN107195468 B CN 107195468B CN 201710375207 A CN201710375207 A CN 201710375207A CN 107195468 B CN107195468 B CN 107195468B
Authority
CN
China
Prior art keywords
composite material
graphene
nickel screen
specific capacitance
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710375207.0A
Other languages
English (en)
Other versions
CN107195468A (zh
Inventor
轩海成
徐曰魁
何宏伟
李慧
韩培德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201710375207.0A priority Critical patent/CN107195468B/zh
Publication of CN107195468A publication Critical patent/CN107195468A/zh
Application granted granted Critical
Publication of CN107195468B publication Critical patent/CN107195468B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备,属于新材料,所述复合材料的化学通式是NixMoO3+x@rGO/NF,x的取值为1≤x≤3;其制备方法:氧化石墨烯超声1~2h分散于蒸馏水中;抗坏血酸溶解在分散有石墨烯的蒸馏水中,将清洗后的镍网放入上述溶液中,80~100℃水浴4~8h;得到沉积有还原氧化石墨烯的镍网;金属盐溶解并充分搅拌后移至50 ml反应釜,并将沉积有石墨烯的镍网浸入溶液中。反应釜置于100~160℃的环境中保持4~10h,冷却到室温后,将产物洗涤并干燥后置于200~450℃的管式炉中热处理0.5~2h得到复合材料。本发明比电容大,能量密度和功率密度高。

Description

具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备
技术领域
本发明属于化工领域与材料领域中的尖晶石型金属氧化物和金属氧化物/氧化石墨烯复合材料的制备及其应用,具体是一种具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备。
背景技术
随着人类社会的不断进步与发展,资源和能源日渐短缺,生态环境日益恶化,开发新能源和可再生洁净能源是当今世界经济中最具决定性影响的技术之一。与此同时,我国二十世纪以来科技与工业的快速发展引起能源消耗的大幅度上升,以化工石油燃料为主体的能源结构己不能长期满足对未来社会的各种需求。因此,发展新能源以及新材料来适应未来社会对经济、高效、清洁、安全型新能源体系的要求是21世纪必须解决的关键技术之一。其中,能量通过电化学体系的转换被认为是对自然界矿物燃料能源的一种十分有利的替代。
从新能源技术开发和应用来看,随着近年来汽车、电子和信息产业的快速发展,人们对能量密度和功率密度的需求越来越高,促进了高容量电源系统的发展。新能源中的化学电源是将化学能可以直接转换成电能的装置,它在国民经济、科学技术和日常生活中得到了广泛的应用。超级电容器,又称电化学电容器,它兼有物理电容器和电池的共同特性,是一种新型的储能能源器件。它既像普通电容器一样有很高的放电功率,又像电池一样具有大的电荷储存能力,其使得这两种元件间找到了最佳的结合点。另外,超级电容器也可以用来满足汽车在爬坡时的启动、加速高功率要求,可以保护蓄电池系统的安全性。
超级电容器的容量达到了法拉级别,相比于传统静电电容器其容量跃升了 3 到4 个数量级,其功率密度高出蓄电池一个数量级,非常好地弥补了传统静电电容器储能密度小和蓄电池功率密度低的缺点,尤其超级电容器更适用于大电流充/放电场合。它在国民经济、科学技术和日常生活中得到了广泛的应用,对缓解能源与环境危机、提高人类生活水平有着重要影响,已成为全球经济发展的一个新热点。
一般认为超级电容器包括双电层电容器和法拉第准电容器两大类。双电层电容器是利用电极/电解液之间形成的界面双电层电容来存储能量的一种新型电子元件,它是建立在双电层理论基础之上。法拉第准电容是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,高度可逆的化学吸脱附或氧化还原反应,产生与电极充电电位有关的电容。金属氧化物在电极/溶液界面反应所产生法拉第准电容要远大于碳材料双电层电容,因此近年来金属氧化物电极材料受到国内外研究人员的广泛的关注。氧化钌材料具有比电容高、导电性好,以及在电解液中非常稳定等优点,是目前性能最好的超级电容器电极材料。然而因为 Ru 的价格昂贵,这类电容器难以实现民用商业化,目前仅在航空航天、军用等先进装备上使用。相对价廉的其他过渡金属Mn、Ni、Co、V等的氧化物成为研发赝电容器的有效选择,而因其稳定的电压窗口小,能量密度较低等因素,制备高比电容性能的复合双金属氧化物,使其具有两者及其以上元素的共有性质是目前的研究热点。
发明内容
本发明提出具有高比电容和良好倍率性能且具有良好稳定性的一种具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备。
本发明的技术方案:一种具高比电容特性的金属氧化物/氧化石墨烯复合材料,所述复合材料的化学通式是NixMoO3+x@rGO/NF,其中x的取值为1 ≤ x ≤ 3。
以抗坏血酸为氧化剂,还原氧化石墨烯(rGO)沉积于镍网 (NF);金属盐Ni(NO3)2·6H2O和Na2MoO4·4H2O依次溶解形成混合溶液并充分搅拌,混合溶液移至50 ml 反应釜,并将沉积有石墨烯的镍网浸入溶液中。反应釜置于100~160℃的环境中保持4~10h,冷却到室温后,将产物取出后依次用去离子水和无水乙醇洗涤并干燥。再将产物置于200~450℃的管式炉中热处理0.5~2h得到NixMoO3+x@rGO/NF复合材料。
所述镍网是指经过丙酮、盐酸、去离子水和无水乙醇超声处理去除杂质后的产品。
所述尖金属氧化物和金属氧化物/氧化石墨烯复合材料应用于超级电容器或锂离子电池以及其他大电流需求的电池和电器原件领域。
本发明的含有氧化石墨烯的金属氧化物具有较高的比电容特性,其生产原料价格低廉、制备过程简单、生产效率高、对设备要求低的特点,应用广泛。
本发明制备的金属氧化物/氧化石墨烯复合材料在1A/g 电流密度下比电容可达1980 F/g,可应用于超级电容器、锂离子和钠离子电池等领域,用途广泛。
附图说明
图1是由对比例2、4和实施例2得到的NiMoO4 材料的XRD曲线。
图2是由对比例4获得的通式为NiMoO4的典型扫描电镜照片。
图3是由实施例2获得的通式为NiMoO4@rGO/NF 的复合材料的透射电镜照片。
图4是由实施例2获得的通式为NiMoO4@rGO/NF 的复合材料的循环伏安关系曲线。
图5是由实施例2获得的通式为NiMoO4@rGO/NF 的复合材料的恒流充放电关系曲线。
图6是由对比例2、4和实施例2获得的复合材料的恒流充放电关系曲线。
图7是由对比例4和实施例2获得的复合材料的循环寿命曲线。
实施例对比分析说明
图6的恒流充放电关系曲线可以看到,NiMoO4@rGO/NF复合材料相对于NiMoO4粉体和NiMoO4 /NF拥有更高的比电容。
图7的循环寿命曲线可以看到,NiMoO4@rGO/NF复合材料比NiMoO4 /NF具有更好的循环稳定性。
具体实施方式
具高比电容特性的金属氧化物/氧化石墨烯复合材料,复合材料的化学通式是NixMoO3+x@rGO/NF,其中x的取值为1 ≤ x ≤ 3。
一种高比电容特性的金属氧化物/氧化石墨烯复合材料的制备方法包括如下步骤:氧化石墨烯超声1~2h分散于蒸馏水中,浓度为0.2~1 mg/ml;抗坏血酸溶解在分散有石墨烯的蒸馏水中,使其在溶液中的浓度为1~4mg/ml,将清洗后的镍网放入上述溶液中,80~100℃水浴4~8h;取出镍网清洗、干燥,得到沉积有还原氧化石墨烯的镍网。金属盐Ni(NO3)2·6H2O和Na2MoO4·4H2O按照1:1的摩尔比依次溶解形成混合溶液并充分搅拌,混合溶液移至50 ml 反应釜,并将沉积有石墨烯的镍网浸入溶液中。反应釜置于100~160℃的环境中保持4~10h,冷却到室温后,将产物取出后依次用去离子水和无水乙醇洗涤并干燥。再将产物置于200~450℃的管式炉中热处理0.5~2h得到NixMoO3+x@rGO/NF复合材料。
所述镍网是指经过丙酮、盐酸、去离子水和无水乙醇超声处理去除杂质后的产品。
所述尖晶石型金属氧化物和金属氧化物/氧化石墨烯复合材料应用于超级电容器或锂离子电池以及其他大电流需求的电池和电器元件领域。
下面结合具体的实施例对本发明进一步说明。
实施例1
氧化石墨烯 (10mg) 超声1.5h分散于40ml蒸馏水中;抗坏血酸溶解在分散有石墨烯的蒸馏水中,使其在溶液中的浓度为2mg/ml,将清洗后的镍网放入上述溶液中,90℃水浴6h;取出镍网清洗、干燥,得到沉积有还原氧化石墨烯的镍网 (NF);金属盐Ni(NO3)2·6H2O和Na2MoO4·4H2O按照1:1的摩尔比依次溶解形成混合溶液并充分搅拌,混合溶液移至50 ml反应釜,并将沉积有石墨烯的镍网浸入混合溶液中。反应釜置于120℃的环境中保持6h,冷却到室温后,将产物取出后依次用去离子水和无水乙醇洗涤并干燥。再将产物置于350℃的管式炉中热处理2h得到NiMoO4@rGO/NF复合材料。
实施例2
氧化石墨烯 (10mg) 超声1.5h分散于40ml蒸馏水中;抗坏血酸溶解在分散有石墨烯的蒸馏水中,使其在溶液中的浓度为2mg/ml,将清洗后的镍网放入上述溶液中,90℃水浴6h;取出镍网清洗、干燥,得到沉积有还原氧化石墨烯的镍网 (NF);金属盐Ni(NO3)2·6H2O和Na2MoO4·4H2O按照1:1的摩尔比依次溶解形成混合溶液并充分搅拌,混合溶液移至50 ml反应釜,并将沉积有石墨烯的镍网浸入混合溶液中。反应釜置于140℃的环境中保持6h,冷却到室温后,将产物取出后依次用去离子水和无水乙醇洗涤并干燥。再将产物置于350℃的管式炉中热处理2h得到NiMoO4@rGO/NF复合材料。
对比例1
配置Ni(NO3)2和Na2MoO4的溶液,两者依次溶解形成混合溶液并充分搅拌且控制混合溶液中Ni2+/Mo2+比例为1:1。混合溶液移至50 ml 反应釜,并置于120℃的环境中保持6h,冷却到室温后,将沉淀物取出,依次用去离子水和无水乙醇洗涤并干燥为产物。再将产物置于350℃的管式炉中热处理2h得到NiMoO4粉体。
对比例2
配置Ni(NO3)2和Na2MoO4的溶液,两者依次溶解形成混合溶液并充分搅拌且控制混合溶液中Ni2+/Mo2+比例为1:1。混合溶液移至50 ml 反应釜,并置于140℃的环境中保持6h,冷却到室温后,将沉淀物取出,依次用去离子水和无水乙醇洗涤并干燥为产物。再将产物置于350℃的管式炉中热处理2h得到NiMoO4粉体。
对比例3
配置Ni(NO3)2和Na2MoO4的溶液,两者依次溶解形成混合溶液并充分搅拌且控制溶液中Ni2+/Mo2+比例为1:1。混合溶液移至50 ml 反应釜,并将镍网浸入混合溶液中。反应釜置于120℃的环境中保持6h,冷却到室温后,将产物取出后依次用去离子水和无水乙醇洗涤并干燥为产物。再将产物置于350℃的箱式炉中热处理0.5~2h得到NiMoO4/NF复合材料。
对比例4
配置Ni(NO3)2和Na2MoO4的溶液,两者依次溶解形成混合溶液并充分搅拌且控制混合溶液中Ni2+/Mo2+比例为1:1。混合溶液移至50 ml 反应釜,并将镍网浸入混合溶液中。反应釜置于140℃的环境中保持6h,冷却到室温后,将产物取出后依次用去离子水和无水乙醇洗涤并干燥。再将产物置于350℃的管式炉中热处理2h得到NiMoO4/NF复合材料。

Claims (2)

1.一种具高比电容特性的金属氧化物/氧化石墨烯复合材料,所述复合材料的化学通式是NixMoO3+x@rGO/NF,x的取值为1 ≤ x ≤ 3;其特征是:它的制备方法包括如下步骤:
(1)氧化石墨烯经过1~2h 的超声处理分散于去离子水中形成悬浮液;
(2)抗坏血酸溶解在悬浮液中,使抗坏血酸在悬浮液中的浓度为1~4mg/ml;将处理后的镍网浸入悬浮液中,然后把悬浮液置于80~100℃温度下水浴4~8h;冷却到室温后取出样品,洗涤,干燥;
(3)将摩尔比为1:1的Ni(NO3)2·6H2O与Na2MoO4·4H2O依次溶解于30ml去离子水中混合形成混合溶液并充分搅拌;
(4)将混合溶液移至50 ml 反应釜,并将步骤(3)沉积有石墨烯的镍网浸入混合溶液中;反应釜置于100~160℃的环境中保持4~10h,冷却到室温后,将反应釜内的产物取出后依次用去离子水和无水乙醇洗涤并干燥;
(5)将干燥的产物置于200~450℃的管式炉中热处理0.5~2h,得到具高比电容特性的金属氧化物/氧化石墨烯复合材料。
2.如权利要求1所述的一种具高比电容特性的金属氧化物/氧化石墨烯复合材料,其特征是:所述镍网是经过丙酮、盐酸、去离子水和无水乙醇超声处理去除杂质后的镍网。
CN201710375207.0A 2017-05-24 2017-05-24 具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备 Expired - Fee Related CN107195468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710375207.0A CN107195468B (zh) 2017-05-24 2017-05-24 具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710375207.0A CN107195468B (zh) 2017-05-24 2017-05-24 具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备

Publications (2)

Publication Number Publication Date
CN107195468A CN107195468A (zh) 2017-09-22
CN107195468B true CN107195468B (zh) 2018-08-24

Family

ID=59874768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710375207.0A Expired - Fee Related CN107195468B (zh) 2017-05-24 2017-05-24 具高比电容特性的金属氧化物/氧化石墨烯复合材料及制备

Country Status (1)

Country Link
CN (1) CN107195468B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008888A (zh) * 2014-06-13 2014-08-27 上海利物盛企业集团有限公司 超级电容器用复合材料及电极片的制备方法
CN104269535A (zh) * 2014-09-15 2015-01-07 南京工业大学 一种碳包覆金属氧化物-石墨烯复合电极材料的制备方法
CN104528712B (zh) * 2015-02-02 2016-04-27 哈尔滨工业大学 一种石墨烯/金属氧化物三维复合材料的制备方法
CN104752067A (zh) * 2015-03-27 2015-07-01 新疆大学 一种用于电容器的钼酸镍石墨烯复合材料的微波辅助方法

Also Published As

Publication number Publication date
CN107195468A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Ramachandran et al. Electrochemical capacitor performance: influence of aqueous electrolytes
CN105244177B (zh) 一种超级电容器用三维纳米结构NiCo2S4电极材料及其制备方法
Xu et al. Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance
CN103346301B (zh) 三维结构的石墨烯基金属氧化物复合材料的制备方法及其应用
Kumar et al. Free-standing NiV 2 S 4 nanosheet arrays on a 3D Ni framework via an anion exchange reaction as a novel electrode for asymmetric supercapacitor applications
Arunachalam et al. A facile chemical precipitation method for the synthesis of Nd (OH) 3 and La (OH) 3 nanopowders and their supercapacitor performances
CN108615610A (zh) 一种以泡沫镍为基底原位生长钴锰双金属氢氧化物复合材料的方法
CN106098397B (zh) 用于超级电容器的NiSe-Ni3Se2三维松叶状纳米材料及其制备方法
Zhang et al. Mild synthesis route to nanostructured α-MnO2 as electrode materials for electrochemical energy storage
CN103474254A (zh) 含有MnCo2O4.5的超级电容器电极材料的制备方法
CN103093967A (zh) 片层结构的钴铝双氢氧化物--还原氧化石墨烯复合材料的制备及应用
CN110350184A (zh) 一种用于电池正极材料的高容量NiMoO4储能材料的制备方法
Ma et al. Solid‐state redox mediators for decoupled H2 production: principle and challenges
Ali et al. Hydrothermally synthesized cobalt oxide nanowires on nickel foam for high-performance energy-storage applications
Zhang et al. Electrochemical performance of pseudo-capacitive intermetallic molybdenum nitride in acid
CN105374575A (zh) 一种表面功能化多孔碳超级电容器电极材料的制备方法
CN110544588A (zh) 一种钼酸钴/氮功能化石墨烯纳米复合材料及其制备方法
Cui et al. A self-assembled and flexible supercapacitor based on redox-active lignin-based nitrogen-doped activated carbon functionalized graphene hydrogels
CN103943374A (zh) 一种NiO纳米片/超细纳米线超级电容器材料的制备方法
Suganya et al. One-pot synthesis of rGO@ Cu2V2O7 nanocomposite as high stabled electrode for symmetric electrochemical capacitors
CN109119252B (zh) 硫化Ni-Co-Al LDH电极复合材料及其制备方法
CN110444407A (zh) 一种基于金属有机框架核壳多孔硫化镍电极材料的制备方法及其应用
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN106783196B (zh) 一种多面体三氧化二铁纳米材料的制备方法
CN110853933B (zh) 一种基于碳布原位合成三氧化钨/五氧化二钒复合电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180824

CF01 Termination of patent right due to non-payment of annual fee