CN107188115A - 一种金属/聚合物复合三维微纳米结构的制备方法 - Google Patents

一种金属/聚合物复合三维微纳米结构的制备方法 Download PDF

Info

Publication number
CN107188115A
CN107188115A CN201710417321.5A CN201710417321A CN107188115A CN 107188115 A CN107188115 A CN 107188115A CN 201710417321 A CN201710417321 A CN 201710417321A CN 107188115 A CN107188115 A CN 107188115A
Authority
CN
China
Prior art keywords
micro
metal
nano
polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710417321.5A
Other languages
English (en)
Other versions
CN107188115B (zh
Inventor
王哲
付婷婷
王晓楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710417321.5A priority Critical patent/CN107188115B/zh
Publication of CN107188115A publication Critical patent/CN107188115A/zh
Application granted granted Critical
Publication of CN107188115B publication Critical patent/CN107188115B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0183Selective deposition
    • B81C2201/0185Printing, e.g. microcontact printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0191Transfer of a layer from a carrier wafer to a device wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本发明公开了一种金属/聚合物复合三维微纳米结构的制备方法,属于微纳米加工技术领域。所述方法包括在基底A上旋涂牺牲层,在牺牲层上旋涂非水溶性聚合物薄膜,形成双层聚合物薄膜;在双层聚合物薄膜的非水溶性聚合物薄膜上制备金属微纳米图案;将牺牲层溶解掉形成无支撑的独立薄膜;用基底B承接漂浮着的独立薄膜,形成复杂的金属/聚合物微纳米结构。通过上述方法制备得到的金属/聚合物微纳米结构分辨率可以达到纳米级别,十分适于低成本、大面积的三维立体结构加工。

Description

一种金属/聚合物复合三维微纳米结构的制备方法
技术领域
本发明属于微纳米加工技术领域,具体涉及一种通过薄膜传递印刷的来制备复杂的金属/ 聚合物复合三维微纳米结构的方法。
背景技术
复杂三维金属微纳米结构在光电子器件、生物医学器件、储能系统、微机电系统和超材料等众多领域有广泛的应用前景,成为当前国际上学术界和产业界的研究热点。然而现有的三维微纳米结构的制备及组装方法却有着较大局限性,如传统的光刻技术、扫描电子束刻蚀和聚焦离子束技术等加工成本高、周期长、适用的材料种类少并且不能在非平面基底进行加工,难以满足低成本、批量化制造的应用需求,所以高效的制备复杂三维微纳结构一直被认为是一项国际化难题。
发明内容
针对现有技术中存在的问题,本发明提供一种通过传递印刷带有金属微纳米图案的聚合物薄膜的方法来制备金属/聚合物复合的平面或复杂三维微纳米结构的方法。这种方法成本低、不需要用到大型设备,速度快周期短,适用材料广泛,包括各种金属如金、银、铂、铝等和各种聚合物薄膜,如聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA)和半导体聚合物聚噻吩等。
本发明的创新点在于聚合物薄膜传递时,由于毛细力的作用使带有金属微纳米图案的纳米级厚度聚合物独立薄膜可以完整、紧密地贴于非平面基底上并且能够保持与所述非平面基底相同几何形状,即使是基底具有微纳米尺度的凸凹起伏或图案,这就使此方法可以制备曲面、多层或三维立体微纳米结构。本发明提出的一种具有复杂的金属/聚合物微纳米结构的制备方法,具体包括以下几个步骤:
(1)双层聚合物薄膜的制备:在基底A上旋涂水溶性聚合物薄膜作为牺牲层,然后在牺牲层上旋涂30-100纳米厚度的非水溶性聚合物薄膜,形成双层聚合物薄膜。
(2)在双层聚合物薄膜的非水溶性聚合物薄膜一侧制备金属微纳米图案。
所述的金属微纳米图案可以采用光刻技术、扫描电子束刻蚀或软刻蚀等技术制备。
(3)传递印刷过程:将带有金属微纳米图案的双层聚合物薄膜置于去离子水或乙醇等液体中,在非水溶性聚合物薄膜下层的作为牺牲层的水溶性聚合物薄膜被去离子水溶解掉,使得带有金属微纳米图案的非水溶性聚合物薄膜脱离基底A浮于液体表面,形成无支撑的独立薄膜。将基底B倾斜置于液体中去承接漂浮着的独立薄膜,由于毛细力的作用,所述的独立薄膜会随着液体蒸发逐渐贴合于基底B的表面。
所述的基底B表面具有微纳米尺度的几何形状凹凸结构;承接独立薄膜后,与独立薄膜上的金属微纳米图案复合,形成复杂微纳米结构。
(4)用等离子体刻蚀或反应离子刻蚀的方法除去基底B未有金属微纳米图案结构覆盖的聚合物,得到金属/聚合物微纳米结构。
本发明的优点在于:
通过上述方法制备得到的金属/聚合物微纳米结构分辨率可以达到纳米级别,十分适于低成本、大面积的三维立体结构加工。
附图说明
图1:本发明提出的利用薄膜传递法构筑金属/聚合物微纳米结构的制备流程图;
图2A和2B:采用本发明实施例1方法制得的可以传递的含有金属微纳米图案的薄膜的环境扫描电子显微镜照片,2A是45μm左右的条纹,2B是400nm左右的条纹;
图3A和图3B分别为实施例1中制备的多层金属/聚合物复合微纳米结构在显微镜下和环境扫描电子显微镜下的图像。
图4A、图4B、图4C和图4D:采用本发明方法制得的三维复杂金属微纳米结构的环境扫描电子显微镜照片(承接基底为带有微米条纹的硅模板),4A和4D为样品倾斜60°所测的数据,4B和4C为水平放置所测数据;
图5A和5B:采用本发明方法制得的三维复杂金属微纳米结构的环境扫描电子显微镜照片(承接基底为直径约1mm的金属丝),5A为整体图像,5B为局部单根条纹的图像。
图中:
1.基底A;2.牺牲层;3.非水溶性聚合物薄膜;4.金属微纳米图案。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提供一种金属/聚合物复合三维微纳米结构的制备方法,所述制备方法采用薄膜传递法,由于毛细力的作用使带有金属微纳米图案的纳米级厚度的聚合物独立薄膜可以完整、紧密地贴于非平面基底上并且能够保持与所述非平面基底相同几何形状,即使是在微纳米尺度,这就使此方法可以制备曲面、多层或三维立体微纳米结构。下面结合实施例进行详细说明。
本发明提出的一种具有复杂的金属/聚合物微纳米结构的制备方法,具体包括以下几个步骤:
(1)双层聚合物薄膜的制备:在玻璃片或硅片基底A上旋涂水溶性聚合物如聚乙烯醇 (polyvinyl alcohol,PVA)作为牺牲层,然后在牺牲层上旋涂30-100纳米厚度的非水溶性聚合物薄膜,如聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA)和半导体聚合物聚噻吩等,形成双层聚合物薄膜。
(2)在双层聚合物薄膜的非水溶性聚合物薄膜一侧制备金属微纳米图案。
所述的金属微纳米图案可以采用光刻技术、扫描电子束刻蚀或软刻蚀等技术制备得到。
所述的金属可以采用金、银、铂、铝等。
(3)传递印刷过程:将带有金属微纳米图案的双层聚合物薄膜置于去离子水或乙醇等液体中,由于聚乙烯醇具有水溶性,在非水溶性聚合物薄膜下层的作为牺牲层的聚乙烯醇会被去离子水溶解掉,使得带有金属微纳米图案的非水溶性聚合物薄膜脱离基底A浮于液体表面,形成无支撑的独立薄膜。将基底B(硅片、带图案的硅模板或者直径约为1mm的金属丝等) 倾斜置于液体中去承接漂浮着的独立薄膜,由于毛细力的作用,所述的独立薄膜会随着液体蒸发逐渐贴合于基底B的表面。毛细力的作用和所述独立薄膜本身具有的柔性,使所述的独立薄膜能够保持与基底B相同几何形状,即使是在微纳米尺度。
(4)用等离子体刻蚀或反应离子刻蚀的方法除去基底B未有金属纳米图案结构覆盖的聚合物,得到金属/聚合物微纳米结构。
所述的基底B表面具有微纳米尺度的几何形状。所述的金属/聚合物微纳米结构可以是曲面、多层或三维立体微纳米结构。
下面结合实施例进行说明。
实施例1:制备多层金属/聚合物复合微纳米结构。
结合图1所示流程,具体包括如下步骤:
(1)单层图案的制备:在硅片基底A1上旋涂水溶性聚乙烯醇(polyvinyl alcohol,PVA),作为牺牲层2。然后在牺牲层2上旋涂30-100纳米厚度非水溶性聚合物薄膜3,如聚苯乙烯 (Polystyrene,PS),形成双层聚合物薄膜。
(2)用软刻蚀技术在双层聚合物薄膜的非水溶性聚合物薄膜3制备金属微纳米图案4,得到的金属微纳米图案4为微纳米条纹,结果显示图案形貌良好,如图2A所示,微米条纹在20-60μm之间,如图2B所示,纳米条纹宽度在300-500nm之间。
(3)传递印刷过程:将上述过程得到带有金属微纳米图案的PS/PVA双层聚合物薄膜置于去离子水中,溶解掉PVA,使带有金属微纳米图案的PS薄膜脱离基底A浮于液体表面,形成无支撑的独立薄膜。
(4)将处理过的硅片基底B倾斜置于去离子水中去承接漂浮着的PS薄膜,如图1所示,随着承接过程中基底B支撑薄膜慢慢脱离液面,PS薄膜与基底B距离逐渐减小从而产生毛细力。PS薄膜随着去离子水蒸发逐渐贴合于硅基底B的表面。
(5)采用氧等离子体法除去基底B上未有金属微纳米图案结构覆盖的聚合物(刻蚀2min,气体流量98sccm),得到单层金属/聚合物复合微纳米结构。
(6)多层结构的加工:以步骤(5)中得到的单层金属/聚合物复合微纳米结构为基底去继续承接步骤(3)中新制备得到的无支撑的具有金属微纳米图案的独立PS薄膜,慢慢脱离液面,PS薄膜随着去离子水蒸发逐渐贴合于基底表面,待去离子水蒸发完,将所得多层金属/聚合物复合样品用氧等离子体除去最上层未有金属结构覆盖的聚合物(刻蚀2min,气体流量98sccm),得到多层金属/聚合物复合微纳米结构,如图3所示,图3A是多层金属/聚合物复合微纳米结构在显微镜下的图像,图3B是这种多层结构在环境扫描电子显微镜下的图像。两层金属/聚合物复合微纳米结构交叠复合,形成多层金属/聚合物复合微纳米结构。
实施例2:三维结构加工(硅条纹模板上图案加工)
(1)聚合物传递薄膜的制备:在玻璃片或硅片基底A上旋涂水溶性聚乙烯醇(polyvinyl alcohol,PVA)作为牺牲层,然后在其上旋涂30-100纳米厚度的非水溶性聚合物薄膜,如聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)和半导体聚合物聚噻吩等,形成双层聚合物薄膜。
(2)用软刻蚀技术在双层聚合物薄膜上制备金微纳米图案。
(3)传递印刷过程:将上述过程得到的带有金微纳米图案的双层聚合物薄膜置于去离子水或乙醇等液体中,由于聚乙烯醇具有水溶性,在非水溶性聚合物薄膜下层的作为牺牲层的聚乙烯醇会被去离子水溶解掉,使带有金属微纳米图案的非水溶性聚合物薄膜脱离基底浮于液体表面,形成无支撑的独立薄膜。将使用丙酮、酒精和蒸馏水分别超声清洗的硅模板吹干 (50μm左右的条纹)然后倾斜置于液体中去承接漂浮着的聚合物独立薄膜,如图1所示,由于毛细力的作用,聚合物独立薄膜会随着液体蒸发逐渐贴合于硅模板的表面。另外,由于毛细作用以及聚合物独立薄膜本身具有的柔性,使聚合物独立薄膜能够保持与硅模板相同几何形状,即在条纹间隔的底面和侧面都会贴合良好。
(4)用等离子体刻蚀或反应离子刻蚀的方法除去硅模板上未有金属结构覆盖的聚合物,得到复杂的金属/聚合物复合三维微纳米结构,如图4A~4D所示,图4A和图4B是SEM图像,图图4C和图4D是局部的SEM图像,结果显示,不管是倾斜60°还是水平放置硅模板,金的条纹在硅模板上条纹的侧面也贴合良好。
实施例3:非平面(曲面结构加工):
(1)聚合物传递薄膜的制备:在玻璃片基底A上旋涂水溶性聚乙烯醇(polyvinylalcohol, PVA)作为牺牲层,然后在其上旋涂30-100纳米厚度的非水溶性聚合物薄膜,如聚苯乙烯 (Polystyrene,PS)、聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)和半导体聚合物聚噻吩等,形成双层聚合物薄膜。
(2)用光刻技术、扫描电子束刻蚀或软刻蚀等技术在双层聚合物薄膜上制备金微纳米图案。
(3)传递印刷过程:将上述过程得到带有金属图案的双层聚合物薄膜置于去离子水或乙醇等液体中,由于聚乙烯醇具有水溶性,在非水溶性聚合物薄膜下层的作为牺牲层的聚乙烯醇会被去离子水溶解掉,使带有金属微纳米图案的非水溶性聚合物薄膜脱离基底浮于液体表面,形成无支撑的独立薄膜。将处理过的直径约为1mm的金属丝伸入液体中去承接漂浮着的聚合物薄膜,如图1所示,由于毛细力的作用,聚合物薄膜会随着液体蒸发逐渐贴合于基底的表面,进而将金属丝包覆,但由于表面能的存在,聚合物薄膜不会多层卷盖。
(4)用等离子体刻蚀或反应离子刻蚀的方法除去金属丝上未有金属图案结构覆盖的聚合物,得到非平面的金属/聚合物复合三维微纳米结构,如图5所示,图5A是整体的SEM图像,图5B是局部的SEM图像,金的条纹在金属丝表面包覆良好,未有褶皱。

Claims (8)

1.一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:采用具有微纳米尺度的几何形状的基底B承接具有金属微纳米图案的独立薄膜形成金属/聚合物复合三维微纳米结构;具体包括以下步骤,
(1)双层聚合物薄膜的制备:在基底A上旋涂水溶性聚合物薄膜作为牺牲层,然后在牺牲层上旋涂非水溶性聚合物薄膜,形成双层聚合物薄膜;
(2)在双层聚合物薄膜的非水溶性聚合物薄膜一侧制备金属微纳米图案;
所述的金属微纳米图案可以采用光刻技术、扫描电子束刻蚀或软刻蚀等技术制备。
(3)传递印刷过程:将带有金属微纳米图案的双层聚合物薄膜置于去离子水或乙醇等液体中,在非水溶性聚合物薄膜下层的作为牺牲层的水溶性聚合物薄膜被去离子水溶解掉,使得带有金属微纳米图案的非水溶性聚合物薄膜脱离基底A浮于液体表面,形成无支撑的独立薄膜;将基底B置于液体中去承接漂浮着的独立薄膜,由于毛细力的作用,所述的独立薄膜会随着液体蒸发逐渐贴合于基底B的表面;所述的基底B表面具有微纳米尺度的几何形状;
(4)用等离子体刻蚀或反应离子刻蚀的方法除去基底B未有金属微纳米图案结构覆盖的聚合物,得到金属/聚合物微纳米结构。
2.根据权利要求1所述的一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:所述非水溶性聚合物薄膜的厚度为30-100纳米。
3.根据权利要求1所述的一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:所述牺牲层采用聚乙烯醇。
4.根据权利要求1所述的一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:所述非水溶性聚合物薄膜采用聚苯乙烯、聚甲基丙烯酸甲酯或半导体聚合物聚噻吩。
5.根据权利要求1所述的一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:所述金属微纳米图案采用金、银、铂或铝材料;采用光刻技术、扫描电子束刻蚀或软刻蚀技术制备得到。
6.根据权利要求1所述的一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:所述的基底B倾斜置于液体中,倾斜角度0~60°。
7.根据权利要求1所述的一种金属/聚合物复合三维微纳米结构的制备方法,其特征在于:以步骤(4)得到金属/聚合物微纳米结构为基底,继续承接步骤(3)中的独立薄膜,得到多层金属/聚合物微纳米结构。
8.一种金属/聚合物复合三维微纳米结构,其特征在于:所述的金属/聚合物微纳米结构是曲面、多层或三维立体微纳米结构;通过具有微纳米尺度的几何形状的基底B承接具有金属微纳米图案的薄膜形成。
CN201710417321.5A 2017-06-06 2017-06-06 一种金属/聚合物复合三维微纳米结构的制备方法 Expired - Fee Related CN107188115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710417321.5A CN107188115B (zh) 2017-06-06 2017-06-06 一种金属/聚合物复合三维微纳米结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710417321.5A CN107188115B (zh) 2017-06-06 2017-06-06 一种金属/聚合物复合三维微纳米结构的制备方法

Publications (2)

Publication Number Publication Date
CN107188115A true CN107188115A (zh) 2017-09-22
CN107188115B CN107188115B (zh) 2020-05-01

Family

ID=59877068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710417321.5A Expired - Fee Related CN107188115B (zh) 2017-06-06 2017-06-06 一种金属/聚合物复合三维微纳米结构的制备方法

Country Status (1)

Country Link
CN (1) CN107188115B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999742A (zh) * 2017-11-23 2018-05-08 华南理工大学 一种银纳米线微图案化的制备方法
CN108528078A (zh) * 2018-04-11 2018-09-14 中山大学 纳米结构转印方法及利用堆栈方法制备多层纳米结构的方法
CN109077713A (zh) * 2018-07-23 2018-12-25 华中科技大学 一种人体表皮生理电极传感器的制备方法
CN109116684A (zh) * 2018-07-22 2019-01-01 北京工业大学 可转移键合pdms基纳米结构制备方法
CN114620675A (zh) * 2022-03-18 2022-06-14 北京航空航天大学 一种多维度图案化硅基纳米草制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510861A1 (en) * 2003-08-26 2005-03-02 Sony International (Europe) GmbH Method for patterning organic materials or combinations of organic and inorganic materials
CN101517700A (zh) * 2006-09-20 2009-08-26 伊利诺伊大学评议会 用于制造可转移半导体结构、器件和器件构件的松脱策略
CN101521160A (zh) * 2008-02-25 2009-09-02 索尼株式会社 在衬底上施加金属、金属氧化物和/或半导体材料图案的方法
CN101622916A (zh) * 2007-03-01 2010-01-06 味之素株式会社 金属膜转印用膜、金属膜的转印方法和电路板的制造方法
CN103972388A (zh) * 2014-05-09 2014-08-06 北京航空航天大学 制备尺寸可控的高取向有机小分子半导体单晶图案的方法
KR20170041440A (ko) * 2015-10-07 2017-04-17 광주과학기술원 섬모 구조를 이용한 전자소자의 전사인쇄 방법
CN106576429A (zh) * 2014-05-27 2017-04-19 耶路撒冷希伯来大学伊森姆研究发展有限公司 制造金属图案和物体的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510861A1 (en) * 2003-08-26 2005-03-02 Sony International (Europe) GmbH Method for patterning organic materials or combinations of organic and inorganic materials
CN101517700A (zh) * 2006-09-20 2009-08-26 伊利诺伊大学评议会 用于制造可转移半导体结构、器件和器件构件的松脱策略
CN101622916A (zh) * 2007-03-01 2010-01-06 味之素株式会社 金属膜转印用膜、金属膜的转印方法和电路板的制造方法
CN101521160A (zh) * 2008-02-25 2009-09-02 索尼株式会社 在衬底上施加金属、金属氧化物和/或半导体材料图案的方法
CN103972388A (zh) * 2014-05-09 2014-08-06 北京航空航天大学 制备尺寸可控的高取向有机小分子半导体单晶图案的方法
CN106576429A (zh) * 2014-05-27 2017-04-19 耶路撒冷希伯来大学伊森姆研究发展有限公司 制造金属图案和物体的方法
KR20170041440A (ko) * 2015-10-07 2017-04-17 광주과학기술원 섬모 구조를 이용한 전자소자의 전사인쇄 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHARLES D.SCHAPER: ""Patterned Transfer of Metallic Thin Film Nanostructures by Water-Soluble Polymer Templates"", 《AMERICAN CHEMICAL SOCIETY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999742A (zh) * 2017-11-23 2018-05-08 华南理工大学 一种银纳米线微图案化的制备方法
CN107999742B (zh) * 2017-11-23 2019-10-18 华南理工大学 一种银纳米线微图案化的制备方法
CN108528078A (zh) * 2018-04-11 2018-09-14 中山大学 纳米结构转印方法及利用堆栈方法制备多层纳米结构的方法
CN109116684A (zh) * 2018-07-22 2019-01-01 北京工业大学 可转移键合pdms基纳米结构制备方法
CN109077713A (zh) * 2018-07-23 2018-12-25 华中科技大学 一种人体表皮生理电极传感器的制备方法
CN114620675A (zh) * 2022-03-18 2022-06-14 北京航空航天大学 一种多维度图案化硅基纳米草制备方法及其应用

Also Published As

Publication number Publication date
CN107188115B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN107188115A (zh) 一种金属/聚合物复合三维微纳米结构的制备方法
Zhang et al. Patterning colloidal crystals and nanostructure arrays by soft lithography
US10026609B2 (en) Nanoshape patterning techniques that allow high-speed and low-cost fabrication of nanoshape structures
Kottapalli et al. Touch at a distance sensing: lateral-line inspired MEMS flow sensors
Kuo et al. Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution
KR20140005854A (ko) 습윤 특징을 제어하기 위한 계층적으로 구조화된 표면
CN106809802B (zh) 一种柔性衬底上大面积金属纳米针尖阵列的制备方法
Wang et al. Fabrication of micro-scale speckle pattern and its applications for deformation measurement
Kim et al. Direct micro/nano metal patterning based on two-step transfer printing of ionic metal nano-ink
Lee et al. Designs and processes toward high-aspect-ratio nanostructures at the deep nanoscale: unconventional nanolithography and its applications
CN110501324A (zh) 一种表面增强拉曼检测基底及其基于微纳3d打印的制备方法和应用
Hu et al. Nano-fabrication with a flexible array of nano-apertures
CN107416765A (zh) 在平面或曲面上形成纳米凹凸结构的方法
CN109761191A (zh) 一种纳米线阵列制备方法
Mandsberg et al. The rose petal effect and the role of advancing water contact angles for drop confinement
Choi et al. Hemispherical Arrays of Colloidal Crystals Fabricated by Transfer Printing
Vörös et al. Bioactive patterns at the 100-nm scale produced using multifunctional physisorbed monolayers
CN103933902B (zh) 一种二元有序胶体晶体、金属纳米阵列及其制备方法
Rashid et al. Helium ion beam lithography and liftoff
CN107381498A (zh) 一种片状液相纳米颗粒制备方法
Mao et al. Nanopatterning using a simple bi-layer lift-off process for the fabrication of a photonic crystal nanostructure
Westerik et al. Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures
CN105947970A (zh) 一种利用模板辅助的有序大面积单层微/纳米球及其制备方法
Mohammadkhani et al. Characterization of surface properties of ordered nanostructures using SEM stereoscopic technique
TW201033261A (en) Method for pattering polymer surface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200501

Termination date: 20210606