CN107177840B - 槽罐钝化工艺 - Google Patents

槽罐钝化工艺 Download PDF

Info

Publication number
CN107177840B
CN107177840B CN201710427719.7A CN201710427719A CN107177840B CN 107177840 B CN107177840 B CN 107177840B CN 201710427719 A CN201710427719 A CN 201710427719A CN 107177840 B CN107177840 B CN 107177840B
Authority
CN
China
Prior art keywords
tank
groove
groove tank
hydrogen fluoride
anhydrous hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710427719.7A
Other languages
English (en)
Other versions
CN107177840A (zh
Inventor
江伟
胡洪峰
谢钺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuancheng Hengtai Electronic Chemical Material Co Ltd
Original Assignee
Xuancheng Hengtai Electronic Chemical Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuancheng Hengtai Electronic Chemical Material Co Ltd filed Critical Xuancheng Hengtai Electronic Chemical Material Co Ltd
Priority to CN201710427719.7A priority Critical patent/CN107177840B/zh
Publication of CN107177840A publication Critical patent/CN107177840A/zh
Application granted granted Critical
Publication of CN107177840B publication Critical patent/CN107177840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本发明属于表面处理技术领域,具体的说是一种用于运输酸液的槽罐的钝化工艺,包括以下步骤:(1)提供支承机构用于滚动支承槽罐罐体;(2)通入无水氟化氢;(3)静置1‑2小时,然后驱动槽罐罐体回转60°‑120°,再次静置1‑2小时,重复回转、静置的操作至槽罐罐体旋转360°;(4)利用惰性气体将无水氟化氢充分压出;(5)向步骤(4)得到的槽罐罐体内通入无水氟化氢,然后驱动槽罐罐体回转,取样槽罐罐体内的无水氟化氢并测试纯度;若纯度不变,则表示槽罐罐体钝化完全;若纯度降低,则重复步骤(2)‑(5),直至取样的无水氟化氢的纯度不变,本发明采用槽罐罐体回转的方式使酸液可以充分浸润槽罐罐体的内壁,实现充分的钝化效果。

Description

槽罐钝化工艺
技术领域
本发明属于表面处理技术领域,具体的说是一种用于运输酸液的槽罐的钝化工艺。
背景技术
电子级无水氟化氢对于杂质含量的要求很高,而无水氟化氢是一种腐蚀性和刺激性很强的物质,能与各种物质发生反应,因此对于包装材料的要求较为严格,使用高规格内衬槽罐的价格高昂,无疑会增加氟化氢的运输成本,因此现有技术中通常采用碳钢槽车进行储运,在灌装成品氟化氢之前对槽罐进行钝化处理,现有的槽罐钝化方式为加酸清洗或拉酸晃动,由于槽罐罐体的上部得不到充分的浸酸,导致槽罐罐体钝化不完全,在生产、运输过程中会使槽罐本体上的杂质离子析出并进入产品中而影响到氟化氢的品质,因此,本领域技术人员亟需一种槽罐钝化工艺,使槽罐罐体得到充分的钝化。
发明内容
本发明的目的在于提供一种使槽罐罐体内壁得到充分钝化的钝化工艺。
为了实现上述目的,本发明采用的技术方案为:一种槽罐钝化工艺,包括以下步骤:
(1)提供支承机构用于滚动支承槽罐罐体,支承机构驱动槽罐罐体回转;
(2)向槽罐罐体中通入无水氟化氢,通入量为槽罐罐体容积的10-20%;
(3)将槽罐罐体静置1-2小时,然后驱动槽罐罐体回转60°-120°,再次静置1-2小时,重复回转60-120°、静置的操作至槽罐罐体旋转360°;
(4)利用惰性气体将无水氟化氢充分压出;
(5)向步骤(4)得到的槽罐罐体内通入无水氟化氢,通入量为槽罐罐体容积的2-5%,然后驱动槽罐罐体以2r/min的转速回转10-20min,取样槽罐罐体内的无水氟化氢并测试纯度;
若纯度不变,则表示槽罐罐体钝化完全;
若纯度降低,则重复步骤(2)-(5),直至取样的无水氟化氢的纯度不变。
与现有技术相比,本发明的有益效果为:采用槽罐罐体回转的方式使酸液可以充分浸润槽罐罐体的内壁,实现充分的钝化效果。
附图说明
图1为本发明提供的槽罐钝化工艺的流程图。
具体实施方式
为了实现槽罐罐体的充分钝化,本发明提供了一种槽罐钝化的工艺:具体包括以下步骤:
(1)提供支承机构用于滚动支承槽罐罐体,支承机构驱动槽罐罐体回转;本发明对于槽罐罐体的支承机构没有特殊要求,可以使槽罐罐体转动起来并随时停止即可。
(2)向槽罐罐体中通入无水氟化氢,通入量为槽罐罐体容积的10-20%;根据本发明,本发明中通入无水氟化氢的目的在于与槽罐罐体的内壁发生钝化反应,形成致密的氧化层,防止后续无水氟化氢产品灌入后与内壁再次发生反应,影响无水氟化氢产品的纯度,无水氟化氢的通入量过少会影响钝化的效率,延长钝化的时间,而通入的无水氟化氢过多,对于钝化时间的减少不明显,而且会增加钝化的成本。
(3)将槽罐罐体静置1-2小时,然后驱动槽罐罐体回转60°-120°,再次静置1-2小时,重复回转60-120°、静置的操作至槽罐罐体旋转360°;也就是说,在一个状态下静置1-2小时,无水氟化氢与槽罐罐体的内壁反应,然后旋转一个角度至无水氟化氢与槽罐罐体的另一块内壁反应,如此,槽罐罐体旋转360°,即无水氟化氢与槽罐罐体内壁的所有区域都充分接触,确保槽罐罐体内壁的充分钝化。
(4)利用惰性气体将无水氟化氢充分压出,本发明中对于所述的惰性气体没有特殊的要求,可以选用如氮气将槽罐罐体内用于钝化的无水氟化氢挤压出来。
(5)向步骤(4)得到的槽罐罐体内通入无水氟化氢,通入量为槽罐罐体容积的2-5%,然后驱动槽罐罐体以2r/min的转速回转10-20min,取样槽罐罐体内的无水氟化氢并测试纯度;
若纯度不变,则表示槽罐罐体钝化完全;
若纯度降低,则重复步骤(2)-(5),直至取样的无水氟化氢的纯度不变,本发明所述的步骤(5)确保了槽罐罐体的钝化是充分的。
进一步的,为了保证槽罐罐体内壁钝化的均匀性,在步骤(3)之后,驱动槽罐罐体以1r/min的转速连续旋转40-60分钟,让无水氟化氢与槽罐罐体的内壁在回转的过程中接触。
进一步的,为了确保本发明中所述的槽罐罐体能够充分钝化,重复步骤(3)和驱动槽罐罐体以1r/min的转速连续旋转40-60分钟,重复2-3次,确保槽罐罐体内壁的钝化完全。
进一步的,根据本发明,本发明的步骤(3)中,每静置1-2小时后,将槽罐罐体回转一个度数,实际上,为了控制钝化反应的均匀性,需要控制无水氟化氢与槽罐罐体所有内壁接触时间近乎一致,为了确保槽罐罐体内壁钝化的均匀性,本发明所述步骤(3)中每次槽罐罐体回转的度数相同,如此,可以保证无水氟化氢与槽罐罐体所有内壁接触时间近乎一致。

Claims (4)

1.一种灌装无水氟化氢的槽罐钝化工艺,其特征在于:包括以下步骤:
(1)提供支承机构用于滚动支承槽罐罐体,支承机构驱动槽罐罐体回转;
(2)向槽罐罐体中通入无水氟化氢,通入量为槽罐罐体容积的10-20%;
(3)将槽罐罐体静置1-2小时,然后驱动槽罐罐体回转60°-120°,再次静置1-2小时,重复回转60-120°、静置的操作至槽罐罐体旋转360°;
(4)利用惰性气体将无水氟化氢充分压出;
(5)向步骤(4)得到的槽罐罐体内通入无水氟化氢,通入量为槽罐罐体容积的2-5%,然后驱动槽罐罐体以2r/min的转速回转10-20min,取样槽罐罐体内的无水氟化氢并测试纯度;
若纯度不变,则表示槽罐罐体钝化完全;
若纯度降低,则重复步骤(2)-(5),直至取样的无水氟化氢的纯度不变。
2.根据权利要求1所述的槽罐钝化工艺,其特征在于:在步骤(3)之后,驱动槽罐罐体以1r/min的转速连续旋转40-60分钟。
3.根据权利要求2所述的槽罐钝化工艺,其特征在于:重复步骤(3)和驱动槽罐罐体以1r/min的转速连续旋转40-60分钟,重复2-3次。
4.根据权利要求1所述的槽罐钝化工艺,其特征在于:所述步骤(3)中每次槽罐罐体回转的度数相同。
CN201710427719.7A 2017-06-08 2017-06-08 槽罐钝化工艺 Active CN107177840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710427719.7A CN107177840B (zh) 2017-06-08 2017-06-08 槽罐钝化工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710427719.7A CN107177840B (zh) 2017-06-08 2017-06-08 槽罐钝化工艺

Publications (2)

Publication Number Publication Date
CN107177840A CN107177840A (zh) 2017-09-19
CN107177840B true CN107177840B (zh) 2019-05-03

Family

ID=59836665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710427719.7A Active CN107177840B (zh) 2017-06-08 2017-06-08 槽罐钝化工艺

Country Status (1)

Country Link
CN (1) CN107177840B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084173B (zh) * 2018-08-29 2021-01-05 苏州金宏气体股份有限公司 一种储氨钢瓶的处理方法
CN114321698B (zh) * 2021-12-30 2022-07-19 大连科利德光电子材料有限公司 一种用于储存电子级一氧化氮的钢瓶及其加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410440A (zh) * 2010-06-11 2012-04-11 气体产品与化学公司 对于单氯硅烷的罐表面处理
CN104328450A (zh) * 2014-10-20 2015-02-04 西安晨宇环境工程有限公司 一种大型管材内壁酸洗装置及酸洗方法
CN105690031A (zh) * 2015-09-30 2016-06-22 安徽中盛罐业有限公司 一种马口铁罐的生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410440A (zh) * 2010-06-11 2012-04-11 气体产品与化学公司 对于单氯硅烷的罐表面处理
CN104328450A (zh) * 2014-10-20 2015-02-04 西安晨宇环境工程有限公司 一种大型管材内壁酸洗装置及酸洗方法
CN105690031A (zh) * 2015-09-30 2016-06-22 安徽中盛罐业有限公司 一种马口铁罐的生产工艺

Also Published As

Publication number Publication date
CN107177840A (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
CN107177840B (zh) 槽罐钝化工艺
Alkilany et al. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
Çirmi et al. The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode
Yang et al. Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite
Pérez-Gallent et al. Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions.
WO2011122067A1 (ja) ガラス容器の内面処理方法及びガラス容器
Duca et al. New insights into the mechanism of nitrite reduction on a platinum electrode
CN107081124A (zh) 一种蒙脱土纳米颗粒的原位制备及其去除果汁中重金属的方法
CN104328450A (zh) 一种大型管材内壁酸洗装置及酸洗方法
Wu et al. Luminescent Hybrid Tb3+ Functionalized metal–organic frameworks act as food preservative sensor and water scavenger for NO2–
Chen et al. Terahertz signatures of hydrate formation in alkali halide solutions
US20140161972A1 (en) Method for forming conductive film at room temperature
CN103781720A (zh) 氢水的填充产品和其制造方法以及其制造装置
CN111266049A (zh) 一种有机液肥加工装置
CN108675245A (zh) 一种用于玻璃瓶装化妆品的拧盖机
CN107091829A (zh) 表面增强拉曼光谱基底及其制备方法
Al-Zubeidi et al. Disentangling chemical effects in ionic-liquid-based Cu leaching from chalcopyrite
Fazlzadeh et al. Removal of cephalexin using green montmorillonite loaded with TiO2 nanoparticles in the presence potassium permanganate from aqueous solution
Filippov et al. Galvanic replacement reaction between an Fe substrate and Cu (I) and Cu (II) ions in a deep eutectic solvent
Zhang et al. Histidine-functionalized silver nanoclusters used as a blue-emissive fluorescence probe for vitamin B12 detection
Hoyt et al. Synergistic effect of pH and oxalate concentration on corrosion of aluminium alloy 2024-T3
Molodkina et al. Accelerating effect of water on electroreduction of lanthanide ions in a dicyanamide ionic liquid: A generic phenomenon
CN204207054U (zh) 一种驱动式饲料搅拌球
CN112113950A (zh) 一种快速检测硫熏中药中二氧化硫残留的方法
CN207329663U (zh) 一种用于啤酒生产线的翻瓶装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant