CN107170969A - 一种改性的锂离子电池富锂锰基正极材料及其制备方法 - Google Patents

一种改性的锂离子电池富锂锰基正极材料及其制备方法 Download PDF

Info

Publication number
CN107170969A
CN107170969A CN201710347682.7A CN201710347682A CN107170969A CN 107170969 A CN107170969 A CN 107170969A CN 201710347682 A CN201710347682 A CN 201710347682A CN 107170969 A CN107170969 A CN 107170969A
Authority
CN
China
Prior art keywords
lithium
rich manganese
solution
preparation
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710347682.7A
Other languages
English (en)
Other versions
CN107170969B (zh
Inventor
徐群杰
常幸萍
刘海梅
赖春艳
朱庆鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
University of Shanghai for Science and Technology
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201710347682.7A priority Critical patent/CN107170969B/zh
Publication of CN107170969A publication Critical patent/CN107170969A/zh
Application granted granted Critical
Publication of CN107170969B publication Critical patent/CN107170969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种改性的锂离子电池富锂锰基正极材料的制备方法,将锂盐、锰盐、钴盐、镍盐溶解于去离子水与无水乙醇的混合溶液中,得到溶液A;将乙二胺四乙酸溶解于去离子水与无水乙醇的混合溶液中,得到溶液B;将溶液A匀速滴加到溶液B中,待充分反应后,干燥,研磨得到前驱体粉末;将得到的前驱体粉末于高温管式炉中分段煅烧,冷却,即得到富锂锰基正极材料。本发明提供富锂锰基正极材料的制备方法可以显著地减缓该材料在充放电过程中电压平台下降的趋势,即缓解充放电过程中电压的衰退,并提高了锂离子的扩散速度,从而表现出优异的循环性能。与现有技术相比,本发明制备工艺相对简单,易于规模化生产。

Description

一种改性的锂离子电池富锂锰基正极材料及其制备方法
技术领域
本发明属于材料学领域,涉及一种锂离子电池正极材料,具体来说是一种改性的锂离子电池富锂锰基正极材料及其制备方法。
背景技术
寻找或者开发高能量密度、高比容量的正极材料一直是锂离子电池可持续发展研究的重要命题之一。而具有其他正极材料(如钴酸锂LiCoO2、磷酸铁锂LiFePO4)无法比拟的高放电比容量以及良好的高温性能的富锂锰基正极材料0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/ 3O2为锂离子电池正极材料能量密度的发展注入了新活力。但是该材料在充放电过程中的电压衰退现象限制了其大规模的应用。锂离子电池富锂锰基正极材料在高电压范围内循环时,过渡金属离子容易占据在首圈充电结束后形成的氧空位。由于这种情况并不稳定,过渡金属离子极易通过相邻的四面体位点迁移到锂层中的八面体位置,使得表面层结构重建,以致于在循环期间出现放电电压平台逐渐降低的现象,即电压衰退。
其中,制备方法是影响锂离子电池富锂锰基正极材料性能的重要因素。选择合适的电极材料合成方法对材料的结晶性能、微观形貌以及材料的化学组成分布等都有非常重要的影响,进而影响材料的电化学性质。此外,表面改性也是缓解锂离子电池富锂锰基正极材料电压衰退的有效手段之一。现有技术中已有多种正极材料表面改性方法的报道,常见的方法有两种:一种是通过改变富锂锰基正极材料表面化学,增强该材料表面结构的稳定性。另一种是在材料表面包覆一层本身是电化学惰性的过渡金属化合物,能够有效地减少活性物质与电解液的反应。
例如:中国发明专利申请201310436059.0公开了一种表面阴离子改性的富锂锰基正极材料的制备方法。所述方法是采用铵盐作为阴离子源,实现正极材料表面阴离子的弱取代,制得表面阴离子改性的正极活性材料。在0.1C充放电倍率条件下,首次放电比容量提高至260.5mAh·g-1,首次库伦效率达到92.0%,循环50圈后容量保持率达97.1%。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种改性的锂离子电池富锂锰基正极材料及其制备方法,所述的这种改性的锂离子电池富锂锰基正极材料及其制备方法主要解决现有技术中该材料在循环期间出现放电电压平台逐渐降低的问题。
本发明提供了一种改性的锂离子电池富锂锰基正极材料的制备方法,包括以下步骤:
1)在室温条件下,按摩尔比计算,即Li:Mn:Ni:Co:O为1.2:0.54:0.13:0.13:2的比例将可溶性的乙酸锰、乙酸镍、乙酸钴和乙酸锂溶解在去离子水与无水乙醇的混合溶液中,形成溶液A;
2)在室温条件下,将乙二胺四乙酸溶解于去离子水与无水乙醇的混合溶液中,得到溶液B;
3)在室温条件下,将溶液A匀速滴加到溶液B中,用氨水调节pH为6,持续搅拌,直至形成褐色的絮状沉淀物。于140~160℃条件下烘干,研磨后即得到前驱体固体粉末;
4)将步骤3)所得的前驱体粉末放入高温管式炉中分段煅烧,将产物充分研磨即得到富锂锰基正极材料。
进一步的,步骤3)中,乙二胺四乙酸的摩尔量与过渡金属离子总的摩尔量之比为1:1。
进一步的,步骤1)与步骤2)中去离子水与无水乙醇的混合溶液的比例分别为1:1、1:5或者1:10。
进一步的,步骤3)的工艺条件为:在滴加速度0.1ml/min,转速500r/min下,反应5h后,于温度150℃的鼓风干燥箱中干燥。
进一步的,步骤4)先升温至200 ℃煅烧3h,再升温至500℃预煅烧6h,最后再升温至800℃煅烧16h,煅烧时的升温速率为5 ℃/min,随炉冷却至室温。
本发明以乙酸锂、乙酸锰、乙酸钴、乙酸镍为原料,乙二胺四乙酸(EDTA)为沉淀剂,去离子水与无水乙醇的混合溶液作为溶剂,合成富锂锰基正极材料的前驱体,并通过分段煅烧制备出富锂锰基正极材料0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2。本发明在不增加表面包覆层的基础上,对富锂锰基正极材料进行表面改性,以提高该材料表面结构的稳定性。
共沉淀法是可以制备出分散性较好的富锂锰基正极材料前驱体中使用最广的一种方法。本发明中以乙二胺四乙酸(EDTA)为沉淀剂,它可以与Ni、Co、Mn等过渡金属离子以1:1的摩尔比,常温下(25 ℃)在pH为6时形成稳定的螯合物,反应条件温和。
本发明在共沉淀法制备富锂锰基正极材料的基础上,采用去离子水与无水乙醇的混合溶液作为反应体系的溶剂。这样的处理步骤可以降低溶液的介电常数并改变溶质与溶剂的相互作用,调整过渡金属离子的过饱和动力学与成核的活化自由能。
本发明制得的富锂锰基正极材料在1C的充放电倍率条件下,在第5次循环至第80次循环过程中,平均放电电压仅下降了0.3895V,缓解了放电过程中电压平台下降的趋势,从而表现出优异的循环稳定性,这为富锂锰基正极材料电压衰退现象的解决思路开辟了一种新途径。
本发明与现有技术相比,其技术进步是显著的。本发明提供富锂锰基正极材料的制备方法可以显著地减缓该材料在充放电过程中电压平台下降的趋势,即缓解充放电过程中电压的衰退,并提高了锂离子的扩散速度,从而表现出优异的循环性能和倍率性能。而且,本发明制备工艺相对简单,易于规模化生产。
附图说明
图1为实施例1的X射线衍射图谱(XRD)。
图2为实施例1的TEM图。
图3为实施例1的电压-容量曲线(电压范围2.0~4.8V)。
图4为实施例1的循环伏安曲线(电压范围2.0~4.8V)。
图5为实施例4的电压-容量曲线(电压范围2.0~4.8V)。
图6为实施例1(曲线B)和实施例4(曲线A)的交流阻抗图谱。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
1)在室温条件下,将0.3235g乙酸镍Ni(CH3COO)2·4H2O,1.3235g乙酸锰Mn(CH3COO)2·4H2O、0.3238g乙酸钴Co(CH3COO)2·4H2O和1.2854g乙酸锂LiCH3COO·2H2O(乙酸锂过量5mol%)溶于去离子水与无水乙醇的混合溶液(混合的体积比为1:5)中,超声溶解20分钟,得到溶液A。
2)在室温条件下,将0.2338g EDTA溶解于去离子水与无水乙醇的混合溶液(混合的体积比为1:5)中,并用氨水调节pH至12左右,使得EDTA完全溶解,得到溶液B。
3)待EDTA溶液的pH值降到6时,用蠕动泵将溶液A匀速滴加到溶液B中,控制滴加速度为0.1ml/min,转速为500r/min,使金属离子可以与EDTA充分均匀地反应。持续剧烈搅拌5h后获得棕褐色絮状沉淀,不需要过滤,直接将烧杯转入150 ℃鼓风干燥箱中干燥,待溶液里的水完全蒸发之后研磨即为富锂锰基正极材料的前驱体粉末。
3)将步骤2)所得的前驱体粉末放入高温管式炉中,升温至200 ℃保温3h,再升温至500 ℃预煅烧6h,然后再升温至800 ℃煅烧16h,随炉冷却至室温,将产物充分研磨即得到富锂锰基正极材料0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2。升温过程中,升温速率为5 ℃ /min。
将上述步骤3)中制备出的富锂锰基正极材料利用X射线衍射仪进行扫描,结果如图1所示,从图1可以看出所制备的富锂锰基正极材料峰形尖锐,曲线平滑,显示出较好的结晶性能。通过乙醇溶剂的添加,其XRD衍射图谱上并没有出现明显的杂质峰,说明制备出的样品皆为纯相。样品大部分的衍射峰均能与α-NaFeO2层状结构(属于R-3m空间群)的衍射峰相对应,晶体结构未发生变化。处于2l°~25°(2θ)的衍射峰对应的是空间群为C/2m的Li2MnO3组分单斜晶胞的特征衍射峰。图中 (006)/(102) 与 (108)/(110)两对衍射峰的分裂程度比较明显,说明材料具有良好的层状特性。(003)与(104)的衍射峰强度比值为1.4472大于1.2,说明材料中阳离子混排程度较低。
图2为上述步骤3)中制备出的富锂锰基正极材料通过透射电子显微镜观察得到的TEM图。由图可以看出颗粒呈圆形或椭圆形状均匀分布,粒径在100-400nm范围内。
将上述步骤3)所得的富锂锰基正极材料组装成电池,组装步骤如下:
正极极片的制备
将上述所得富锂锰基正极材料0.5Li2MnO3∙0.5LiNi1/3Co1/3Mn1/3O2、导电剂乙炔黑和聚偏二氟乙烯(PVDF)粘结剂分别以80:10:10的质量百分比在N,N-二甲基-吡咯烷酮(NMP)溶剂中混合,置于磁力搅拌器上搅拌以形成均一的浆料。将浆料均匀地涂覆在铝箔集流体上成膜,在80℃真空干燥箱中干燥12个小时除去溶剂后,经辊压、切片制成直径为14mm的圆形极片即得电池正极极片。
电池负极的制备
在干燥的手套箱中刮去高纯金属锂片表面氧化层,露出光泽的金属表面,即得电池负极。
扣式实验电池组装
在充满氩气的真空手套箱(O2<0.1ppm,H2O<0.1ppm)中,将上述正极极片、负极、隔膜、1.0mol·L-1的1M LiPF6电解液(EC:EMC:DMC的体积百分比为1:1:1)组装成CR-2032型扣式半电池。电池组装过程中,以弹片和钢片作为支撑材料,并用压力封口机将电池封口。然后将电池置于室温(25 ℃)、干燥的环境中静置8h,待电解液、隔膜与极片充分接触后,再进行测试。
通过辰华电化学工作站对组装好的CR-2032型扣式电池进行循环伏安测试,其测试结果如图3所示。在4.6V处的氧化峰对应的峰值电流约为0.38mA,说明制得的富锂锰基正极材料的动力学性能较高。和第一周循环相比,第2、3周曲线的氧化峰和还原峰的强度均有所下降,并且其峰值电位也有所偏移,说明材料内部发生了不可逆相变阻碍了锂离子的迁移,相对应的引起了材料容量的损失。然而第2、3周的曲线表现出良好的重合性,说明制备出的富锂锰基正极材料的锂离子可以可逆的嵌入和脱出。
将组装好的CR-2032型扣式电池在蓝电LAND CT2001A电池测试系统上以1C的电流倍率进行恒流充放电测试,图4是充放电过程中的第5、20、40、60、80圈的容量-电压曲线。从图中可以看出,在2.0~4.8V(vs. Li+/Li)的电压范围内,其放电曲线的电压平台下降趋势缓慢,对应的平均放电电压差值为0.3895V。
实施例2
1)在室温条件下,将0.3235g乙酸镍Ni(CH3COO)2·4H2O,1.3235g乙酸锰Mn(CH3COO)2·4H2O、0.3238g乙酸钴Co(CH3COO)2·4H2O和1.2854g乙酸锂LiCH3COO·2H2O(乙酸锂过量5mol%)溶于去离子水与无水乙醇的混合溶液(混合的体积比为1:1)中,超声溶解20分钟,得到溶液A。
2)在室温条件下,将0.2338g EDTA溶解于去离子水与无水乙醇的混合溶液(混合的体积比为1:1)中,并用氨水调节pH至12左右,使得EDTA完全溶解,得到溶液B。
3)待EDTA溶液的pH值降到6时,用蠕动泵将溶液A匀速滴加到溶液B中,控制滴加速度为0.1ml/min,转速为500r/min,使金属离子可以与EDTA充分均匀地反应。持续剧烈搅拌5h后获得棕褐色絮状沉淀,不需要过滤,直接将烧杯转入150℃鼓风干燥箱中干燥,待溶液里的水完全蒸发之后研磨即为富锂锰基正极材料的前驱体粉末。
3)将步骤2)所得的前驱体粉末放入高温管式炉中,升温至200 ℃保温3h,再升温至500 ℃预煅烧6h,然后再升温至800 ℃煅烧16h,随炉冷却至室温,将产物充分研磨即得到富锂锰基正极材料0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2。升温过程中,升温速率为5 ℃ /min。
实施例3
1)在室温条件下,将0.3235g乙酸镍Ni(CH3COO)2·4H2O,1.3235g乙酸锰Mn(CH3COO)2·4H2O、0.3238g乙酸钴Co(CH3COO)2·4H2O和1.2854g乙酸锂LiCH3COO·2H2O(乙酸锂过量5mol%)溶于去离子水与无水乙醇的混合溶液(混合的体积比为1:10)中,超声溶解20分钟,得到溶液A。
2)在室温条件下,将0.2338g EDTA溶解于去离子水与无水乙醇的混合溶液(混合的体积比为1:10)中,并用氨水调节pH至12左右,使得EDTA完全溶解,得到溶液B。
3)待EDTA溶液的pH值降到6时,用蠕动泵将溶液A匀速滴加到溶液B中,控制滴加速度为0.1ml/min,转速为500r/min,使金属离子可以与EDTA充分均匀地反应。持续剧烈搅拌5h后获得棕褐色絮状沉淀,不需要过滤,直接将烧杯转入150℃鼓风干燥箱中干燥,待溶液里的水完全蒸发之后研磨即为富锂锰基正极材料的前驱体粉末。
3)将步骤2)所得的前驱体粉末放入高温管式炉中,升温至200 ℃保温3h,再升温至500 ℃预煅烧6h,然后再升温至800 ℃煅烧16h,随炉冷却至室温,将产物充分研磨即得到富锂锰基正极材料0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2。升温过程中,升温速率为5 ℃ /min。
实施例4
1)在室温条件下,将0.3235g乙酸镍Ni(CH3COO)2·4H2O,1.3235g乙酸锰Mn(CH3COO)2·4H2O、0.3238g乙酸钴Co(CH3COO)2·4H2O和1.2854g乙酸锂LiCH3COO·2H2O(乙酸锂过量5mol%)溶于去离子水中,超声溶解20分钟,得到溶液A。
2)在室温条件下,将0.2338g EDTA溶解于去离子水中,并用氨水调节pH至12左右,使得EDTA完全溶解,得到溶液B。
3)待EDTA溶液的pH值降到6时,用蠕动泵将溶液A匀速滴加到溶液B中,控制滴加速度为0.1ml/min,转速为500r/min,使金属离子可以与EDTA充分均匀地反应。持续剧烈搅拌5h后获得棕褐色絮状沉淀,不需要过滤,直接将烧杯转入150℃鼓风干燥箱中干燥,待溶液里的水完全蒸发之后研磨即为富锂锰基正极材料的前驱体粉末。
3)将步骤2)所得的前驱体粉末放入高温管式炉中,升温至200 ℃保温3h,再升温至500 ℃预煅烧6h,然后再升温至800 ℃煅烧16h,随炉冷却至室温,将产物充分研磨即得到富锂锰基正极材料0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2。升温过程中,升温速率为5 ℃ /min。
图5是将实施例4所得的富锂锰基正极材料按照实施例1的电池组装过程组装成CR-2032型扣式电池后,在室温条件下以1C的电流倍率进行充放电的第5、20、40、60、80圈的容量-电压曲线。与图4相比,实施例4所得的样品在第5圈至第80圈的循环中,放电电压平台的下降坡度更明显,对应的平均放电电压差值为0.5188V。这说明在制备富锂锰基正极材料的过程中采用去离子水和无水乙醇的混合溶液作为溶剂可以缓解充放电过程中电极的极化现象,减轻电压的衰退。这是因为在制备富锂锰基正极材料的过程中无水乙醇起着表面活性剂的作用,改变了颗粒的表面化学,在一定程度上可以稳定其表面结构,从而表现出优异的循环稳定性。
图6是实例1和实例4所得的富锂锰基正极材料在兰电LAND CT2001A电池测试系统上以较小的倍率(0.1C)进行3次恒流充放电测试后,在辰华电化学工作站上测得的交流阻抗谱图。显然实施例1制得的材料在高频区的半圆弧明显小于实施例4材料的半圆弧,这说明由于无水乙醇的加入,缓解了颗粒之间的团聚现象,从而缩短了锂离子的迁移通道,提升了锂离子的嵌入和脱出的能力。
以上所述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所做的任何等效变换,均应属于本发明的保护范围。

Claims (6)

1.一种改性的锂离子电池富锂锰基正极材料的制备方法,其特征在于,包括以下步骤:
1)在室温条件下,按摩尔比计算,即Li:Mn:Ni:Co:O为1.2:0.54:0.13:0.13:2的比例将可溶性的乙酸锰、乙酸镍、乙酸钴和乙酸锂溶解在去离子水与无水乙醇的混合溶液中,形成溶液A;
2)在室温条件下,将乙二胺四乙酸溶解于去离子水与无水乙醇的混合溶液中,得到溶液B;
3)在室温条件下,将溶液A匀速滴加到溶液B中,搅拌反应,反应完成后,干燥,研磨得到富锂锰基正极材料的前驱体粉末;
4)将步骤3)所得的前驱体粉末放入高温管式炉中分段煅烧,随炉冷却至室温,将产物充分研磨即得到富锂锰基正极材料。
2.根据权利要求1所述的改性的锂离子电池富锂锰基正极材料的制备方法,其特征在于:步骤3)中,乙二胺四乙酸的摩尔量与过渡金属离子总的摩尔量之比为1:1。
3.根据权利要求1所述的改性的锂离子电池富锂锰基正极材料的制备方法,其特征在于,步骤1)与步骤2)中去离子水与无水乙醇的混合溶液的比例分别为1:1、1:5或者1:10。
4.根据权利要求1所述的改性的锂离子电池富锂锰基正极材料的制备方法,其特征在于,步骤3)的工艺条件为:在滴加速度0.1ml/min,转速500r/min下,反应5h后,于温度150℃的鼓风干燥箱中干燥。
5.根据权利要求1所述的改性的锂离子电池富锂锰基正极材料的制备方法,其特征在于:步骤4)先升温至200 ℃煅烧3h,再升温至500℃预煅烧6h,最后再升温至800℃煅烧16h,煅烧时的升温速率为5 ℃/min。
6.根据权利要求1所述的改性的锂离子电池富锂锰基正极材料的制备方法,其特征在于,步骤3)在反应的条件是:反应体系的pH值为6,使乙二胺四乙酸与过渡金属形成稳定的螯合物。
CN201710347682.7A 2017-05-17 2017-05-17 一种改性的锂离子电池富锂锰基正极材料及其制备方法 Active CN107170969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710347682.7A CN107170969B (zh) 2017-05-17 2017-05-17 一种改性的锂离子电池富锂锰基正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710347682.7A CN107170969B (zh) 2017-05-17 2017-05-17 一种改性的锂离子电池富锂锰基正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107170969A true CN107170969A (zh) 2017-09-15
CN107170969B CN107170969B (zh) 2019-12-03

Family

ID=59816424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710347682.7A Active CN107170969B (zh) 2017-05-17 2017-05-17 一种改性的锂离子电池富锂锰基正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107170969B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574089A (zh) * 2018-03-01 2018-09-25 上海电力学院 一种空心管状富锂锰基正极材料的制备方法
CN109935817A (zh) * 2019-03-27 2019-06-25 上海电力学院 一种含氧空位的层状富锂正极材料及其制备方法
CN110451586A (zh) * 2019-07-03 2019-11-15 中山大学 一种具有一维结构的锂离子电池正极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709543A (zh) * 2012-06-06 2012-10-03 株洲泰和高科技有限公司 一种富锂三元层状锂离子电池正极材料
CN104466160A (zh) * 2014-11-20 2015-03-25 合肥国轩高科动力能源股份公司 富锂三元系纳米材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709543A (zh) * 2012-06-06 2012-10-03 株洲泰和高科技有限公司 一种富锂三元层状锂离子电池正极材料
CN104466160A (zh) * 2014-11-20 2015-03-25 合肥国轩高科动力能源股份公司 富锂三元系纳米材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵雪玲等: "溶胶凝胶法合成富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及性能表征", 《无机化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574089A (zh) * 2018-03-01 2018-09-25 上海电力学院 一种空心管状富锂锰基正极材料的制备方法
CN109935817A (zh) * 2019-03-27 2019-06-25 上海电力学院 一种含氧空位的层状富锂正极材料及其制备方法
CN110451586A (zh) * 2019-07-03 2019-11-15 中山大学 一种具有一维结构的锂离子电池正极材料及其制备方法
CN110451586B (zh) * 2019-07-03 2022-04-12 中山大学 一种具有一维结构的锂离子电池正极材料及其制备方法

Also Published As

Publication number Publication date
CN107170969B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN112151790B (zh) 高镍三元正极材料前驱体及其晶面可控生长的方法、三元正极材料及锂离子电池
CN106684323A (zh) 一种活性氧化物多重改善锂离子电池三元正极材料及其制备方法
CN107403913A (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
Huang et al. Synthesis of Ni0. 8Co0. 1Mn0. 1 (OH) 2 precursor and electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode material for lithium batteries
CN105938899A (zh) 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用
CN105024067B (zh) 锂离子电池及其复合掺杂改性正极活性材料及制备方法
CN107834050A (zh) 一种锂离子电池富锂正极材料及其改进方法
CN104638242A (zh) 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN103441267A (zh) 一种二氧化钛包覆钴酸锂正极材料的制备方法
CN110581277A (zh) 一种锂离子电池正极材料的表面包覆方法
CN113809294A (zh) 无钴高镍三元正极材料、制法和用于制备电池正极的方法
CN103441238A (zh) 一种掺杂Mg的富锂正极材料及其制备方法
CN111490241A (zh) 一种磷酸锂原位包覆的富锂锰基正极材料及其制备方法
CN107170969B (zh) 一种改性的锂离子电池富锂锰基正极材料及其制备方法
CN109786703B (zh) 导电陶瓷氧化物包覆锂离子电池正极材料及其制备方法
CN108400320A (zh) 一种在尖晶石镍锰酸锂正极材料表面硫化的方法
CN103151518B (zh) 一种钴酸锂的包覆工艺
CN113173606B (zh) 一种基于密度泛函理论计算提高富锂铁锰基正极材料性能的改性方法
CN107768628B (zh) 一种锂离子电池正极材料及其制备方法
CN103413935A (zh) 一种掺杂Mo的富锂正极材料及其制备方法
CN110197902B (zh) 一种多孔结构开口核桃壳状钠离子电池正极材料及其制备方法
CN112909231A (zh) 一种掺杂包覆复合改性钴酸锂lcmo@bt及其制备方法和应用
CN109860592B (zh) 一种含硼分子修饰的镍钴锰酸锂正极材料及其制备方法
CN104577101A (zh) 一种表面改性锂离子电池富锂锰正极材料的制备方法
CN105185969B (zh) 一种正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant