CN107167782B - 基于信杂噪比最大的雷达三维异构阵稀疏重构方法 - Google Patents

基于信杂噪比最大的雷达三维异构阵稀疏重构方法 Download PDF

Info

Publication number
CN107167782B
CN107167782B CN201710499046.6A CN201710499046A CN107167782B CN 107167782 B CN107167782 B CN 107167782B CN 201710499046 A CN201710499046 A CN 201710499046A CN 107167782 B CN107167782 B CN 107167782B
Authority
CN
China
Prior art keywords
dimensional
vector
clutter
radar
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710499046.6A
Other languages
English (en)
Other versions
CN107167782A (zh
Inventor
吴建新
张媛媛
王彤
位翠萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Xian Cetc Xidian University Radar Technology Collaborative Innovation Research Institute Co Ltd
Original Assignee
Xidian University
Xian Cetc Xidian University Radar Technology Collaborative Innovation Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University, Xian Cetc Xidian University Radar Technology Collaborative Innovation Research Institute Co Ltd filed Critical Xidian University
Priority to CN201710499046.6A priority Critical patent/CN107167782B/zh
Publication of CN107167782A publication Critical patent/CN107167782A/zh
Application granted granted Critical
Publication of CN107167782B publication Critical patent/CN107167782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Abstract

本发明公开了一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,思路为:确定三维圆柱阵雷达,该三维圆柱阵雷达的检测范围内存在目标,获取三维异构阵机载雷达杂波空时导向矢量矩阵;将三维异构阵机载雷达杂波空时导向矢量矩阵转换为二维导向矢量矩阵,并计算目标加杂波的协方差矩阵的行列式;计算三维异构阵机载雷达的输出信杂噪比和三维异构阵机载雷达的输出信杂噪比的行列式表示形式;定义二进制挑选向量,计算三维异构阵机载雷达的输出信杂噪比的行列式表示形式的重写式,并计算三维异构阵机载雷达的稀疏降维矩阵以及三维异构阵机载雷达的滤波结果,所述三维异构阵机载雷达的滤波结果为基于信杂噪比最大的雷达三维异构阵稀疏重构结果。

Description

基于信杂噪比最大的雷达三维异构阵稀疏重构方法
技术领域
本发明属于雷达技术领域,涉及一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,适用于机载三维异构阵雷达的杂波抑制。
背景技术
与机身共形的天线具有诸多优点,比如更好的气动特性、更好的隐身性能、更大的天线面积等,因此其应用前景广阔;但机身的多曲面特性使得天线也具有多曲面结构,进而产生三维异构阵问题;相对于二维平面阵来说,三维异构阵的杂波特性将会变得十分复杂,这种复杂性体现在单元间的互耦特性更加复杂,单元的极化改变更加复杂;三维异构阵给杂波带来的复杂性也给杂波抑制带来了很大的困难包括阵列流型更加复杂,目标和杂波的导向矢量计算困难,导向矢量间的相关性更难计算,杂波呈现距离相关性非均匀。
在杂波协方差矩阵和目标信号均确知的条件下,Brennan等人在1973年,根据线性约束最小方差准则,推导出输出信杂噪比最大的全空时二维自适应处理(Space TimeAdaptive Processing,STAP)的概念和理论,全STAP能够取得比较理想的杂波抑制效果,但是最优的STAP处理器需要用大量的训练样本来估计杂波加噪声协方差矩阵。
在三维异构阵的情况下,由于雷达接收的空时数据维数往往很大,全维STAP处理器在实际应用中面临两个问题:1)三维阵的阵面变大,阵元数变多使空时两维自由度庞大导致杂波协方差矩阵求逆的运算量十分巨大,无法满足实时处理的要求;2)缺乏用于估计杂波协方差矩阵的独立同分布(Independent Identically Distributed,IID)样本单元。根据Reed,Mallett,and Brennan三个人提出的准则,即RMB准则可知,为使因估计不准确而带来的输出信杂噪比损失在3dB以内,要求样本数目至少为协方差矩阵阶数的两倍,但实际工程中会面临强烈的非均匀杂波环境,不同距离的杂波样本分布特性各异,这将造成独立同分布IID样本支撑困难。因此,这两个问题使得在三维阵列的情况下使用全维STAP性能降低,杂波抑制效果变差。
为了摆脱在三维阵情况下雷达接接收数据很大时杂波协方差矩阵得估计对于样本的过度依赖,导致的杂波抑制效果降低的问题,有必要对三维阵列的空时自适应处理降维处理进行研究。
发明内容
针对上述现有技术存在的问题,本发明的目的在于提出一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,该种基于信杂噪比最大的雷达三维异构阵稀疏重构方法能够解决三维异构阵情况下全空时自适应处理的杂波协方差矩阵估计需要大量训练样本的问题,能够降低杂波协方差矩阵估计所需的训练样本数,提高杂波抑制性能。
本发明的主要思路:利用三维异构阵杂波回波数据得到杂波的协方差矩阵和杂波加目标的协方差矩阵,推导出输出信杂噪比的行列式表示形式,用使输出信杂噪比最大的阵元选择方法得到最优的阵元选择矢量进而得到降维矩阵,得到降维后的改善因子和杂波抑制结果。
为达到上述技术目的,本发明采用如下技术方案予以实现。
一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,包括以下步骤:
步骤1,确定三维圆柱阵雷达,所述三维圆柱阵雷达的检测范围内存在目标,并获取三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L
其中,N为三维圆柱阵雷达包含的阵元个数,K为每个相干处理间隔内三维圆柱阵雷达发射的脉冲个数,L表示表示三维圆柱阵雷达接收到的杂波包含的距离门总个数,N、K、L分别为大于0的正整数;
步骤2,将三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L转换为NK×L的二维导向矢量矩阵BNK×L,并计算得到目标加杂波的协方差矩阵Rs的行列式;
步骤3,计算三维异构阵机载雷达的输出信杂噪比SCNRout
步骤4,计算得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式;
步骤5,定义二进制挑选向量y,所述二进制挑选向量y为NK×1维列矢量,并根据三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式,计算得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA0001333226130000021
的重写式;
步骤6,根据三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA0001333226130000022
的重写式,得到三维异构阵机载雷达的稀疏降维矩阵;
步骤7,根据三维异构阵机载雷达的稀疏降维矩阵,计算得到三维异构阵机载雷达的滤波结果;所述三维异构阵机载雷达的滤波结果为基于信杂噪比最大的雷达三维异构阵稀疏重构结果。
本发明的有益效果:在三维异构阵情况下,由于阵元数增多使得全空时自适应处理的自由度明显增大,从而需要更多的训练样本来估计杂波协方差矩阵,本发明方法通过在信杂噪比最大的情况下进行阵元挑选,挑选后自由度降低为全空时的一半,能够有效抑制杂波,并能够很好解决三维异构阵情况下杂波协方差矩阵估计的训练样本数有限的问题。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是本发明的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法流程图;
图2(a)为在少样本数情况下使用本发明方法与全空时处理方法分别得到的改善因子曲线对比图;
图2(b)为在多样本数情况下使用本发明方法与全空时处理方法分别得到的改善因子曲线对比图;;
图3(a)为少样本数情况下使用全空时处理方法进行杂波抑制得到的结果示意图;
图3(b)为少样本数情况下使用本发明方法进行杂波抑制得到的结果示意图。
具体实施方式
参照图1,为本发明的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法流程图;其中所述基于信杂噪比最大的雷达三维异构阵稀疏重构方法,包括以下步骤:
步骤1,确定三维圆柱阵雷达,所述三维圆柱阵雷达的检测范围内存在目标,并获取三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L;本实施例是对三维圆柱阵雷达进行仿真得到三维异构阵机载雷达杂波空时导向矢量矩阵。
具体地:AN×K×L为N×K×L维三维数据矩阵,N为三维圆柱阵雷达包含的阵元个数,三维圆柱阵雷达共五层,每层六个阵元,K为每个相干处理间隔CPI内三维圆柱阵雷达发射的脉冲个数,CPI表示相干处理间隔,L表示表示三维圆柱阵雷达接收到的杂波包含的距离门总个数,N、K、L分别为大于0的正整数。
步骤2,将三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L转换为NK×L的二维导向矢量矩阵BNK×L,并计算得到目标加杂波的协方差矩阵Rs的行列式。
具体地,将三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L转换为NK×L的二维导向矢量矩阵BNK×L,计算NK×L的二维导向矢量矩阵BNK×L的秩Na,Na=rank(BNK×L),0≤Na≤min{NK,L},rank表示求秩运算,min表示求最小值操作。
然后对NK×L的二维导向矢量矩阵BNK×L进行奇异值分解,得到NK×NK维酉矩阵UNK×NK,取NK×NK维酉矩阵UNK×NK的前Na列,记为NK×Na维中间矩阵VC
Figure BDA0001333226130000041
vi表示NK×NK维酉矩阵UNK×NK中的第i列矢量,且vi为NK×1维列矢量。
根据NK×Na维中间矩阵VC,计算得到三维异构阵机载雷达的杂波协方差矩阵Rc,其定义式为:
Figure BDA0001333226130000042
分别设定目标的方位角为φ,目标的俯仰角为θ,目标的多普勒频率为fd,则将目标的空间频率记为fs
Figure BDA0001333226130000043
将目标的归一化多普勒频率记为
Figure BDA0001333226130000044
Figure BDA0001333226130000045
N为三维圆柱阵雷达包含的阵元个数,λ表示三维圆柱阵雷达发射信号波长,Fr为脉冲重复频率,cos表示求余弦操作,sin表示求正弦操作,那么目标的空域导向矢量为a,a为N×1维列矢量,
Figure BDA0001333226130000046
n∈{0,1,…,N-1},an表示目标的空域导向矢量a中第n个元素,N为三维圆柱阵雷达包含的阵元个数,与目标的空域导向矢量a中包含的元素个数取值相等;上标T表示转置操作,目标的时域导向矢量为b,b为K×1维列矢量,
Figure BDA0001333226130000047
bm表示目标的时域导向矢量b中第m个元素,K为每个相干处理间隔CPI内三维圆柱阵雷达发射的脉冲个数,与目标的时域导向矢量b中包含的元素个数取值相等;CPI表示相干处理间隔;进而计算得到目标的空时导向矢量s,其计算表达式为:
Figure BDA0001333226130000048
其中,
Figure BDA0001333226130000049
表示kronecker积,s为NK×1维列矢量,目标的空时导向矢量s的定义表达式为:s=[s1,s2,...,si',...,sNK]T,上标T为转置操作,i'∈{1,2,…,NK},si'表示目标的空时导向矢量s中第i'个元素,si'=anbm
定义目标加杂波的信号矩阵为Vs,Vs=[s,Vc]=[s,v1,v2,...,vi,...,vNa],进而计算得到目标加杂波的协方差矩阵为Rs
Figure BDA0001333226130000051
sHs=NK,上标H表示共轭转置操作;根据块矩阵求行列式的公式,得到目标加杂波的协方差矩阵Rs的行列式|Rs|,
Figure BDA0001333226130000052
步骤3,计算三维异构阵机载雷达的输出信杂噪比SCNRout
具体地:(1)将三维异构阵机载雷达的杂波加噪声协方差矩阵表示为R,
Figure BDA0001333226130000053
且R为NK×NK的二维矩阵,
Figure BDA0001333226130000054
表示高斯白噪声的功率,Rc为三维异构阵机载雷达的杂波协方差矩阵,INK表示N×K维全1矩阵。
由步骤1和步骤2可知三维异构阵机载雷达的杂波协方差矩阵Rc的计算表达式为:
Figure BDA0001333226130000055
vi表示NK×NK维酉矩阵UNK×NK中的第i列矢量,且vi为NK×1维列矢量;qi表示NK×NK维酉矩阵UNK×NK中第i列矢量的杂波功率,上标H表示共轭转置操作。
定义Na×1维矢量
Figure BDA0001333226130000056
并对Na×1维矢量
Figure BDA0001333226130000057
进行对角化,即
Figure BDA0001333226130000058
是将Na×1维矢量
Figure BDA0001333226130000059
对角化,进而得到Na×Na维二维矩阵Q,diag表示对角化操作,得到三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure BDA00013332261300000510
Figure BDA00013332261300000511
根据矩阵求逆公式
Figure BDA00013332261300000512
计算得到三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure BDA00013332261300000513
的逆
Figure BDA00013332261300000514
Figure BDA0001333226130000061
假定NK×NK维酉矩阵UNK×NK中每一列矢量的杂波功率都远大于噪声功率,即qi>>
Figure BDA0001333226130000062
则得到三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure BDA0001333226130000063
的逆
Figure BDA0001333226130000064
的简化式
Figure BDA0001333226130000065
Figure BDA0001333226130000066
进而计算得到三维异构阵机载雷达的空时自适应处理的最优权Wopt
Figure BDA0001333226130000067
(2)将目标的空时导向矢量s分解为sc和s两个正交的子空间,s=sc+s,sc和s正交,并且互为补空间,即sc∪s=s,
Figure BDA0001333226130000068
Figure BDA0001333226130000069
表示空集,sc表示杂波子空间,s表示杂波子空间sc的正交补空间,VC表示NK×Na维中间矩阵,INK表示N×K维全1矩阵,上标H表示共轭转置,K为每个相干处理间隔CPI内三维圆柱阵雷达发射的脉冲个数,N为三维圆柱阵雷达包含的阵元个数,Na表示NK×L的二维导向矢量矩阵BNK×L的秩,L表示三维圆柱阵雷达接收到的杂波包含的距离门总个数。
由步骤1可知,NK×Na维中间矩阵
Figure BDA00013332261300000610
vi表示NK×NK维酉矩阵UNK×NK中的第i列矢量,且vi为NK×1维列矢量,Na个NK×1维列矢量
Figure BDA00013332261300000611
张成了杂波子空间sc
Figure BDA00013332261300000612
P表示正交投影矩阵,根据正交投影的概念,
Figure BDA00013332261300000613
上标H表示共轭转置操作,上标-1表示求逆操作;由此计算得到目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦值cos(α),
Figure BDA00013332261300000614
其中,|·|表示求绝对值操作,||s||2表示目标的空时导向矢量s的二范数,
Figure BDA00013332261300000615
将sc的表达式
Figure BDA00013332261300000616
代入|cos(α)|的表达式后得到|cos(α)|的展开式,再对|cos(α)|的展开式进行求平方操作,得到目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦平方值|cos(α)|2
Figure BDA0001333226130000071
(3)根据目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦平方值|cos(α)|2,计算得到三维异构阵机载雷达的输出信杂噪比SCNRout
Figure BDA0001333226130000072
s表示目标的空时导向矢量,
Figure BDA0001333226130000073
表示三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure BDA0001333226130000074
的逆
Figure BDA0001333226130000075
的简化式,SNR表示目标的信噪比,
Figure BDA0001333226130000076
Figure BDA0001333226130000077
表示目标的信号功率,
Figure BDA0001333226130000078
代表高斯白噪声的功率,N为三维圆柱阵雷达包含的阵元个数,三维圆柱阵雷达共五层,每层六个阵元,K表示每个相干处理间隔CPI内三维圆柱阵雷达发射的脉冲个数。
步骤4:计算得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA0001333226130000079
Figure BDA00013332261300000710
Rc为三维异构阵机载雷达的杂波协方差矩阵,Rs表示目标加杂波的协方差矩阵,|Rs|表示目标加杂波的协方差矩阵Rs的行列式,|Rc|表示三维异构阵机载雷达的杂波协方差矩阵Rc的行列式。
具体地,对步骤2得到的目标加杂波的协方差矩阵Rs的行列式
Figure BDA00013332261300000711
进行变形,得到
Figure BDA00013332261300000712
然后将
Figure BDA00013332261300000713
代入目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦平方值|cos(α)|2的表达式中,得到
Figure BDA00013332261300000714
最后将
Figure BDA00013332261300000715
代入到SCNRout的表达式中,可将三维异构阵机载雷达的输出信杂噪比SCNRout改写为用Rs和Rc的行列式表示的形式,进而得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA0001333226130000081
Figure BDA0001333226130000082
步骤5:定义一个二进制挑选向量y,所述二进制挑选向量y为NK×1维列矢量,N为三维圆柱阵雷达包含的阵元个数,K为每个相干处理间隔CPI内三维圆柱阵雷达发射的脉冲个数,NK表示一共有NK个阵元脉冲对;二进制挑选向量y中包含NK个元素,每个元素的取值分别为0或1,1代表选择了对应的阵元脉冲,0代表没有选择任何阵元脉冲,那么将三维异构阵机载雷达的杂波协方差矩阵Rc和目标加杂波的协方差矩阵Rs分别表示为Rc(y)和Rs(y),
Figure BDA0001333226130000083
diag表示对角化操作,Rc(y)表示被挑选后的杂波协方差矩阵,Rs(y)表示被挑选后的杂波加目标协方差矩阵;进而得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA0001333226130000084
的重写式
Figure BDA0001333226130000085
Figure BDA0001333226130000086
因此,选择二进制挑选向量y的取值问题就转化为使三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA0001333226130000087
的重写式
Figure BDA0001333226130000088
最大的问题,也就是让
Figure BDA0001333226130000089
最小的问题。
步骤6,在三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA00013332261300000810
的重写式
Figure BDA00013332261300000811
取值最大的情况下进行阵元挑选。
具体地:假设在总体的N个阵元与K个脉冲的乘积NK个阵元脉冲对中挑选M个阵元脉冲对,则二进制挑选向量y里面有M个1,NK-M个0;所以,在三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure BDA00013332261300000812
的重写式
Figure BDA00013332261300000813
取值最大的情况下进行阵元挑选的目的是使得二进制挑选向量y里面有M个1,NK-M个0。
6.1令二进制挑选向量为y,并令将二进制挑选向量y的初始值全部为1,记为二进制挑选向量初始值y(0),即y(0)=[1,1,...,1]NK,二进制挑选向量初始值y(0)的下标集为η(0),η(0)=[1,2,...,NK]。
6.2定义外层循环变量k,k为第k次迭代,k的初始值为1,k∈{1,2,…,NK-M},M<NK;定义内层循环变量g,g为第g次迭代,g随着k的变化而变化,g∈{1,2,…,NK-k+1},g的初始值为1;当k取值为1时,g取值从1循环到NK;当k取值为2时,g取值从1循环到NK-1;当k取值为M时,g取值从1循环到NK-M+1;外层循环变量每循环一次,就会将第k次迭代后的二进制挑选向量y(k)中的一个1置为0,当外层循环变量循环M次时,就会将第M次迭代后的二进制挑选向量y(M)中的M个1都置为0。
6.3根据第k次迭代后的二进制挑选向量y(k),得到第k次迭代后的二进制挑选向量y(k)的下标集η(k),所述第k次迭代后的二进制挑选向量y(k)的下标集η(k)中与第k次迭代后的二进制挑选向量y(k)中元素为0的对应位置处元素为0,y(k)的下标集η(k)中其余位置处的元素按照自然数顺序从1排列至NK-k+1;所述第k次迭代后的二进制挑选向量y(k)为第k-1次迭代后的二进制挑选向量y(k-1)。
6.4令第g次迭代后下标集η(k)中与g取值相等的元素在η(k)中的位置为h,即η(k)(h)=g,h∈{1,2,...,NK-k+1},然后将第k次迭代后的二进制挑选向量y(k)中位置h处的元素置为0,即y(k)(h)=0,并将第k次迭代后的二进制挑选向量y(k)中位置h处的元素置为0后得到的向量,记为第g次迭代后在位置h处置零的向量
Figure BDA0001333226130000091
Figure BDA0001333226130000092
满足
Figure BDA0001333226130000093
即向量
Figure BDA0001333226130000094
中位置h处的元素为0。
然后计算第g次迭代后在位置h处置零的向量
Figure BDA0001333226130000095
的杂波协方差矩阵
Figure BDA0001333226130000096
和第g次迭代后在位置h处置零的向量
Figure BDA0001333226130000097
的杂波加目标协方差矩阵
Figure BDA0001333226130000098
以及分别计算杂波协方差矩阵
Figure BDA0001333226130000099
的行列式
Figure BDA00013332261300000910
和杂波加目标协方差矩阵
Figure BDA00013332261300000911
的行列式
Figure BDA00013332261300000912
进而计算杂波协方差矩阵
Figure BDA00013332261300000913
的行列式
Figure BDA00013332261300000914
和杂波加目标协方差矩阵
Figure BDA00013332261300000915
的行列式
Figure BDA00013332261300000916
的比值μk(g),其表达式分别为:
Figure BDA0001333226130000101
其中,杂波协方差矩阵
Figure BDA0001333226130000102
的行列式
Figure BDA0001333226130000103
和杂波加目标协方差矩阵
Figure BDA0001333226130000104
的行列式
Figure BDA0001333226130000105
的维数都是NK×NK,diag表示对角化操作;然后,将杂波协方差矩阵
Figure BDA0001333226130000106
的行列式
Figure BDA0001333226130000107
和杂波加目标协方差矩阵
Figure BDA0001333226130000108
的行列式
Figure BDA0001333226130000109
的比值μk(g),记为第k次迭代后经过第g次迭代得到的第g个比值。
6.5令g分别取1至NK-k+1,重复执行6.3和6.4,进而分别得到第k次迭代后经过第1次迭代得到的第1个比值至第k次迭代后经过第NK-k+1次迭代得到的第NK-k+1个比值,记为第k次迭代后得到的NK-k+1个比值,比较第k次迭代后得到的NK-k+1个比值,得到比值最小值,并得到比值最小值时g的对应取值在第k次迭代后的二进制挑选向量y(k)的下标集η(k)中的位置,记为hmin,hmin∈{1,2,…,NK-k+1},然后将第k次迭代后的二进制挑选向量y(k)中位置hmin处的1置为0,即y(k)(hmin)=0,进而得到第k次迭代后的二进制挑选向量y(k),所述第k次迭代后的二进制挑选向量y(k)中有k个0,NK-k个1。
6.6令k加1,返回6.3,直到得到第NK-M次迭代后的二进制挑选向量y(NK-M),迭代停止,此时得到的第NK-M次迭代后的二进制挑选向量y(NK-M)中NK-M个位置处的值分别已置为0,其余M个位置处的值分别为1,即迭代的最终结果使得第NK-M次迭代后的二进制挑选向量y(NK-M)中有M个1,NK-M个0。
然后计算得到对角矩阵Y,Y=diag(y(NK-M)),diag表示对角化操作,对角矩阵Y为NK行NK列的二维矩阵,由于第NK-M次迭代后的二进制挑选向量y(NK-M)中有NK-M个元素为0,因此对角矩阵Y中有NK-M列全部为零,剔除对角矩阵Y中全部为0的列,并将对角矩阵Y中剔除全部为0的列后的矩阵,记为三维异构阵机载雷达的稀疏降维矩阵Z,Z是NK行M列的二维矩阵。
步骤7:由步骤3得到的空时自适应处理的最优权为
Figure BDA00013332261300001010
使用三维异构阵机载雷达的稀疏降维矩阵Z对三维异构阵机载雷达的杂波加噪声协方差矩阵R和目标的空时导向矢量s分别进行降维处理,分别计算得到稀疏后的自适应权值
Figure BDA00013332261300001011
和稀疏后的改善因子IF,进而计算得到三维异构阵机载雷达的滤波结果out,其表达式分别为:
Figure BDA0001333226130000111
Figure BDA0001333226130000112
Figure BDA0001333226130000113
其中,E表示三维异构阵雷达的杂波功率,上标H表示共轭转置操作,上标-1表示求逆操作;所述三维异构阵机载雷达的滤波结果out即为基于信杂噪比最大的雷达三维异构阵稀疏重构结果。
下面结合仿真实验对本发明效果作进一步验证说明:
(一)仿真参数:
三维异构阵机载雷达天线采用圆柱阵进行仿真,圆柱阵为5层,每层6个阵元,共30个阵元,波长为0.2m,阵元间距为半波长0.1m,相干积累脉冲数20,X轴向阵元间隔为0.1m,三维异构阵机载雷达的载机高度为6000m,三维异构阵机载雷达的载机速度为200m/s,载机速度方向沿X轴,三维异构阵机载雷达发射的信号带宽为2.5MHz,采样频率2.5MHz,脉冲重复频率为5000Hz,信号带宽为2.5MHz,主波束指向为,方位角90°,俯仰角0°,噪声系数3dB,杂噪比40dB。
(二)仿真结果及分析:
为了说明本发明性能的优越性,给出了传统方法以及本发明方法的处理结果对比图。
参照图2(a),为在少样本数情况下使用本发明方法与全空时处理方法分别得到的改善因子曲线对比图;其中,纵坐标表示改善因子的大小,单位为分贝(dB),横坐标表示多普勒通道,共20个,实线为全空时处理方法,虚线为本发明方法。
从图2(a)可以看出,由于采用了阵元挑选,选择了一半的阵元脉冲数,也就是NK/2=300个阵元脉冲数,所以本发明方法的自由度较全空时处理的自由度NK=600降低了一半,因此所需的训练样本数也是全空时的一半,因此在样本数为700时,对于本发明方法已经满足了两倍自由度的要求,而对于全空时处理方法并没有满足,因此在少样本情况下,本发明方法的改善因子要优于全空时处理的改善因子。
图2(b)为在多样本数情况下使用本发明方法与全空时处理方法分别得到的改善因子曲线对比图,选择的样本数为全空时情况下的五倍自由度,在多样本情况下,由于本发明方法直接去掉了一半的阵元脉冲,因此结果没有全空时的改善因子好,这也说明了,本发明方法更加适用于样本数缺乏的情况下进行杂波抑制。
图3(a)为少样本数情况下使用全空时处理方法进行杂波抑制得到的结果示意图,图3(b)为少样本数情况下使用本发明方法进行杂波抑制得到的结果示意图,图3(a)和图3(b)的横坐标均为多普勒通道数,共20个;纵坐标均为距离门数,从0到3000,共3000个距离门。
对比图3(a)和图3(b)可以看出在少样本情况下全空时处理方法的杂波剩余比较多,本发明方法在少样本情况下的滤波结果比全空时处理结果好,杂波剩余更少,因此杂波抑制性能更好。
综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围;这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,包括以下步骤:
步骤1,确定三维圆柱阵雷达,所述三维圆柱阵雷达的检测范围内存在目标,并获取三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L
其中,N为三维圆柱阵雷达包含的阵元个数,K为每个相干处理间隔内三维圆柱阵雷达发射的脉冲个数,L表示三维圆柱阵雷达接收到的杂波包含的距离门总个数,N、K、L分别为大于0的正整数;
步骤2,将三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L转换为NK×L的二维导向矢量矩阵BNK×L,并计算得到目标加杂波的协方差矩阵Rs的行列式;
步骤3,计算三维异构阵机载雷达的输出信杂噪比SCNRout
步骤4,计算得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式;
步骤5,定义二进制挑选向量y,所述二进制挑选向量y为NK×1维列矢量,并根据三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式,计算得到三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure FDA0002180418090000011
的重写式;
步骤6,根据三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure FDA0002180418090000012
的重写式,得到三维异构阵机载雷达的稀疏降维矩阵;
步骤7,根据三维异构阵机载雷达的稀疏降维矩阵,计算得到三维异构阵机载雷达的滤波结果;所述三维异构阵机载雷达的滤波结果为基于信杂噪比最大的雷达三维异构阵稀疏重构结果。
2.如权利要求1所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,在步骤2中,所述目标加杂波的协方差矩阵Rs的行列式,其得到过程为:
将三维异构阵机载雷达杂波空时导向矢量矩阵AN×K×L转换为NK×L的二维导向矢量矩阵BNK×L,计算NK×L的二维导向矢量矩阵BNK×L的秩Na,Na=rank(BNK×L),0≤Na≤min{NK,L},rank表示求秩运算,min表示求最小值操作;
然后对NK×L的二维导向矢量矩阵BNK×L进行奇异值分解,得到NK×NK维酉矩阵UNK×NK,取NK×NK维酉矩阵UNK×NK的前Na列,记为NK×Na维中间矩阵VC
Figure FDA0002180418090000021
Figure FDA0002180418090000022
vi表示NK×NK维酉矩阵UNK×NK中的第i列矢量,且vi为NK×1维列矢量;
根据NK×Na维中间矩阵VC,计算得到三维异构阵机载雷达的杂波协方差矩阵Rc,其定义式为:
Figure FDA0002180418090000023
上标H表示共轭转置操作;
定义目标加杂波的信号矩阵为Vs
Figure FDA0002180418090000024
s表示目标的空时导向矢量,并计算得到目标加杂波的协方差矩阵为Rs
Figure FDA0002180418090000025
Figure FDA0002180418090000026
sHs=NK;进而计算得到目标加杂波的协方差矩阵Rs的行列式|Rs|,
Figure FDA0002180418090000027
3.如权利要求2所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,所述s表示目标的空时导向矢量,其定义表达式为:s=[s1,s2,...,si',...,sNK]T,上标T为转置操作,i'∈{1,2,…,NK},si'表示目标的空时导向矢量s中第i'个元素,si'=anbm
所述s表示目标的空时导向矢量,其计算表达式为:
Figure FDA0002180418090000028
其中,
Figure FDA0002180418090000029
表示kronecker积,s为NK×1维列矢量;a表示目标的空域导向矢量,a为N×1维列矢量,
Figure FDA00021804180900000210
n∈{0,1,…,N-1},上标T表示转置操作,an表示目标的空域导向矢量a中第n个元素,N为三维圆柱阵雷达包含的阵元个数,与目标的空域导向矢量a中包含的元素个数取值相等;b表示目标的时域导向矢量,b为K×1维列矢量,
Figure FDA00021804180900000211
bm表示目标的时域导向矢量b中第m个元素,K为每个相干处理间隔内三维圆柱阵雷达发射的脉冲个数,与目标的时域导向矢量b中包含的元素个数取值相等;fs表示目标的空间频率,
Figure FDA0002180418090000031
φ表示设定的目标的方位角,θ表示设定的目标的俯仰角,cos表示求余弦操作,sin表示求正弦操作,λ表示三维圆柱阵雷达发射信号波长,
Figure FDA0002180418090000032
表示目标的归一化多普勒频率。
4.如权利要求3所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,步骤3的子步骤为:
(1)将三维异构阵机载雷达的杂波加噪声协方差矩阵表示为R,
Figure FDA0002180418090000033
且R为NK×NK的二维矩阵,
Figure FDA0002180418090000034
表示高斯白噪声的功率,Rc为三维异构阵机载雷达的杂波协方差矩阵,INK表示N×K维全1矩阵;
三维异构阵机载雷达的杂波协方差矩阵Rc的计算表达式为:
Figure FDA0002180418090000035
i∈{1,2,…,Na},vi表示NK×NK维酉矩阵UNK×NK中的第i列矢量,且vi为NK×1维列矢量;qi表示NK×NK维酉矩阵UNK×NK中第i列矢量的杂波功率,上标H表示共轭转置操作;
定义Na×1维矢量
Figure FDA0002180418090000036
并对Na×1维矢量
Figure FDA0002180418090000037
进行对角化,即
Figure FDA0002180418090000038
进而得到Na×Na维二维矩阵Q,diag表示对角化操作;计算三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure FDA0002180418090000039
Figure FDA00021804180900000310
然后计算三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure FDA00021804180900000311
的逆
Figure FDA00021804180900000312
Figure FDA00021804180900000313
假定NK×NK维酉矩阵UNK×NK中每一列矢量的杂波功率都远大于噪声功率,即qi>>
Figure FDA0002180418090000041
则得到三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure FDA0002180418090000042
的逆
Figure FDA0002180418090000043
的简化式
Figure FDA0002180418090000044
Figure FDA0002180418090000045
进而计算三维异构阵机载雷达的空时自适应处理的最优权Wopt
Figure FDA0002180418090000046
(2)将目标的空时导向矢量s分解为sc和s两个正交的子空间,s=sc+s,sc和s正交,并且互为补空间,即sc∪s=s,
Figure FDA0002180418090000047
Figure FDA0002180418090000048
表示空集,sc表示杂波子空间,s表示杂波子空间sc的正交补空间,VC表示NK×Na维中间矩阵,INK表示N×K维全1矩阵,上标H表示共轭转置,K为每个相干处理间隔内三维圆柱阵雷达发射的脉冲个数,N为三维圆柱阵雷达包含的阵元个数,Na表示NK×L的二维导向矢量矩阵BNK×L的秩,L表示三维圆柱阵雷达接收到的杂波包含的距离门总个数;
所述sc表示杂波子空间,且
Figure FDA0002180418090000049
P表示正交投影矩阵,
Figure FDA00021804180900000410
上标H表示共轭转置操作,上标-1表示求逆操作;由此计算得到目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦值cos(α),
Figure FDA00021804180900000411
其中,|·|表示求绝对值操作,||s||2表示目标的空时导向矢量s的二范数,
Figure FDA00021804180900000412
进而计算得到目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦平方值|cos(α)|2
Figure FDA00021804180900000413
(3)根据目标的空时导向矢量s与杂波子空间sc之间夹角α的余弦平方值|cos(α)|2,计算得到三维异构阵机载雷达的输出信杂噪比SCNRout
Figure FDA00021804180900000414
s表示目标的空时导向矢量,
Figure FDA00021804180900000415
表示三维异构阵机载雷达的杂波加噪声协方差矩阵的简化形式
Figure FDA00021804180900000416
的逆
Figure FDA00021804180900000417
的简化式,SNR表示目标的信噪比,
Figure FDA00021804180900000418
Figure FDA00021804180900000419
表示目标的信号功率,
Figure FDA00021804180900000420
代表高斯白噪声的功率,N为三维圆柱阵雷达包含的阵元个数,K表示每个相干处理间隔内三维圆柱阵雷达发射的脉冲个数。
5.如权利要求4所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,在步骤4中,将所述三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式记为
Figure FDA0002180418090000051
其表达式为:
Figure FDA0002180418090000052
其中,Rc为三维异构阵机载雷达的杂波协方差矩阵,Rs表示目标加杂波的协方差矩阵,|Rs|表示目标加杂波的协方差矩阵Rs的行列式,|Rc|表示三维异构阵机载雷达的杂波协方差矩阵Rc的行列式,
Figure FDA0002180418090000053
上标H表示共轭转置操作,上标-1表示求逆操作,s表示目标的空时导向矢量,K为每个相干处理间隔内三维圆柱阵雷达发射的脉冲个数,N为三维圆柱阵雷达包含的阵元个数,SNR表示目标的信噪比,
Figure FDA0002180418090000054
Figure FDA0002180418090000055
表示目标的信号功率,
Figure FDA0002180418090000056
代表高斯白噪声的功率。
6.如权利要求5所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,在步骤5中,所述二进制挑选向量y为NK×1维列矢量,N为三维圆柱阵雷达包含的阵元个数,K为每个相干处理间隔CPI内三维圆柱阵雷达发射的脉冲个数,NK表示一共有NK个阵元脉冲对;二进制挑选向量y中包含NK个元素,每个元素的取值分别为0或1,1代表选择了对应的阵元脉冲,0代表没有选择对应的阵元脉冲;
将所述三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure FDA0002180418090000057
的重写式记为
Figure FDA0002180418090000058
Figure FDA0002180418090000059
其中,Rc(y)表示被挑选后的杂波协方差矩阵,Rs(y)表示被挑选后的杂波加目标协方差矩阵,
Figure FDA00021804180900000510
上标H表示共轭转置操作,VC表示NK×Na维中间矩阵,Vs表示目标加杂波的信号矩阵。
7.如权利要求6所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,步骤6的子步骤为:
在三维异构阵机载雷达的输出信杂噪比SCNRout的行列式表示形式
Figure FDA0002180418090000061
的重写式
Figure FDA0002180418090000062
取值最大的情况下进行阵元挑选,使得二进制挑选向量y里面有M个1,NK-M个0;
6.1令二进制挑选向量为y,并令将二进制挑选向量y的初始值全部为1,记为二进制挑选向量初始值y(0),即y(0)=[1,1,...,1]NK,二进制挑选向量初始值y(0)的下标集为η(0),η(0)=[1,2,...,NK];
6.2定义外层循环变量k,k为第k次迭代,k的初始值为1,k∈{1,2,…,NK-M},M<NK;定义内层循环变量g,g为第g次迭代,g随着k的变化而变化,g∈{1,2,…,NK-k+1},g的初始值为1;当k取值为1时,g取值从1循环到NK;当k取值为2时,g取值从1循环到NK-1;当k取值为M时,g取值从1循环到NK-M+1;外层循环变量每循环一次,就会将第k次迭代后的二进制挑选向量y(k)中的一个1置为0,当外层循环变量循环M次时,就会将第M次迭代后的二进制挑选向量y(M)中的M个1都置为0;
6.3根据第k次迭代后的二进制挑选向量y(k),得到第k次迭代后的二进制挑选向量y(k)的下标集η(k),所述第k次迭代后的二进制挑选向量y(k)的下标集η(k)中与第k次迭代后的二进制挑选向量y(k)中元素为0的对应位置处元素为0,y(k)的下标集η(k)中其余位置处的元素按照自然数顺序从1排列至NK-k+1;
6.4令第g次迭代后下标集η(k)中与g取值相等的元素在η(k)中的位置为h,即η(k)(h)=g,h∈{1,2,...,NK-k+1},然后将第k次迭代后的二进制挑选向量y(k)中位置h处的元素置为0,即y(k)(h)=0,并将第k次迭代后的二进制挑选向量y(k)中位置h处的元素置为0后得到的向量,记为第g次迭代后在位置h处置零的向量
Figure FDA0002180418090000063
Figure FDA0002180418090000064
满足
Figure FDA0002180418090000065
即向量
Figure FDA0002180418090000066
中位置h处的元素为0;
然后计算第g次迭代后在位置h处置零的向量
Figure FDA0002180418090000067
的杂波协方差矩阵
Figure FDA0002180418090000068
和第g次迭代后在位置h处置零的向量
Figure FDA0002180418090000071
的杂波加目标协方差矩阵
Figure FDA0002180418090000072
以及分别计算杂波协方差矩阵
Figure FDA0002180418090000073
的行列式
Figure FDA0002180418090000074
和杂波加目标协方差矩阵
Figure FDA0002180418090000075
的行列式
Figure FDA0002180418090000076
进而计算杂波协方差矩阵
Figure FDA0002180418090000077
的行列式
Figure FDA0002180418090000078
和杂波加目标协方差矩阵
Figure FDA0002180418090000079
的行列式
Figure FDA00021804180900000710
的比值μk(g),其表达式分别为:
Figure FDA00021804180900000711
其中,杂波协方差矩阵
Figure FDA00021804180900000712
的行列式
Figure FDA00021804180900000713
和杂波加目标协方差矩阵
Figure FDA00021804180900000714
的行列式
Figure FDA00021804180900000715
的维数都是NK×NK,diag表示对角化操作;然后,将杂波协方差矩阵
Figure FDA00021804180900000716
的行列式
Figure FDA00021804180900000717
和杂波加目标协方差矩阵
Figure FDA00021804180900000718
的行列式
Figure FDA00021804180900000719
的比值μk(g),记为第k次迭代后经过第g次迭代得到的第g个比值;
6.5令g分别取1至NK-k+1,重复执行子步骤6.3和子步骤6.4,进而分别得到第k次迭代后经过第1次迭代得到的第1个比值至第k次迭代后经过第NK-k+1次迭代得到的第NK-k+1个比值,记为第k次迭代后得到的NK-k+1个比值,比较第k次迭代后得到的NK-k+1个比值,得到比值最小值,并得到比值最小值时g的对应取值在第k次迭代后的二进制挑选向量y(k)的下标集η(k)中的位置,记为hmin,hmin∈{1,2,…,NK-k+1},然后将第k次迭代后的二进制挑选向量y(k)中位置hmin处的1置为0,即y(k)(hmin)=0,进而得到第k次迭代后的二进制挑选向量y(k),所述第k次迭代后的二进制挑选向量y(k)中有k个0,NK-k个1;
6.6令k加1,返回子步骤6.3,直到得到第NK-M次迭代后的二进制挑选向量y(NK-M),迭代停止,此时得到的第NK-M次迭代后的二进制挑选向量y(NK-M)中NK-M个位置处的值分别已置为0,其余M个位置处的值分别为1,即迭代的最终结果使得第NK-M次迭代后的二进制挑选向量y(NK-M)中有M个1,NK-M个0;
然后计算得到对角矩阵Y,Y=diag(y(NK-M)),对角矩阵Y为NK行NK列的二维矩阵,剔除对角矩阵Y中全部为0的列,并将对角矩阵Y中剔除全部为0的列后的矩阵,记为三维异构阵机载雷达的稀疏降维矩阵Z,Z是NK行M列的二维矩阵。
8.如权利要求7所述的一种基于信杂噪比最大的雷达三维异构阵稀疏重构方法,其特征在于,在步骤7中,将三维异构阵机载雷达的滤波结果记为out,其表达式为:
Figure FDA0002180418090000081
Figure FDA0002180418090000082
其中,R表示三维异构阵机载雷达的杂波加噪声协方差矩阵,s表示目标的空时导向矢量,
Figure FDA0002180418090000083
表示稀疏后的自适应权值,上标H表示共轭转置操作,上标-1表示求逆操作。
CN201710499046.6A 2017-06-27 2017-06-27 基于信杂噪比最大的雷达三维异构阵稀疏重构方法 Active CN107167782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710499046.6A CN107167782B (zh) 2017-06-27 2017-06-27 基于信杂噪比最大的雷达三维异构阵稀疏重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710499046.6A CN107167782B (zh) 2017-06-27 2017-06-27 基于信杂噪比最大的雷达三维异构阵稀疏重构方法

Publications (2)

Publication Number Publication Date
CN107167782A CN107167782A (zh) 2017-09-15
CN107167782B true CN107167782B (zh) 2020-04-10

Family

ID=59826166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710499046.6A Active CN107167782B (zh) 2017-06-27 2017-06-27 基于信杂噪比最大的雷达三维异构阵稀疏重构方法

Country Status (1)

Country Link
CN (1) CN107167782B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800497B (zh) * 2020-12-28 2023-08-11 西安电子科技大学 基于稀疏谱恢复的机载三维异构阵杂波抑制方法
CN114726385B (zh) * 2022-04-21 2023-02-24 电子科技大学 基于功率估计的卫星导航接收机空域抗干扰方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292592B1 (en) * 1998-10-19 2001-09-18 Raytheon Company Efficient multi-resolution space-time adaptive processor
CN103018727A (zh) * 2011-09-27 2013-04-03 中国科学院电子学研究所 一种基于样本训练的机载雷达非平稳杂波抑制方法
CN103399303A (zh) * 2013-07-22 2013-11-20 西安电子科技大学 机载雷达抗密集转发式欺骗干扰方法与系统
CN104237883A (zh) * 2014-09-15 2014-12-24 西安电子科技大学 一种采用稀疏表示的机载雷达空时自适应处理方法
CN105487054A (zh) * 2015-11-09 2016-04-13 大连大学 提高基于mimo-ofdm雷达stap最差检测性能的稳健波形设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292592B1 (en) * 1998-10-19 2001-09-18 Raytheon Company Efficient multi-resolution space-time adaptive processor
CN103018727A (zh) * 2011-09-27 2013-04-03 中国科学院电子学研究所 一种基于样本训练的机载雷达非平稳杂波抑制方法
CN103399303A (zh) * 2013-07-22 2013-11-20 西安电子科技大学 机载雷达抗密集转发式欺骗干扰方法与系统
CN104237883A (zh) * 2014-09-15 2014-12-24 西安电子科技大学 一种采用稀疏表示的机载雷达空时自适应处理方法
CN105487054A (zh) * 2015-11-09 2016-04-13 大连大学 提高基于mimo-ofdm雷达stap最差检测性能的稳健波形设计方法

Also Published As

Publication number Publication date
CN107167782A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN104749553B (zh) 基于快速稀疏贝叶斯学习的波达方向角估计方法
CN110531313B (zh) 一种基于深度神经网络回归模型的近场信号源定位方法
CN107167783B (zh) 一种共形阵列杂波协方差矩阵的稀疏重构方法
Zhang et al. A method for finding best channels in beam-space post-Doppler reduced-dimension STAP
CN109298383B (zh) 一种基于变分贝叶斯推断的互质阵波达方向角估计方法
CN108303683B (zh) 单基地mimo雷达实值esprit非圆信号角度估计方法
CN106646344A (zh) 一种利用互质阵的波达方向估计方法
CN109765521B (zh) 一种基于子阵划分的波束域成像方法
CN104950296B (zh) 基于重加权自适应功率剩余的稳健非均匀检测方法
CN106855618A (zh) 基于广义内积任意阵列下的干扰样本剔除方法
CN110940970A (zh) 一种针对浮油海面的mimo雷达目标检测方法及系统
CN107576947A (zh) 基于时间平滑的l型阵对相干信源二维波达方向估计方法
CN107167782B (zh) 基于信杂噪比最大的雷达三维异构阵稀疏重构方法
CN107064896B (zh) 基于截断修正sl0算法的mimo雷达参数估计方法
CN106680779B (zh) 脉冲噪声下的波束成形方法及装置
CN115453528A (zh) 基于快速sbl算法实现分段观测isar高分辨成像方法及装置
CN115236584A (zh) 基于深度学习的米波雷达低仰角估计方法
CN113376606B (zh) 沿杂波脊快速收敛稀疏贝叶斯的杂波抑制方法
CN108828586B (zh) 一种基于波束域的双基地mimo雷达测角优化方法
CN110196417A (zh) 基于发射能量集中的双基地mimo雷达角度估计方法
CN110850421A (zh) 基于混响对称谱的空时自适应处理的水下目标检测方法
CN115656957A (zh) 一种加速迭代收敛的fda-mimo目标参数估计方法
CN110412535B (zh) 一种序贯的空时自适应处理参数估计方法
Pang et al. A STAP method based on atomic norm minimization for transmit beamspace-based airborne MIMO radar
Xiong et al. Space time adaptive processing for airborne MIMO radar based on space time sampling matrix

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant