CN107163654A - 纳米锌复合抗菌材料的制备方法及应用 - Google Patents

纳米锌复合抗菌材料的制备方法及应用 Download PDF

Info

Publication number
CN107163654A
CN107163654A CN201710385436.0A CN201710385436A CN107163654A CN 107163654 A CN107163654 A CN 107163654A CN 201710385436 A CN201710385436 A CN 201710385436A CN 107163654 A CN107163654 A CN 107163654A
Authority
CN
China
Prior art keywords
nano
solution
composite antibacterial
zinc composite
antibacterial material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710385436.0A
Other languages
English (en)
Other versions
CN107163654B (zh
Inventor
刘芳
姜国飞
赵朝成
李旭飞
王永强
刘春爽
孙娟
戴业欣
柴晴雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201710385436.0A priority Critical patent/CN107163654B/zh
Publication of CN107163654A publication Critical patent/CN107163654A/zh
Application granted granted Critical
Publication of CN107163654B publication Critical patent/CN107163654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Materials Engineering (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明提供了一种纳米锌复合抗菌材料的制备方法及应用,属于环境工程领域,尤其涉及抗菌材料领域,制备得到的纳米锌复合抗菌材料杀菌效果好,能够制备得到抗菌涂料。该纳米锌复合抗菌材料的制备方法,具体包括如下步骤:将纳米氧化锌加入到N‑甲基吡咯烷酮中,超声处理,得到溶液Ⅰ;向上述溶液Ⅰ中加入硅烷偶联剂,超声处理,得到溶液Ⅱ;将溶液Ⅱ离心得沉淀,沉淀洗涤,干燥;将干燥后的沉淀与氧化石墨烯混合于N,N‑二甲基乙酰胺溶液中,超声处理,得到溶液Ⅲ;将溶液Ⅲ离心得沉淀,沉淀洗涤,干燥,即得纳米锌复合抗菌材料。

Description

纳米锌复合抗菌材料的制备方法及应用
技术领域
本发明涉及环境工程领域,尤其涉及抗菌材料,具体涉及一种纳米锌复合抗菌材料的制备方法及应用。
背景技术
工业循环冷却水具有温度适宜(30~40℃)、溶解氧含量高等特点,极易导致微生物在冷却水系统中大量繁殖,从而造成输水水质恶化,形成生物粘泥,导致传热效率下降、管道腐蚀、输水管道能耗增加、堵塞冷却设备及输水管道等,使工业企业的正常运行受到威胁。
为控制微生物腐蚀及生物粘泥的形成,目前常用的方法是化学抗菌技术,即在循环冷却水系统中添加化学抗菌剂,如含氯基、季磷盐等抗菌剂。其效果看似比较明显,但是其投资较大、运行费用高、管理难度大,同时改变了水中的化学成分而容易对环境造成二次污染,尤其是添加磷系水处理剂的循环冷却水系统,随着磷的排放会造成水体富营养化,严重影响生态环境。目前,绿色无污染的循环冷却水系统抗菌剂亟需研究。
在具有抗菌潜力的纳米材料中,金属纳米粒子是最具发展潜能的纳米抗菌材料之一。纳米ZnO由于比表面积的增大,使其与周围环境相互作用增强,因此抗菌性能更好,可有效抑制革兰氏阳性菌和革兰氏阴性菌的生长,甚至对耐高温、耐高压的细菌孢子也有抗菌活性。研究表明,氧化锌水溶液中活性氧的含量有所增加,特别是羟基自由基、过氧化氢及单线态氧,这些都与氧化锌的抗菌性能相关,特别是过氧化氢。
基于纳米氧化锌的广谱抗菌性能及其安全性,如果将其与其它纳米材料制备成复合物,可能更有利于其获得更好的抗菌性能并拓展其应用领域。氧化石墨烯(GrapheneOxide,GO)是通过剥离氧化石墨的方法得到的一种层状纳米材料,通常是将石墨与强氧化剂(如硫酸、硝酸和高锰酸钾等)进行反应得到的。由于氧化石墨烯易于吸附无机纳米粒子的特性,可将纳米氧化锌颗粒负载其上。但是,现有的氧化石墨烯纳米氧化锌复合物的杀菌效率低,不能够在较低用量下达到较高的杀菌效果,用于冷却水系统的过程中,成本较高且杀菌效果并不理想。
发明内容
本发明的目的在于提供一种纳米锌复合抗菌材料的制备方法及应用,杀菌效果好,能够制备得到抗菌涂料用于循环冷却水系统,涂于循环冷却水系统管壁后,能够有效的杀死循环水中的微生物,用量少,杀菌率高且成本较低。
本发明的一方面提供了纳米锌复合抗菌材料的制备方法,具体包括如下步骤:
将纳米氧化锌加入到N-甲基吡咯烷酮中,超声处理,得到溶液Ⅰ;
向上述溶液Ⅰ中加入硅烷偶联剂,超声处理,得到溶液Ⅱ;
将溶液Ⅱ离心得沉淀,沉淀洗涤,干燥;
将上述干燥后的沉淀与氧化石墨烯混合于N,N-二甲基乙酰胺溶液中,超声处理,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀洗涤,干燥,即得纳米锌复合抗菌材料。
作为优选技术方案,所述纳米氧化锌与N-甲基吡咯烷酮的质量体积比为1:10-30g/ml;所述纳米氧化锌与硅烷偶联剂的质量体积比为1:15-25g/ml。
作为优选技术方案,所述干燥后的沉淀与氧化石墨烯的质量比为1.5-3:1,所述干燥后的沉淀与氧化石墨烯的总质量与N,N-二甲基乙酰胺溶液的体积比为:1:50-100g/mL。
作为可选技术方案,所述沉淀洗涤为用无水乙醇洗涤3-5次,所述干燥为烘箱中干燥24-48h。
作为可选技术方案,溶液Ⅰ经超声处理0.5-1.5h后得到;溶液Ⅱ经超声处理1-3h后得到;溶液Ⅲ经超声处理3-5h后得到,且溶液Ⅲ超声温度≤60℃。
本发明的另一方面提供了上述纳米锌复合抗菌材料的制备方法制备得到的纳米锌复合抗菌材料。
本发明的再一方面提供了利用上述纳米锌复合抗菌材料制备抗菌涂料的方法,包括如下步骤:将纳米锌复合抗菌材料加入到水性聚氨酯中,搅拌;加入助剂,超声处理,即得抗菌涂料。
作为优选技术方案,所述纳米锌复合抗菌材料与水性聚氨酯的质量比为1:37.5~100;所述助剂为水、润湿剂、消泡剂、蜡乳液中的一种或多种;所述超声处理过程为:超声期间每隔30min将溶液搅拌5min,超声温度≤35℃。
本发明的又一方面提供了上述抗菌涂料在循环冷却水系统中的应用。
作为优选技术方案,所述抗菌涂料作为循环冷却水系统的抗菌剂涂覆于循环冷却水系统的管壁。
与现有技术相比,本发明的优点和积极效果在于:
1、本发明的纳米锌复合抗菌材料的制备过程中将氧化锌功能化后与氧化石墨烯复合,得到的纳米锌复合抗菌材料抗菌性能良好,低浓度下杀菌率高,显著提高了材料的抗菌性能;
2、本发明的纳米锌复合抗菌材料制备得到的复合抗菌涂料,与常规抗菌涂料相比,制备方法简便、无毒无污染,属于环境友好型抗菌涂料;
3、本发明的纳米锌复合抗菌材料制备得到的复合抗菌涂料涂于循环冷却水系统管壁后,可以显著减缓碳钢管壁受循环冷却水的腐蚀,抗菌周期长,稳定性能好。
附图说明
图1为本发明实施例的氧化石墨烯在纳米锌复合抗菌材料中的质量比对纳米锌复合抗菌材料杀菌率影响图;
图2为纳米氧化锌、氧化石墨烯、实施例1的纳米锌复合抗菌材料、对比例1的纳米锌复合抗菌材料杀菌率对比图;
图3为纳米锌复合抗菌材料在抗菌涂料中的添加量对抗菌涂料杀菌率影响图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一实施例提供了一种纳米锌复合抗菌材料的制备方法,具体包括如下步骤:
S1:将纳米氧化锌加入到N-甲基吡咯烷酮中,超声处理,得到溶液Ⅰ。
本步骤中,N-甲基吡咯烷酮为极性溶剂,将纳米氧化锌采用N-甲基吡咯烷酮溶解后能够使得纳米锌进行高度分散,超声处理保证了纳米氧化锌的分散效果,为下一步活化做准备。
S2:向上述溶液Ⅰ中加入硅烷偶联剂,超声处理,得到溶液Ⅱ。
本步骤中,硅烷偶联剂的加入可以将纳米氧化锌功能化得到功能化的纳米氧化锌,使得纳米氧化锌的活性更高,利于与石墨烯的复合时保持高度的杀菌活性。
S3:将溶液Ⅱ离心得沉淀,沉淀洗涤,干燥。
本步骤可以将功能化的纳米氧化锌进行分离,洗涤沉淀可洗去多余的溶剂等获得的纯化的粉末。
S4:将上述干燥后的沉淀与氧化石墨烯混合于N,N-二甲基乙酰胺溶液中,超声处理,得到溶液Ⅲ。
本步骤中,功能化的纳米氧化锌与氧化石墨烯在溶剂中复合,超声处理利于纳米抗菌材料的形成,能够保证材料的杀菌活性。
S5:将溶液Ⅲ离心得沉淀,沉淀洗涤,干燥,即得纳米锌复合抗菌材料。
本步骤将多余的溶剂除去后,洗涤可以获得纯化的纳米锌复合抗菌材料。
在本发明的一优选实施例中,纳米氧化锌与N-甲基吡咯烷酮的质量体积比为1:10-30g/ml;所述纳米氧化锌与硅烷偶联剂的质量体积比为1:15-25g/ml。本实施例中给出了纳米氧化锌与N-甲基吡咯烷酮和硅烷偶联剂的质量体积比。可以理解的是,为能够充分的分散纳米氧化锌,N-甲基吡咯烷酮的用量不宜太少,但同时避免浪费溶剂,本实施例中给出的纳米氧化锌与N-甲基吡咯烷酮的质量体积比为1:10-30g/ml,在该范围内的任一比例均可,例如1:13,1:16,1:19,1:22,1:24,1:26,1:28等。
对于硅烷偶联剂,可以理解的是,本领域常用的硅烷偶联剂种类均可用在上述步骤中,优选的硅烷偶联剂KH-550是比较优选的硅烷偶联剂产品。硅烷偶联剂作为纳米氧化锌的改性活化剂,如果用量太少,会导致纳米氧化锌改性不充分,如果用量太多造成溶剂浪费的同时会导致且溶液会变粘,不利与产物的分离,因此,纳米氧化锌与硅烷偶联剂的质量体积比为1:15-25g/ml,在上述范围内可以任意取值,例如1:16,1:18,1:20,1:22,1:24等。
在本发明的一优选实施例中,干燥后的沉淀与氧化石墨烯的质量比为1.5-3:1,干燥后的沉淀与氧化石墨烯的总质量与N,N-二甲基乙酰胺溶液的体积比为:1:50-100g/mL。本实施例中,干燥后的沉淀为功能化的纳米氧化锌,其与氧化石墨烯的上述比例可以保证氧化石墨烯的负载,保证负载后的材料具备杀菌活性,具体的,干燥后的沉淀与氧化石墨烯的比例可以为上述范围内的任一比例,例如1.6:1,1.8:1,2:1,2.2:1,2.4:1,2.6:1,2.8:1等。对于N,N-二甲基乙酰胺作为溶剂,为避免过少影响负载反应,过多提高成本,干燥后的沉淀与氧化石墨烯的总质量与N,N-二甲基乙酰胺溶液的体积比为:1:50-100g/mL,具体的,上述质量体积比可以为1:50,1:55,1:60,1:65,1:70,1:75,1:80,1:85,1:90,1:95,1:100等。
在本发明的一可选实施例中,沉淀的洗涤采用无水乙醇洗涤,无水乙醇洗涤的次数为3-5次,所述干燥为烘箱中干燥24-48h,具体的,烘干温度为60-80℃。但是可以理解的是,上述洗涤次数与烘干的时间、温度等可以根据产物的纯化和干燥程度进行相应的调整。
在本发明的一可选实施例中,溶液Ⅰ经超声处理0.5-1.5h后得到;溶液Ⅱ经超声处理1-3h后得到;溶液Ⅲ经超声处理3-5h后得到,且溶液Ⅲ超声温度≤60℃。上述超声处理的时间能够保证反应的充分进行,溶液Ⅲ超声温度≤60℃能够保证氧化石墨烯对纳米氧化锌的负载,但是可以理解的是,上述超声处理的时间可以根据反应的状态进行调整。
本发明的另一实施例提供了上述制备方法制备得到的纳米锌复合抗菌材料,该抗菌材料能够高效杀菌。
本发明的再一实施例提供了利用上述纳米锌复合抗菌材料制备抗菌涂料的方法,包括如下步骤:将纳米锌复合抗菌材料加入到水性聚氨酯中,搅拌;加入助剂,超声处理,即得抗菌涂料。本实施例中,纳米锌复合抗菌材料与水性聚氨酯充分混合,超声均匀处理,能够使得抗菌材料有效分散,水性聚氨酯作为载体,能够承载并利于发挥抗菌涂料的抗菌作用,
在本发明的一优选实施例中,纳米锌复合抗菌材料与水性聚氨酯的质量比为1:37.5-100;助剂为水、润湿剂、消泡剂、蜡乳液中的一种或多种;超声处理过程为:超声期间每隔30min将溶液搅拌5min,超声温度≤35℃。在本实施例中,聚氨酯的含量过高,抗菌材料的抗菌性能发挥不好,聚氨酯的含量过少,导致涂料的性能不符合涂料的要求,优选的,纳米锌复合抗菌材料与水性聚氨酯的比例可以为上述范围内的任意数值,例如可以为1:40,1:50,1:60,1:70,1:80,1:90等。可以理解的是,上述助剂为优选的涂料助剂,但是其他构成涂料的助剂也可用于上述涂料的制备中。本实施例中超声处理间隔搅拌可以保证涂料中抗菌材料的分散程度,低温下制备保证了涂料的抗菌性能。
本发明的又一实施例提供了上述抗菌涂料在循环冷却水系统中的应用。在本实施例中,抗菌涂料作为循环冷却水系统的抗菌剂涂覆于循环冷却水系统的管壁,从而对循环冷却水系统进行杀菌,但是可以理解的是,本实施例并不局限于此,其它可以对循环冷却水系统进行杀菌的实施方式也是可行的。
为了更清楚详细地介绍本发明实施例所提供的纳米锌复合抗菌材料以及抗菌涂料的制备方法,以下将结合具体实施例进行说明。
实施例1
纳米锌复合抗菌材料的制备:
将2g纳米氧化锌加入到40ml的N-甲基吡咯烷酮中,超声处理1h,得到溶液Ⅰ;
向上述溶液Ⅰ中加入40ml硅烷偶联剂KH-550,超声处理2h,得到溶液Ⅱ;
将溶液Ⅱ离心得沉淀,沉淀用无水乙醇洗涤3-5次后置于烘箱中干燥24-48h;
将1.8g干燥后的沉淀与1g氧化石墨烯混合于210ml的N,N-二甲基乙酰胺溶液中,超声处理4h且超声温度≤60℃,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀用无水乙醇洗涤3-5次后烘箱中干燥24-48h,即得纳米锌复合抗菌材料。
抗菌涂料的制备:
将1g上述纳米锌复合抗菌材料加入到50g水性聚氨酯中,搅拌;加入适量消泡剂和蜡乳液,超声处理6h,超声期间每隔30min将溶液剧烈搅拌5min,超声温度≤35℃,即得抗菌涂料。
实施例2
纳米锌复合抗菌材料的制备:
将1g纳米氧化锌加入到20ml的N-甲基吡咯烷酮中,超声处理1h,得到溶液Ⅰ;
向上述溶液Ⅰ中加入18ml硅烷偶联剂KH-550,超声处理2h,得到溶液Ⅱ;
将溶液Ⅱ离心得沉淀,沉淀用无水乙醇洗涤3-5次后置于烘箱中干燥24-48h;
将2.5g干燥后的沉淀与1g氧化石墨烯混合于280ml的N,N-二甲基乙酰胺溶液中,超声处理4h且超声温度≤60℃,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀用无水乙醇洗涤3-5次后烘箱中干燥24-48h,即得纳米锌复合抗菌材料。
抗菌涂料的制备:
将1g上述纳米锌复合抗菌材料加入到70g水性聚氨酯中,搅拌;加入适量消泡剂和蜡乳液,超声处理6h,超声期间每隔30min将溶液剧烈搅拌5min,超声温度≤35℃,即得抗菌涂料。
实施例3
纳米锌复合抗菌材料的制备:
将2g纳米氧化锌加入到20ml的N-甲基吡咯烷酮中,超声处理1h,得到溶液Ⅰ;
向上述溶液Ⅰ中加入30ml硅烷偶联剂,超声处理2h,得到溶液Ⅱ;
将溶液Ⅱ离心得沉淀,沉淀用无水乙醇洗涤3-5次后置于烘箱中干燥24-48h;
将1.5g干燥后的沉淀与1g氧化石墨烯混合于125ml的N,N-二甲基乙酰胺溶液中,超声处理4h且超声温度≤60℃,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀用无水乙醇洗涤3-5次后烘箱中干燥24-48h,即得纳米锌复合抗菌材料。
抗菌涂料的制备:
将1g上述纳米锌复合抗菌材料加入到37.5g水性聚氨酯中,搅拌;加入适量消泡剂和蜡乳液,超声处理6h,超声期间每隔30min将溶液剧烈搅拌5min,超声温度≤35℃,即得抗菌涂料。
实施例4
纳米锌复合抗菌材料的制备:
将2g纳米氧化锌加入到60ml的N-甲基吡咯烷酮中,超声处理1h,得到溶液Ⅰ;
向上述溶液Ⅰ中加入50ml硅烷偶联剂,超声处理2h,得到溶液Ⅱ;
将溶液Ⅱ离心得沉淀,沉淀用无水乙醇洗涤3-5次后置于烘箱中干燥24-48h;
将3g干燥后的沉淀与1g氧化石墨烯混合于400ml的N,N-二甲基乙酰胺溶液中,超声处理4h且超声温度≤60℃,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀用无水乙醇洗涤3-5次后烘箱中干燥24-48h,即得纳米锌复合抗菌材料。
抗菌涂料的制备:
将1g上述纳米锌复合抗菌材料加入到100g水性聚氨酯中,搅拌;加入适量消泡剂和蜡乳液,超声处理6h,超声期间每隔30min将溶液剧烈搅拌5min,超声温度≤35℃,即得抗菌涂料。
对比例
纳米锌复合抗菌材料的制备:
将1.8g纳米氧化锌与1g氧化石墨烯混合于210ml的N,N-二甲基乙酰胺溶液中,超声处理4h且超声温度≤60℃,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀用无水乙醇洗涤3-5次后烘箱中干燥24-48h,即得纳米锌复合抗菌材料。
抗菌涂料的制备:
将1g上述纳米锌复合抗菌材料加入到50g水性聚氨酯中,搅拌;加入适量消泡剂和蜡乳液,超声处理6h,超声期间每隔30min将溶液剧烈搅拌5min,超声温度≤35℃,即得抗菌涂料。
抗菌率对比试验
以某石化炼制企业循环冷却水为目标进行抗菌实验,经菌种鉴定,确定循环水中优势菌种有假单胞菌科、拟杆菌科、腐螺旋菌科、屈挠杆菌科、嗜氢菌科、柄杆菌科、红杆菌科、伯克氏菌科、微球菌科、丙酸杆菌科等。
对于纳米锌复合抗菌材料抗菌性能的测定,将纳米锌复合抗菌材料按照0.2mg/mL的浓度投加到循环冷却水中,混合均匀,2h后采用平板计数法计算细菌浓度。
对于抗菌涂层性能的测定,将涂有涂层的试片浸泡在循环冷却水中,24h后采用平板计数法计算细菌浓度。
抗菌率计算公式:
式中:
η—杀菌率,%;n0—空白菌个数;n—添加材料后菌个数。
试验1:
按照实施例1的纳米锌复合抗菌材料的制备方法,分别测量制备得到的纳米锌复合抗菌材料中,氧化石墨烯的质量分数在15%,20%,25%,30%,35%,40%,45%,50%时的抗菌率,结果参见图1,通过图1可以看出,本发明的纳米锌复合抗菌材料抗菌性能优异,在氧化石墨烯比例为35%时,杀菌率最高。
试验2:
按照实施例1的纳米锌复合抗菌材料的制备方法制备得到的纳米锌复合抗菌材料与对比例1的制备方法制备得到的纳米锌复合抗菌材料进行抗菌率对比,结果如图2所示,通过图2可以看出,本发明的纳米锌复合抗菌材料抗菌性能优于将纳米氧化锌直接负载到氧化石墨烯上得到的抗菌材料。
试验3:
按照实施例1的制备方法制备抗菌涂料,分别测定纳米锌复合抗菌材料占抗菌涂料的质量百分比分别为0.33%,0.67%,1%,1.33%,1.67%,2%,2.33%,2.67%时的抗菌率,结果如图3所示,通过图3可以看出当纳米锌复合抗菌材料占抗菌涂料的质量百分比达到2%时,再增大纳米锌复合抗菌材料的量杀菌率增长已不明显,可将2%确定为饱和含量。
综上,本发明采用先将纳米氧化锌改性后与氧化石墨烯复合的方式,不仅能保证所添加纳米氧化锌的质量,而且能提高复合比;将氧化锌改性,在其结构上引入基团,增大与氧化石墨烯结合的能力,再与氧化石墨烯复合。按照本发明的制备方法所制得氧化锌-氧化石墨烯纳米复合材料,当复合材料浓度为0.2mg/mL时,作用2h杀菌率即可达98.46%。通过本发明的纳米锌复合抗菌材料制备的抗菌涂料杀菌性能优异,纳米锌复合抗菌材料添加量低,降低了成本,稳定性高。

Claims (10)

1.纳米锌复合抗菌材料的制备方法,其特征在于,具体包括如下步骤:
将纳米氧化锌加入到N-甲基吡咯烷酮中,超声处理,得到溶液Ⅰ;
向上述溶液Ⅰ中加入硅烷偶联剂,超声处理,得到溶液Ⅱ;
将溶液Ⅱ离心得沉淀,沉淀洗涤,干燥;
将上述干燥后的沉淀与氧化石墨烯混合于N,N-二甲基乙酰胺溶液中,超声处理,得到溶液Ⅲ;
将溶液Ⅲ离心得沉淀,沉淀洗涤,干燥,即得纳米锌复合抗菌材料。
2.根据权利要求1所述的纳米锌复合抗菌材料的制备方法,其特征在于,所述纳米氧化锌与N-甲基吡咯烷酮的质量体积比为1:10-30g/ml;所述纳米氧化锌与硅烷偶联剂的质量体积比为1:15-25g/ml。
3.根据权利要求1所述的纳米锌复合抗菌材料的制备方法,其特征在于,所述干燥后的沉淀与氧化石墨烯的质量比为1.5-3:1,所述干燥后的沉淀与氧化石墨烯的总质量与N,N-二甲基乙酰胺溶液的体积比为:1:50-100g/mL。
4.根据权利要求1-3任一项所述的纳米锌复合抗菌材料的制备方法,其特征在于,所述沉淀洗涤为用无水乙醇洗涤3-5次;所述干燥为烘箱中干燥24-48h。
5.根据权利要求1-3任一项所述的纳米锌复合抗菌材料的制备方法,其特征在于,溶液Ⅰ经超声处理0.5-1.5h后得到;溶液Ⅱ经超声处理1-3h后得到;溶液Ⅲ经超声处理3-5h后得到,且溶液Ⅲ超声温度≤60℃。
6.权利要求1-5任一项所述的纳米锌复合抗菌材料的制备方法制备得到的纳米锌复合抗菌材料。
7.利用权利要求6所述的纳米锌复合抗菌材料制备抗菌涂料的方法,其特征在于,包括如下步骤:
将纳米锌复合抗菌材料加入到水性聚氨酯中,搅拌;
加入助剂,超声处理,即得抗菌涂料。
8.根据权利要求7所述的制备抗菌涂料的方法,其特征在于,
所述纳米锌复合抗菌材料与水性聚氨酯的质量比为1:37.5-100;
所述助剂为水、润湿剂、消泡剂、蜡乳液中的一种或多种;
所述超声处理过程为:超声期间每隔30min将溶液搅拌5min,超声温度≤35℃。
9.根据权利要求7所述的制备抗菌涂料的方法,其特征在于,上述抗菌涂料用于循环冷却水系统中。
10.根据权利要求9所述的制备抗菌涂料的方法,其特征在于,所述抗菌涂料作为循环冷却水系统的抗菌剂涂覆于循环冷却水系统的管壁。
CN201710385436.0A 2017-05-26 2017-05-26 纳米锌复合抗菌材料的制备方法及应用 Active CN107163654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710385436.0A CN107163654B (zh) 2017-05-26 2017-05-26 纳米锌复合抗菌材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710385436.0A CN107163654B (zh) 2017-05-26 2017-05-26 纳米锌复合抗菌材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN107163654A true CN107163654A (zh) 2017-09-15
CN107163654B CN107163654B (zh) 2019-08-16

Family

ID=59820814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710385436.0A Active CN107163654B (zh) 2017-05-26 2017-05-26 纳米锌复合抗菌材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN107163654B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042809A (zh) * 2018-02-01 2018-05-18 南京林业大学 一种抑菌功能化氧化石墨烯的制备方法
CN109046325A (zh) * 2018-08-08 2018-12-21 沈海红 一种金属元素掺杂纳米氧化锌与氧化石墨烯复合抗菌粉体的制备方法
CN110771627A (zh) * 2019-11-12 2020-02-11 中国石油大学(华东) 磁性复合抗菌材料及其制备方法
CN112471175A (zh) * 2020-12-10 2021-03-12 上海纳米技术及应用国家工程研究中心有限公司 一种抗菌抗病毒材料的制备方法及其产品和应用
CN113026353A (zh) * 2021-04-13 2021-06-25 胡海光 一种纳米涂层布料生产工艺
IT202100004457A1 (it) * 2021-02-25 2022-08-25 Eni Spa Processo per preparare una composizione di rivestimento antimicrobica, composizione di rivestimento antimicrobica e relativo uso per conferire proprietà antimicrobiche alla superficie di un substrato
CN115339172A (zh) * 2022-10-17 2022-11-15 宁波时代铝箔科技股份有限公司 一种抗菌铝箔材料的制备方法、抗菌铝箔、铝箔餐盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730581A (zh) * 2005-09-09 2006-02-08 广东赛特国际集团有限公司 纳米银抗菌水性木器漆及其制备方法
CN104861910A (zh) * 2015-05-20 2015-08-26 北京化工大学 一种石墨烯包覆无机填料环氧树脂复合胶及其制备方法
CN105838211A (zh) * 2016-04-10 2016-08-10 李金平 一种抗菌水性木器涂料
CN105976893A (zh) * 2016-06-22 2016-09-28 中国科学院宁波材料技术与工程研究所 无铅石墨烯/纳米银复合电子银浆及其制备方法
CN106135203A (zh) * 2016-06-23 2016-11-23 温州生物材料与工程研究所 一种石墨烯包裹纳米氧化锌异质结抗菌材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730581A (zh) * 2005-09-09 2006-02-08 广东赛特国际集团有限公司 纳米银抗菌水性木器漆及其制备方法
CN104861910A (zh) * 2015-05-20 2015-08-26 北京化工大学 一种石墨烯包覆无机填料环氧树脂复合胶及其制备方法
CN105838211A (zh) * 2016-04-10 2016-08-10 李金平 一种抗菌水性木器涂料
CN105976893A (zh) * 2016-06-22 2016-09-28 中国科学院宁波材料技术与工程研究所 无铅石墨烯/纳米银复合电子银浆及其制备方法
CN106135203A (zh) * 2016-06-23 2016-11-23 温州生物材料与工程研究所 一种石墨烯包裹纳米氧化锌异质结抗菌材料及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042809A (zh) * 2018-02-01 2018-05-18 南京林业大学 一种抑菌功能化氧化石墨烯的制备方法
CN109046325A (zh) * 2018-08-08 2018-12-21 沈海红 一种金属元素掺杂纳米氧化锌与氧化石墨烯复合抗菌粉体的制备方法
CN110771627A (zh) * 2019-11-12 2020-02-11 中国石油大学(华东) 磁性复合抗菌材料及其制备方法
CN110771627B (zh) * 2019-11-12 2021-04-23 中国石油大学(华东) 磁性复合抗菌材料及其制备方法
CN112471175A (zh) * 2020-12-10 2021-03-12 上海纳米技术及应用国家工程研究中心有限公司 一种抗菌抗病毒材料的制备方法及其产品和应用
IT202100004457A1 (it) * 2021-02-25 2022-08-25 Eni Spa Processo per preparare una composizione di rivestimento antimicrobica, composizione di rivestimento antimicrobica e relativo uso per conferire proprietà antimicrobiche alla superficie di un substrato
WO2022180521A1 (en) * 2021-02-25 2022-09-01 Eni S.P.A. Process for preparing an antimicrobial coating composition, antimicrobial coating composition and use thereof to confer antimicrobial properties to the surface of a substrate
CN113026353A (zh) * 2021-04-13 2021-06-25 胡海光 一种纳米涂层布料生产工艺
CN115339172A (zh) * 2022-10-17 2022-11-15 宁波时代铝箔科技股份有限公司 一种抗菌铝箔材料的制备方法、抗菌铝箔、铝箔餐盒

Also Published As

Publication number Publication date
CN107163654B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN107163654B (zh) 纳米锌复合抗菌材料的制备方法及应用
CN107114407A (zh) 纳米铜锌复合抗菌材料的制备方法及应用
CN103947675A (zh) 磁性氧化石墨烯纳米复合物及其制备方法和应用
CN112960781B (zh) 一种基于生物纳米杂合体系的有机污染物降解方法
CN103214281A (zh) 一种红霉素菌渣化学无害化处理并用于生产有机肥的方法
CN106492714A (zh) 海藻酸钙包裹型纳米铁微球的制备与应用
CN108531038A (zh) 一种耐海水石墨烯改性防腐涂料及其制备方法
CN107012453B (zh) 一种绿色低温快速制备磷化膜的方法
CN105776589A (zh) 一种无磷型绿色环保缓释阻垢剂
CN105502566A (zh) 一种环保污水处理剂及其制备方法
CN107312204B (zh) 用于去除污水有机物的壳聚糖铁钛聚合材料及其制备
CN109603906B (zh) 一种蒽醌-2-磺酸钠/氧化石墨烯复合光催化杀菌剂及其制备方法和应用
CN110771627B (zh) 磁性复合抗菌材料及其制备方法
CN111213675A (zh) 一种水溶性共轭聚噻吩/二硫化钼复合光催化杀菌剂及其制备方法与应用
CN106396136A (zh) 一种应用于工业冷却水系统的阻垢剂及其制备方法
CN108178337B (zh) 一种提高日用化工废水微生物处理效果的激活促进剂
CN105923723A (zh) 一种工业污水处理剂及其制备方法
CN103911606A (zh) 无磷转化膜处理剂及其制备方法
CN106587291B (zh) 一种氧化钇-四氧化三铁复合纳米抑菌材料的制备与应用
CN102513091A (zh) 一种石墨烯自组装纳米钒酸铋光催化剂的制备方法
CN104828959A (zh) 一种复合微生物絮凝剂的制备方法及其使用方法
CN107381863A (zh) 一种降解高含盐有机废水及同步制备氧化铁的方法
CN104858425B (zh) 一种减弱金属纳米颗粒氧化的方法
CN103555637B (zh) 一株反硝化细菌及其培养条件
CN107115850B (zh) 氧化石墨烯-聚苯胺复合物合成的海藻酸钠凝胶球对水体中铅和镉重金属离子的吸附性去除

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant