CN107159900B - 一种铜纳米立方体可控制备的方法 - Google Patents

一种铜纳米立方体可控制备的方法 Download PDF

Info

Publication number
CN107159900B
CN107159900B CN201710327258.6A CN201710327258A CN107159900B CN 107159900 B CN107159900 B CN 107159900B CN 201710327258 A CN201710327258 A CN 201710327258A CN 107159900 B CN107159900 B CN 107159900B
Authority
CN
China
Prior art keywords
copper
reducing agent
nanocube
stirred
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710327258.6A
Other languages
English (en)
Other versions
CN107159900A (zh
Inventor
成汉文
孙瑶馨
陈家辉
宫雨豪
王肖元
廉明政
魏铭仪
罗谨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201710327258.6A priority Critical patent/CN107159900B/zh
Publication of CN107159900A publication Critical patent/CN107159900A/zh
Application granted granted Critical
Publication of CN107159900B publication Critical patent/CN107159900B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种铜纳米立方体可控制备的方法。本发明的铜纳米立方体粒子由铜盐溶液和温和型还原剂在惰性气体保护下先室温搅拌再加热回流反应获得;其中:所述还原剂为丙烯酸钠,室温搅拌时间为36~60小时,回流反应时间为30~60分钟。本发明的方法比种子介导生长合成法少了一些实验步骤带来的复杂性;本发明粒子尺寸、形貌的可控性合成方法为更好地拓展其在更多体系中的应用提供了可行性。

Description

一种铜纳米立方体可控制备的方法
技术领域
本发明涉及纳米材料制备技术领域,具体地说,是一种铜纳米立方体可控制备的方法。
背景技术
纳米粒子自引起研发热情不久人们就发现纳米粒子的尺寸和形状对其金属性质的影响不容忽视,因此纳米粒子如何可控制备成为了持久的热点。可控制备不仅仅是要求能对纳米粒子的尺寸实现可控、还要能够对其形貌(如球体、立方体、多面体、棒状体、甚至空心体等等)和组成(如单一或合金)同样实现可控,也正是这些要求吸引了人们越来越多的关注。
金属铜由于其具有的高导电性和优异的催化性能带来的广泛潜在应用而引起研究者们很大的兴趣。如有研究是先通过铜前体和强还原剂合成铜纳米粒子的种子,再通过生长法,并控制反应条件及剂量,可以从几十个纳米生长到微米级的球体;也有一些研究报道是通过抗坏血酸作为覆盖剂和还原剂在聚乙烯吡咯烷酮体系中合成铜纳米立方体,粒径可为100纳米以下。
发明内容
针对以上技术问题,本发明的目的是提供一种铜纳米立方体可控制备的方法;该方法简单,得到铜纳米粒子的尺寸较均匀。
为了实现上述目的,本发明采用的技术方案为如下。
本发明提供一种铜纳米立方体可控制备的方法,由铜盐溶液和温和型还原剂在惰性气体保护下先室温搅拌再加热回流反应获得铜纳米立方体;其中:所述温和型还原剂为丙烯酸钠,室温搅拌时间为36~60小时,回流反应时间为30~60分钟。
本发明中,铜盐溶液为氯化铜、硝酸铜或者硫酸铜溶液。
本发明中,铜盐和还原剂的摩尔比为1:40~1:60。
本发明中,铜盐和还原剂的摩尔比为1:45~1:55。
本发明中,惰性气体为氮气或者氩气。
本发明中,室温搅拌时间为40~50小时,回流反应时间为40~60分钟。
本发明中,得到的铜纳米立方体平均尺寸在200~600nm之间。
和现有技术相比,本发明的有益效果在于:
(1)本发明采用温和型还原剂进行还原反应,其提供温和还原性可以避免还原过程太剧烈造成的局部粒子急剧增大进而尺寸偏差较大的现象,同时丙烯酸钠又有自聚特性,对于纳米粒子而言提供胶粘剂的作用,在粒子制备后可以形成保护层,对粒子团聚的常见问题有一定抑制作用;
(2)本发明通过控制不同的反应时间并控制不同的反应剂用量,可以实现不同粒径的铜纳米粒子的可控合成。通过常规的扫描电镜表征技术获得其准确形貌及尺寸。这类方法比种子介导生长合成法少了一些实验步骤带来的复杂性。为拓展铜纳米粒子在催化、热传导、微电子等领域的广泛应用的提供新的合成方法。
附图说明
图1为~实施例1的铜纳米立方体电镜图。
具体实施方式
下面结合具体的实施例对本发明的技术方案做进一步的描述,但本发明并不限于下述实施例。
本发明各实施例中所用的各种原料,如无特殊说明,均为市售。
实施例1
铜立方体(468±29纳米)的可控制备及表征:
(1)铜无机盐、还原剂的配制
购买的氯化铜用去离子水配置成8.0×10-4摩尔/升的铜前体溶液;购买的丙烯酸钠用去离子水配置成4.40×10-2摩尔/升的还原剂溶液,前后两者浓度之比约为:1:55,体积比为1:1;
(2)铜纳米粒子的合成过程
在惰性气流下,将铜前体溶液和还原剂溶液在烧瓶中进行搅拌混合50小时,再利用加热装置对上述混合液进行加热至沸腾,之后回流60分钟。在上述时长的反应中,丙烯酸钠提供温和还原性可以避免还原过程太剧烈造成的局部粒子急剧增大进而尺寸偏差较大的现象,同时丙烯酸钠又有自聚特性,对于纳米粒子而言提供胶粘剂的作用,在粒子制备后可以形成保护层,对粒子团聚的常见问题有一定抑制作用,粒子尺寸因搅拌时长及加热时长不同而异。
(3)铜纳米粒子的最终形貌和尺寸
可以通过扫描电镜获得铜纳米粒子的形貌特征主要为立方体,少量仍呈球体,量取立方体的边长,即纳米立方体的常规表观尺寸为468±29纳米,如图1所示。
实施例2
铜立方体(390±33纳米)的可控制备及表征:
(1)铜无机盐、还原剂的配制
氯化铜用去离子水配置成2.4×10-4摩尔/升的铜前体溶液;购买的丙烯酸钠用去离子水配置成1.2×10-2摩尔/升的还原剂溶液,前后两者浓度之比为:1:50,体积比为1:1;
(2)铜纳米粒子的合成过程
在惰性气流下,将铜前体溶液和还原剂溶液在烧瓶中进行搅拌混合47小时,再利用加热装置对上述混合液进行加热至沸腾,之后回流48分钟。粒子尺寸因搅拌时长及加热时长不同而异。
(3)铜纳米粒子的最终形貌和尺寸
可以通过扫描电镜获得铜纳米粒子的形貌特征主要为立方体,少量仍呈球体,量取立方体的边长,即纳米立方体的常规表观尺寸为390±23纳米。
实施例3
铜立方体(~300纳米)的可控制备及表征:
(1)铜无机盐、还原剂的配制
氯化铜用去离子水配置成1.0×10-4摩尔/升的铜前体溶液;丙烯酸钠用去离子水配置成5.0×10-3摩尔/升的还原剂溶液,前后两者浓度之比为:1:50,体积比1:1;
(2)铜纳米粒子的合成过程
在惰性气流下,将铜前体溶液和还原剂溶液在烧瓶中进行搅拌混合42小时,再利用加热装置对上述混合液进行加热至沸腾,之后回流40分钟。粒子尺寸因搅拌时长及加热时长不同而异。
(3)铜纳米粒子的最终形貌和尺寸
可以通过扫描电镜获得铜纳米粒子的形貌特征主要为立方体,少量仍呈球体,量取立方体的边长,即纳米立方体的常规表观尺寸为~300纳米。

Claims (5)

1.一种铜纳米立方体可控制备的方法,其特征在于,由铜盐溶液和温和型的还原剂在惰性气体保护下先室温搅拌再加热回流反应获得铜纳米立方体;其中:所述还原剂为丙烯酸钠,室温搅拌时间为36~60小时,回流反应时间为30~60分钟;铜盐和还原剂的摩尔比为1:40~1:60,得到的铜纳米立方体平均尺寸在200~600nm之间。
2.根据权利要求1所述的方法,其特征在于,铜盐溶液为氯化铜、硝酸铜或者硫酸铜溶液。
3.根据权利要求1所述的方法,其特征在于,铜盐和还原剂的摩尔比为1:45~1:55。
4.根据权利要求1所述的方法,其特征在于,惰性气体为氮气或者氩气。
5.根据权利要求1所述的方法,其特征在于,室温搅拌时间为40~50小时,回流反应时间为40~60分钟。
CN201710327258.6A 2017-05-10 2017-05-10 一种铜纳米立方体可控制备的方法 Expired - Fee Related CN107159900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710327258.6A CN107159900B (zh) 2017-05-10 2017-05-10 一种铜纳米立方体可控制备的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710327258.6A CN107159900B (zh) 2017-05-10 2017-05-10 一种铜纳米立方体可控制备的方法

Publications (2)

Publication Number Publication Date
CN107159900A CN107159900A (zh) 2017-09-15
CN107159900B true CN107159900B (zh) 2019-05-28

Family

ID=59812788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710327258.6A Expired - Fee Related CN107159900B (zh) 2017-05-10 2017-05-10 一种铜纳米立方体可控制备的方法

Country Status (1)

Country Link
CN (1) CN107159900B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108213456B (zh) * 2017-12-08 2021-06-15 北京有色金属研究总院 一种立方体纳米铜粉的制备方法
US11253920B2 (en) * 2019-07-29 2022-02-22 Honda Motor Co., Ltd. Method for preparation of copper nanocubes utilizing tributylphosphine as a ligand
CN113996802B (zh) * 2021-11-02 2024-08-13 太原工业学院 一种立方体铜纳米粒子的制备方法
CN114951682B (zh) * 2022-05-27 2023-06-27 郑州大学 一种通过晶面调控制备Cu纳米方块的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803352A (zh) * 2005-09-29 2006-07-19 江苏大学 一种制备纳米铜的方法
CN102837004A (zh) * 2012-09-25 2012-12-26 吉林大学 多面体铜纳米颗粒的制备方法
CN103100723A (zh) * 2013-02-05 2013-05-15 中北大学 一种可控制备金属铜纳米材料的水热制备法
KR20160052160A (ko) * 2014-11-04 2016-05-12 주식회사 엘지화학 태양전지 광흡수층 제조용 ci(g)s 나노 입자의 제조방법 및 이 방법에 의해 제조된 ci(g)s 나노 입자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803352A (zh) * 2005-09-29 2006-07-19 江苏大学 一种制备纳米铜的方法
CN102837004A (zh) * 2012-09-25 2012-12-26 吉林大学 多面体铜纳米颗粒的制备方法
CN103100723A (zh) * 2013-02-05 2013-05-15 中北大学 一种可控制备金属铜纳米材料的水热制备法
KR20160052160A (ko) * 2014-11-04 2016-05-12 주식회사 엘지화학 태양전지 광흡수층 제조용 ci(g)s 나노 입자의 제조방법 및 이 방법에 의해 제조된 ci(g)s 나노 입자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚甲基丙烯酸钠辅助的金纳米颗粒的绿色制备;邢瑞敏等;《化学研究》;20161130;第27卷(第6期);第701-703页

Also Published As

Publication number Publication date
CN107159900A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107159900B (zh) 一种铜纳米立方体可控制备的方法
CN104551012B (zh) 一种用于制备金纳米粒子的晶种生长法
KR100873176B1 (ko) 할로겐 이온을 이용한 다양한 결정형의 금 나노입자의합성방법
CN108817414B (zh) 一种离子液体水溶液中金纳米花的制备方法
CN105397103A (zh) 一种纳米银/石墨烯复合材料及其制备方法
TWI665036B (zh) 銀顆粒及其製備方法及用途
Srivastava et al. Magnetic nanoparticles: a review on stratagems of fabrication an d its biomedical applications
CN109423637A (zh) 一种高导电材料的制备方法
US10016745B2 (en) Multifunctional nanomaterials and methods of photothermal heating and catalysis using the same
Fodjo et al. Selective synthesis of Fe 3 O 4 Au x Ag y nanomaterials and their potential applications in catalysis and nanomedicine
US20130136696A1 (en) Metallic nanoparticles with coated shells and applications of same
Heydaryan et al. Tuning specific loss power of CoFe2O4 nanoparticles by changing surfactant concentration in a combined co-precipitation and thermal decomposition method
Guo et al. Synthesis of gadolinium-based Bi2S3 nanoparticles as cancer theranostics for dual-modality computed tomography/magnetic resonance imaging-guided photothermal therapy
CN102825261A (zh) 一种二元等离子纳米粒子位点特异性自组装的方法
CN105504310A (zh) 聚(n-异丙基丙烯酰胺)/四氧化三铁水凝胶制备方法
CN115488348B (zh) 一种具有藤蔓状结构的金属纳米粉及其制备方法和应用
TW201138827A (en) Core-shell metal nanoparticles and method for manufacturing the same
Ma et al. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance
Liu et al. Sonication-assisted synthesis of multi-functional gold nanorod/silica core–shell nanostructures
CN108326320A (zh) 一种制备金铜合金纳米粒子的方法
Li et al. Using magnetic and photic stimuli-responsive liposomes to serve up chemotherapy drugs to cancer cells
WO2014127370A1 (en) Method and composition for dispersions of gold nanoparticles
CN110576191B (zh) 疏水相中制备具有削角双锥形貌特征的铜镍合金纳米材料的方法
CN103623406A (zh) 一种具有双加热功能的纳米磁粒及制备方法
KR101541406B1 (ko) 침상의 금속이 코팅된 자성 초입자 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190528