CN107121641A - 一种基于粒子群优化的电池状态估计方法 - Google Patents
一种基于粒子群优化的电池状态估计方法 Download PDFInfo
- Publication number
- CN107121641A CN107121641A CN201710342878.7A CN201710342878A CN107121641A CN 107121641 A CN107121641 A CN 107121641A CN 201710342878 A CN201710342878 A CN 201710342878A CN 107121641 A CN107121641 A CN 107121641A
- Authority
- CN
- China
- Prior art keywords
- particle
- mrow
- state
- msub
- population
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000005070 sampling Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 abstract description 13
- 238000005457 optimization Methods 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 description 11
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710342878.7A CN107121641B (zh) | 2017-05-16 | 2017-05-16 | 一种基于粒子群优化的电池状态估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710342878.7A CN107121641B (zh) | 2017-05-16 | 2017-05-16 | 一种基于粒子群优化的电池状态估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107121641A true CN107121641A (zh) | 2017-09-01 |
CN107121641B CN107121641B (zh) | 2019-08-13 |
Family
ID=59727618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710342878.7A Active CN107121641B (zh) | 2017-05-16 | 2017-05-16 | 一种基于粒子群优化的电池状态估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107121641B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108460451A (zh) * | 2018-02-12 | 2018-08-28 | 北京新能源汽车股份有限公司 | 基于粒子群算法优化电池荷电状态估算用关键参数的方法及装置 |
CN109031142A (zh) * | 2018-07-19 | 2018-12-18 | 电子科技大学 | 一种基于分段线性插值的二次电池模型及状态估计方法 |
CN110954832A (zh) * | 2019-12-19 | 2020-04-03 | 北京交通大学 | 一种识别老化模式的锂离子电池健康状态在线诊断方法 |
CN111537887A (zh) * | 2020-04-27 | 2020-08-14 | 南京航空航天大学 | 考虑迟滞特性的混合动力系统电池开路电压模型优化方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000224711A (ja) * | 1999-02-01 | 2000-08-11 | Mitsubishi Motors Corp | ハイブリッド型車両 |
CN103424712A (zh) * | 2013-08-16 | 2013-12-04 | 江苏欧力特能源科技有限公司 | 基于粒子群优化的电池剩余容量在线测量方法 |
CN104408257A (zh) * | 2014-11-28 | 2015-03-11 | 江苏大学 | 基于模拟退火粒子群算法的混合动力汽车参数优化方法 |
CN106338695A (zh) * | 2016-10-09 | 2017-01-18 | 深圳市沃特玛电池有限公司 | 一种基于粒子群算法的电池模型参数辨识方法 |
-
2017
- 2017-05-16 CN CN201710342878.7A patent/CN107121641B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000224711A (ja) * | 1999-02-01 | 2000-08-11 | Mitsubishi Motors Corp | ハイブリッド型車両 |
CN103424712A (zh) * | 2013-08-16 | 2013-12-04 | 江苏欧力特能源科技有限公司 | 基于粒子群优化的电池剩余容量在线测量方法 |
CN104408257A (zh) * | 2014-11-28 | 2015-03-11 | 江苏大学 | 基于模拟退火粒子群算法的混合动力汽车参数优化方法 |
CN106338695A (zh) * | 2016-10-09 | 2017-01-18 | 深圳市沃特玛电池有限公司 | 一种基于粒子群算法的电池模型参数辨识方法 |
Non-Patent Citations (2)
Title |
---|
BING LONG ET AL.: "An improved autoregressive model by particle swarm optimization for prognostics", 《MICROELECTRONICS RELIABILITY》 * |
皮钒等: "基于扩展PSO 和离散PI观测器的电池SoC 计", 《电子测量与仪器学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108460451A (zh) * | 2018-02-12 | 2018-08-28 | 北京新能源汽车股份有限公司 | 基于粒子群算法优化电池荷电状态估算用关键参数的方法及装置 |
CN109031142A (zh) * | 2018-07-19 | 2018-12-18 | 电子科技大学 | 一种基于分段线性插值的二次电池模型及状态估计方法 |
CN109031142B (zh) * | 2018-07-19 | 2020-09-25 | 电子科技大学 | 一种基于分段线性插值的二次电池模型及状态估计方法 |
CN110954832A (zh) * | 2019-12-19 | 2020-04-03 | 北京交通大学 | 一种识别老化模式的锂离子电池健康状态在线诊断方法 |
CN111537887A (zh) * | 2020-04-27 | 2020-08-14 | 南京航空航天大学 | 考虑迟滞特性的混合动力系统电池开路电压模型优化方法 |
CN111537887B (zh) * | 2020-04-27 | 2021-10-01 | 南京航空航天大学 | 考虑迟滞特性的混合动力系统电池开路电压模型优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107121641B (zh) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110441694B (zh) | 基于多重渐消因子卡尔曼滤波锂电池荷电状态估计方法 | |
WO2021197038A1 (zh) | 确定电池荷电状态的方法及装置,电池管理系统 | |
CN104535932B (zh) | 一种锂离子电池荷电状态估计方法 | |
Meng et al. | Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine | |
CN103270668B (zh) | 为电池快速充电的设备和方法 | |
CN107121641B (zh) | 一种基于粒子群优化的电池状态估计方法 | |
CN105717460B (zh) | 一种基于非线性观测器的动力电池soc估计方法和系统 | |
KR102553031B1 (ko) | 배터리의 상태 추정 장치 및 방법 | |
CN110596593A (zh) | 基于智能自适应扩展卡尔曼滤波的锂离子电池soc估计方法 | |
CN110632528B (zh) | 一种基于内阻检测的锂电池soh估算方法 | |
CN108594135A (zh) | 一种用于锂电池均衡充放电控制的soc估算方法 | |
CN111722118B (zh) | 一种基于soc-ocv优化曲线的锂离子电池soc估计方法 | |
CN108872870A (zh) | 一种基于粒子群优化扩展卡尔曼滤波算法的锂电池soc估算方法 | |
CN105333879B (zh) | 同步定位与地图构建方法 | |
CN106154168B (zh) | 数据驱动的动力电池荷电状态估计方法 | |
CN111426956B (zh) | 考虑温度及迟滞效应的分数阶动力电池soc估算方法 | |
CN107110915A (zh) | 电池组的电池单元的充电状态的自动估计方法 | |
CN104813181B (zh) | 参数推断装置、参数推断方法、蓄电系统 | |
CN107110916A (zh) | 电池组的电池单元的充电状态的自动估计方法 | |
CN110196395B (zh) | 蓄电池soc估算方法 | |
CN112098849A (zh) | 基于求积分卡尔曼滤波的锂电池剩余电量估计方法 | |
CN111060822B (zh) | 一种基于模型切换及融合的荷电状态估计方法 | |
CN110554320A (zh) | 锂离子电池的soc估算方法 | |
CN108829911A (zh) | 一种开路电压与soc函数关系优化方法 | |
CN108872865B (zh) | 一种防滤波发散的锂电池soc估算方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240220 Address after: 610000 Chengdu Future Science and Technology City, Chengdu, Sichuan Province (No. 1-2, Group 8, Dingshui Village, Futian Street, Eastern New Area) Patentee after: Sichuan Angao Special Electric Technology Co.,Ltd. Country or region after: China Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan) Patentee before: University of Electronic Science and Technology of China Country or region before: China |
|
TR01 | Transfer of patent right |