CN107108814B - 用于聚合物配混物的3d印刷的支撑材料 - Google Patents

用于聚合物配混物的3d印刷的支撑材料 Download PDF

Info

Publication number
CN107108814B
CN107108814B CN201680005485.0A CN201680005485A CN107108814B CN 107108814 B CN107108814 B CN 107108814B CN 201680005485 A CN201680005485 A CN 201680005485A CN 107108814 B CN107108814 B CN 107108814B
Authority
CN
China
Prior art keywords
bracket
cyclic olefin
copolymer
fluorescent dye
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201680005485.0A
Other languages
English (en)
Other versions
CN107108814A (zh
Inventor
R·W·阿瓦基扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avin Co ltd
Original Assignee
Polyone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyone Corp filed Critical Polyone Corp
Publication of CN107108814A publication Critical patent/CN107108814A/zh
Application granted granted Critical
Publication of CN107108814B publication Critical patent/CN107108814B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/04Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

环状烯烃共聚物(COC)和环状烯烃聚合物(COP)用作用于高温聚合物(例如,聚酰亚胺)的3D印刷的支撑材料。

Description

用于聚合物配混物的3D印刷的支撑材料
优先权要求
本申请要求于2015年1月12日提交的美国临时专利申请系列号62/102,198(代理人案卷号12015001)的优先权,该文通过引用纳入本文。
发明领域
本发明涉及用于支撑通过3D印刷(或者已知为“熔融沉积成型(Fused DepositionModeling)”或“增材制造(additive manufacturing)”)制造的聚合物制品的某聚合材料。
发明背景
聚合物配混物直接成为所期望的三维形状的3D印刷使用热塑性材料(“构建材料”),在构建材料各层沉积期间其有时是自支承的。然而,经常由于所期望的最终三维形状的错综复杂,尽管在构建建造期间使用支架且在建造完成后移除支架,但构建材料在形成期间仍需要支撑。支撑材料需要由与构建材料不同的热塑性材料制造,并且用于在建造的同时保持构建材料的三维完整性,直至构建材料进行充分冷却对制品进行自支承。在冷却至环境温度后,支撑材料的支架随后从构建材料去除,所述构建材料现在坚固且以其最终三维形状自支承。
以前,聚合支撑材料基于其在某些溶剂(水溶剂或有机溶剂)中的溶解度进行选择,以在它的最终三维形状中将支撑材料溶解离开构建材料。找寻构建材料不溶解于其中但支撑材料溶解于其中的合适溶剂是限制两种材料类型选择的一个问题。而且,使用后溶剂的处理是另一个问题。
发明概述
本申请所描述的是支撑材料,其具有足够的熔体强度以在通过3D印刷建造期间支撑构建材料,但是由于支撑材料缺乏对构建材料的粘附性和/或由于构建材料和支撑材料之间热膨胀系数(CTE)性能差异,所述支撑材料在室温下从构建材料上“脱离”。
此外,支撑材料需要具有合适的流变性,以使得支撑材料具有与构建材料类似的粘度与剪切速率,而且具有足够的熔体强度以使得其支撑构建材料,并且在通过3D印刷建造期间不会从支撑材料上简单流走。
找寻合适材料作为聚醚酰亚胺和聚醚酰亚胺/聚碳酸酯混合物的3D印刷的支撑材料,取决于在聚醚酰亚胺和聚醚酰亚胺/聚碳酸酯混合物加工的相同温度下具有合适粘度与剪切速率的聚合物,这是一种限制。但是,该限制仅对于建造支架用于支撑构建材料而言是重要的。一个不同的限制是在3D印刷完成后,支撑材料必须能够容易且完全与这些构建材料脱粘。
对于支撑材料的其它考虑是它们必须具有合适的热稳定性,并且随着它们流动并一层叠一层构建为最终三维形状而不会污染构建材料。
解决这些限制和考虑,已经发现环状烯烃共聚物(COC)和环状烯烃聚合物(COP)满足如上所述要求,以用作支撑材料,用于聚醚酰亚胺和聚醚酰亚胺/聚碳酸酯混合物作为构建材料的3D印刷。
COC和COP:(a)都在聚醚酰亚胺(PEI)和聚醚酰亚胺/聚碳酸酯混合物(PEI/CP)加工温度范围具有足够的熔体强度以构建良好的支架,(b)都在室温下具有良好的与PEI或PEI/PC的脱粘性能,并且(c)如果需要都可以进行抗冲改性,以使得当3D印刷使用从线轴输送支撑材料线的机器时,具有足够的延展性用于缠绕。
另外,COC和COP本身是透明的,且因此可以进行着色、或呈现荧光、或通过其它标记物(不透射线、近红外颜料、金属等)进行识别,以在该从构建材料去除所有支撑材料时帮助区分支撑材料和构建材料。
COC和COP以各种分子量进行销售,并因此具有稳健的产品范围,以提供合适用于与PEI或PEI/PC或其它所期望的聚合构建材料一同使用的熔融粘度。
这些聚合物还是热稳定的,且不容易解聚。
此外,使用COC或COP作为支撑材料建立了支撑材料从构建材料脱粘的机理,其并不依赖于添加剂例如硅酮,所述添加剂能够致使构建材料不合适于随后的粘合剂粘合或涂布。
具体实施方式
支撑材料
环状烯烃共聚物(COC)是指环状烯烃单体(如降冰片烯和/或四环十二碳烯)与乙烯或其它烯烃的共聚物。最常见的COC是乙烯-降冰片烯共聚物,其CAS号为26007-43-2,并具有以下结构:
其中X范围为约40wt%~约20wt%,并且优选25wt%~约18wt%,并且其中,Y范围为约60wt%~约80wt%,并且优选约75wt%~约82wt%。
任意COC是用于在本发明中作为支撑材料的候选,因为由于其用作用于高温热塑性化合物的聚合物树脂,它是市售可得的。
COC的重均分子量(Mw)范围应当为约40,000-约130,000,优选为约93,000-约125,000。COC在0.45MPa(66psi负载)下的热变形温度范围应当为约30℃-约170℃,优选为约75℃-约170℃。
市售可得COC由TOPAS先进聚合物公司(TOPAS Advanced Polymers)使用商标进行销售。在商用可获得级别中,6017S-04COC(注射成型级)是目前优选的,因为在TOPAS产品家族中,它具有最高的热变形温度。其维卡软化温度B50(50℃/小时50N)为178℃,根据使用ISO306的方法进行测试。而且,其透光度为91%,根据使用ISO 13468-2的方法进行测试。其拉伸模量(1mm/分钟)为3000MPa,根据使用ISO 527-2/1A的方法进行测试。
对于COC的其它所需属性是一种具有较低量齐聚物(能够挥发或对构建材料进行增塑)的聚合物以及一种非极性聚合物,以使得支撑材料具有非常小的粘附到构建材料的粘附性,所述构建材料由极性聚合物例如PEI和PEI/PC组成。
环状烯烃聚合物(COP)涉及由各种环状单体开环复分解聚合、随后进行氢化的聚合物。环状单体可以是降冰片烯或四环十二碳烯,与COC一样。
任意COP是用于在本发明中作为支撑材料的候选,因为由于其用作用于高温热塑性化合物的聚合物树脂,它是市售可得的。
COP的重均分子量(Mw)的范围应当为约30,000-约170,000,优选为约45,000-约133,000。COP在0.45MPa(66psi负载)下的热变形温度范围应当为约75℃-约170℃,优选为约120℃-约170℃。
市售可得COP由瑞翁化学株式会社(Zeon Chemical)使用商标进行销售。在商用可获得级别中,1020R或1060R COP级别是目前优选的,因为它们分别具有101℃和99℃的热变形温度,根据使用ASTM D648的方法在1.80MPa条件下进行测试。而且,两者的透光度为92%,根据使用ASTM D1003的方法在3mm厚度条件下进行测试。它们的拉伸模量分别为2200MPa和2100MPa,根据使用ISO 527的方法进行测试。
对于COP的其它所需属性与对于COC的所需属性相同,即,一种具有较低量齐聚物(能够挥发或对构建材料进行增塑)的聚合物以及一种非极性聚合物,以使得支撑材料具有非常小的粘附到构建材料的粘附性,所述构建材料由极性聚合物例如PEI和PEI/PC组成。
支撑材料的可选添加剂
本发明的配混物可包含常规塑料添加剂,其量足以使配混物获得所期望的加工性质或性能。所述量不应造成添加剂的浪费或对配混物的加工或性能有害。热塑性配混领域的技术人员无需过多的实验,仅须参考一些文献,例如来自“塑料设计库”(PlasticsDesign Library)(elsevier.com)的“塑料添加剂数据库”(Plastics Additives Database)(2004),就能够选择许多不同类型的添加剂加入本发明的配混物中。
对于用于3D印刷的支撑材料,可选添加剂的非限制性例子包括:光学增白剂、抗冲改性剂、加工助剂、流变改进剂、热稳定剂和UV稳定剂、荧光染料和非荧光染料及颜料、不透射线示踪剂、传导添加剂(导热和导电)、感应加热添加剂、以及非硅酮脱模剂;以及它们的组合。
加工
在COC或COP聚合物树脂用作3D印刷的支撑材料而不使用可选添加剂的情况下,不需要加工。但是,如果使用可选添加剂,则需要以间歇操作或连续操作,将聚合物树脂加工为聚合物配混物。
以连续工艺进行的混合通常在挤出机中进行,该挤出机的温度升高到足以使聚合物基体熔化,可以在挤出机头部或挤出机中的下游加入固体成分添加剂。挤出机速度范围可为约50-约500转/分钟(rpm),并且优选为约100-约300rpm。通常,将挤出机的输出物制成粒状,供后续挤出或模塑成聚合物制品。
以间歇工艺进行的混合通常在班伯里混炼机中进行,该混炼机的温度也升高到足以使聚合物基体熔化,以便加入固体成分添加剂。混合速度为60-1000rpm,并且混合温度可以为环境温度。同样地,将混炼机的输出物切碎成更小的尺寸,供后续挤出或模塑成聚合物制品。
后续的挤出或模塑技术是热塑性聚合物工程领域的技术人员所熟知的。不需要过多的实验,仅仅需要参考诸如《挤出,权威加工指南和手册》(Extrusion,The DefinitiveProcessing Guide and Handbook);《模塑部件收缩和翘曲手册》(Handbook of MoldedPart Shrinkage and Warpage);《专业模塑技术》(Specialized Molding Techniques);《旋转模塑技术》(Rotational Molding Technology)和《模具、工具和模头修补焊接手册》(Handbook of Mold,Tool and Die Repair Welding)(均由塑料设计资料库出版(elsevier.com))之类的参考文献,本领域技术人员就能使用本发明的配混物制得具有任何想得到的形状和外观的制品。
对于用作支撑材料,聚合物树脂或聚合物配混物从挤出机中涌出为线,线的长度范围为约0.137m(0.25英尺)至约1.82m(6英尺)、优选约0.60~约0.91米(约2英尺~约3英尺)。较长的线能够盘绕在线轴上,用于在3D印刷机中更容易地进行分配。
本发明的实用性
3D印刷是使用聚合物的变形制造操作。3D印刷超越传统的挤出、模塑、成片(sheeting)、压延、以及热成型技术,因为能够在所有三维进行3D印刷以使得在一个操作中形成任何最终形状的聚合物制品。
3D印刷发现了从用于个人的台式机到用于产品研发者的成型机(prototypingmachines)、到形成三维物体的生产机器,所述三维物体难以通过传统的模塑、压延、或其它成型技术进行生产。与提供初步形状、随后通过材料的消减以达到最终形状的其它技术不同,3D印刷真正通过一次操作添加过程(one operation additive process)制造。
每当在三维材料中最终形状本身可能不能自支承时,需要使用支撑材料。将支撑材料与构建材料同时输送到3D打印机。与脱蜡金属铸造工艺非常相似,随后将支撑材料去除,使得构建材料保留其最终形状。如上所述,去除方法通常已经解决(salvation)。
每当待3D印刷的聚合物含有高温聚合物例如聚酰亚胺时,作为聚合物树脂或在聚合物配混物中的COC或COP可以是非常合适的用于为含有聚酰亚胺的构建材料提供支架的载体材料。热膨胀系数的差异使得支撑材料方便且容易地从现在以其最终形状作为聚合物制品的构建材料上脱粘。
实施例
制造两个配方的支持材料。实施例1为99wt%的TOPAS 6017S COC和1wt%的光学增白剂(来自伊士曼化学公司(Eastman Chemical Company)的EastobriteTMOB-1)。实施例2为96wt%的TOPAS 6017S COC;1wt%的相同光学增白剂;和3wt%的来自克莱顿公司(Kraton)的Kraton G1651苯乙烯嵌段共聚物,作为抗冲改性剂。
两个实施例都使用热电公司(Thermo Electron)的40:1L/D的16mm双螺杆挤出机,所述挤出机设定为270~280℃和300rpm(转/分钟)、且具有56~65%的扭矩。挤出物进行制粒。
然后,两个实施例的颗粒用1.6mm的挠曲测试棒模具,使用120T(吨)Van Dorn模塑机进行模塑。模塑条件为270~280℃的温度和100~150rpm的螺杆速度。注射速度为0.5~1.0英寸/秒,3.44MPa(500psi)的保压压力(pack and hold pressure)5~6秒,0.17~0.34MPa(25-50psi)背压,150~160℃的模塑温度,以及15~20秒的冷却时间。
为了测试实施例1和2对于聚醚酰亚胺聚合物树脂(来自沙特基础工业公司(SABIC)的9085)缺乏粘附性,使用特定的测试方法。
用于确定在压塑后聚合物/聚合物缺少粘附性或“脱粘”的测试方法
1.在3.2mm厚的“MUD框”(其是用于主部件压模(Master Unit Die)模具的术语)中,例如,用于注塑ASTM悬臂梁样品的具有切口的3.2mm厚的金属框中,将实施例的一个前述注塑的1.6mm厚ASTM悬臂梁测试棒(Izod bar)置于前述9085聚醚酰亚胺的前述注塑的1.6mm后ASTM悬臂梁测试棒上面。在切口一侧的是实心金属。MUD框有助于确保两个棒面对面在一起,并使得“溢料(flashing)”最小化、或使得熔融聚合物离开棒受压区域的移动最小化。
2.将压制模具加热到230~235℃的温度。
3.具有重叠棒的MUD框置于压制单元内;MUD框预热约30秒。
4.在含有两个棒的MUD框上的压制压力上升至高达约6.2Mpa(900psi),并保持2分钟。
5.释放压力,从压塑压机取出MUD框。
6.在MUD框冷却至室温后,将两个棒从MUD框中取出。
7.测试两个棒的粘合强度。
在冷却时,构建材料和支撑材料多次自行脱粘。
测试结果
实施例1的测试棒对于9085测试棒的粘合强度高于实施例2的测试棒。然而,实施例1和2的棒都从9085测试棒充分脱粘,可接受作为支撑材料,用于作为构建材料的含有树脂或配混物的聚醚酰亚胺。两个之中,优选实施例2,因为其对9085测试棒的粘合强度比实施例1低。
而且,选择实施例2优于实施例1,因为当缠绕在~7.6(~3英寸)线轴上时,实施例2呈现出更多的延展性。实施例1在缠绕时趋向于断裂,但是可以作为切断的线使用。
实施例2呈现出的延展性是用于支撑材料缠绕长度所需的。
在进一步实验中,比较COC和COP,注意到COC优于COP,因为COC在粘合测试期间几乎不导致“溢料”。
本发明不限于上述实施方式。见所附权利要求书。

Claims (15)

1.用于聚酰亚胺的3D打印的支架,所述支架包括环状烯烃共聚物或环状烯烃聚合物。
2.如权利要求1所述的支架,其特征在于,环状烯烃共聚物(COC)是环状烯烃单体与烯烃的共聚物。
3.如权利要求2所述的支架,其特征在于,环状烯烃共聚物是乙烯-降冰片烯共聚物,其CAS号为26007-43-2。
4.如权利要求3所述的支架,其特征在于,乙烯-降冰片烯共聚物具有以下结构:
其中,X范围为40wt%~20wt%,并且其中,Y范围为60wt%~80wt%。
5.如权利要求3所述的支架,其特征在于,乙烯-降冰片烯共聚物具有以下结构:
其中,X范围为25wt%~18wt%,并且其中,Y范围为75wt%~82wt%。
6.如权利要求3所述的支架,其特征在于,环状烯烃共聚物的重均分子量(Mw)范围为40,000至130,000,在0.45MPa(66psi负载)下热变形温度范围为30℃~170℃。
7.如权利要求1所述的支架,其特征在于,环状烯烃聚合物(COP)是由环状单体进行开环复分解聚合、随后进行氢化的聚合物,其中,环状单体包括降冰片烯或四环十二碳烯。
8.如权利要求1~7中任一项所述的支架,其特征在于,支架进一步包括光学增白剂、抗冲改性剂、加工助剂、流变改进剂、热稳定剂和UV稳定剂、荧光染料和非荧光染料及颜料、不透射线示踪剂、导热添加剂、导电添加剂、感应加热添加剂、以及非硅酮脱模剂;以及它们的组合。
9.如权利要求1所述的支架,其特征在于,支架还包括苯乙烯嵌段共聚物,作为用于支架的抗冲改性剂。
10.3D印刷聚合物制品,其包括作为构建材料的聚酰亚胺和权利要求1-7中任一项所述的支架。
11.如权利要求10所述的3D印刷聚合物制品,其特征在于,支架进一步包括光学增白剂、抗冲改性剂、加工助剂、流变改进剂、热稳定剂和UV稳定剂、荧光染料和非荧光染料及颜料、不透射线示踪剂、导热添加剂、导电添加剂、感应加热添加剂、以及非硅酮脱模剂;以及它们的组合。
12.如权利要求11所述的3D印刷聚合物制品,其特征在于,支架还包括苯乙烯嵌段共聚物,作为用于支架的抗冲改性剂。
13.使用如权利要求1所述支架的方法,所述方法包括对作为构建材料的聚酰亚胺和权利要求1-7中任一项所述的支架进行3D印刷的步骤。
14.如权利要求13所述的方法,其特征在于,支架进一步包括光学增白剂、抗冲改性剂、加工助剂、流变改进剂、热稳定剂和UV稳定剂、荧光染料和非荧光染料及颜料、不透射线示踪剂、导热添加剂、导电添加剂、感应加热添加剂、以及非硅酮脱模剂;以及它们的组合。
15.如权利要求14所述的方法,其特征在于,支架还包括苯乙烯嵌段共聚物,作为用于支架的抗冲改性剂。
CN201680005485.0A 2015-01-12 2016-01-11 用于聚合物配混物的3d印刷的支撑材料 Expired - Fee Related CN107108814B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562102198P 2015-01-12 2015-01-12
US62/102,198 2015-01-12
PCT/US2016/012897 WO2016115046A1 (en) 2015-01-12 2016-01-11 Support material for 3d printing of polymer compounds

Publications (2)

Publication Number Publication Date
CN107108814A CN107108814A (zh) 2017-08-29
CN107108814B true CN107108814B (zh) 2019-04-23

Family

ID=56406260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680005485.0A Expired - Fee Related CN107108814B (zh) 2015-01-12 2016-01-11 用于聚合物配混物的3d印刷的支撑材料

Country Status (4)

Country Link
US (1) US11001049B2 (zh)
EP (1) EP3245255B1 (zh)
CN (1) CN107108814B (zh)
WO (1) WO2016115046A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017096378A1 (en) * 2015-12-03 2017-06-08 Buchanan Stephen L Radio-opaque 3d printing ink
US10369744B2 (en) * 2016-04-14 2019-08-06 Xerox Corporation Electrostatic 3-D development apparatus using cold fusing
WO2017223276A1 (en) 2016-06-24 2017-12-28 Polyone Corporation Coc polymer compounds for 3d printing
KR102077206B1 (ko) * 2016-08-30 2020-02-14 리즈 인코포레이티드 제거 가능한 지지 구조를 갖는 3차원 물체의 제조 방법
BR112019017354B1 (pt) 2017-04-21 2022-11-08 Hewlett-Packard Development Company, L.P Formação em 3d de objetos usando polímeros de alta temperatura de fusão
US11247386B2 (en) 2018-06-22 2022-02-15 3D Systems, Inc. Method of verifying integrity of a post-process removal of support material
EP3810722A1 (en) 2018-06-22 2021-04-28 3D Systems, Inc. 3d printing build materials and support materials comprising a phosphor
US11104079B2 (en) 2018-06-22 2021-08-31 3D Systems, Inc. Three-dimensional article having permanent phosphor indicia formed from sacrificial support material
US11173438B2 (en) * 2018-09-14 2021-11-16 Caterpillar Inc. Filter having tracer material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017743A1 (en) * 1999-04-20 2002-02-14 Stratsys, Inc. Materials and method for three-dimensional modeling
CN1571815A (zh) * 2001-10-22 2005-01-26 宝理塑料株式会社 耐冲击性环烯烃类树脂组合物及模塑品
US20050040564A1 (en) * 2003-08-18 2005-02-24 Jones Oliver Systems and methods for using norbornene based curable materials
CN1666217A (zh) * 2002-07-01 2005-09-07 斯特拉塔西斯公司 用于三维模型制作的材料和方法
CN1784295A (zh) * 2003-05-05 2006-06-07 斯特拉塔西斯公司 用于三维造型的材料和方法
CN102186918A (zh) * 2008-10-17 2011-09-14 斯特拉塔西斯公司 用于数字化制造系统的支撑材料
CN102529274A (zh) * 2011-12-30 2012-07-04 广东德冠薄膜新材料股份有限公司 一种聚烯烃热收缩薄膜及其制备方法
CN103180125A (zh) * 2010-10-27 2013-06-26 尤金·吉勒 用于制作三维物体的工艺和设备
US20140353878A1 (en) * 2011-06-15 2014-12-04 Dsm Ip Assets B.V. Substrate-based additive fabrication process and apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837787A (en) 1993-01-19 1998-11-17 Exxon Chemical Patents, Inc. Process for producing elastic thermoplastic α-olefin/cyclic olefin copolymers
US6121383A (en) 1993-01-19 2000-09-19 Advanced Elastomer Systems, L.P. Thermosplastic vulcanizates from blends of a polypropylene and elastic α-olefin/cyclic olefin copolymers
US5763532A (en) 1993-01-19 1998-06-09 Exxon Chemical Patents, Inc. Blends of polypropylene and elastic alpha-olefin/cyclic olefin copolymers
KR20010113933A (ko) 1999-05-14 2001-12-28 진 엠.보스 고결정성 eaodm 인터폴리머
EP2052023A1 (en) 2006-08-04 2009-04-29 ExxonMobil Chemical Patents, Inc., A Corporation of the State of Delaware Polymer compositions comprising cyclic olefin polymers, polyolefin modifiers, and fillers
US8148472B1 (en) 2006-08-04 2012-04-03 Exxonmobil Research And Engineering Company Polymer compositions comprising cyclic olefin polymers, polyolefin modifiers and non-functionalized plasticizers
US8519056B2 (en) 2007-06-01 2013-08-27 Exxonmobil Chemical Patents Inc. Blends of co-precipitated hydrogenated ethylene-dicyclpentadiene and elastomeric polymers to provide impact modified structural polyolefins
US9452593B2 (en) 2010-04-15 2016-09-27 Topas Advanced Polymers, Inc. Melt blends of amorphous cycloolefin polymers and partially crystalline cycloolefin elastomers with improved toughness
KR101774462B1 (ko) 2013-07-17 2017-09-04 스트래터시스,인코포레이티드 전자사진 기반 적층제조 시스템용 반-결정 소모성 재료
EP3262192B1 (en) * 2015-02-27 2020-09-16 Becton, Dickinson and Company Spatially addressable molecular barcoding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017743A1 (en) * 1999-04-20 2002-02-14 Stratsys, Inc. Materials and method for three-dimensional modeling
CN1552017A (zh) * 2001-05-11 2004-12-01 三维造型的材料和方法
CN1571815A (zh) * 2001-10-22 2005-01-26 宝理塑料株式会社 耐冲击性环烯烃类树脂组合物及模塑品
CN1666217A (zh) * 2002-07-01 2005-09-07 斯特拉塔西斯公司 用于三维模型制作的材料和方法
CN1784295A (zh) * 2003-05-05 2006-06-07 斯特拉塔西斯公司 用于三维造型的材料和方法
US20050040564A1 (en) * 2003-08-18 2005-02-24 Jones Oliver Systems and methods for using norbornene based curable materials
CN102186918A (zh) * 2008-10-17 2011-09-14 斯特拉塔西斯公司 用于数字化制造系统的支撑材料
CN103180125A (zh) * 2010-10-27 2013-06-26 尤金·吉勒 用于制作三维物体的工艺和设备
US20140162033A1 (en) * 2010-10-27 2014-06-12 Eugene Giller Process and Apparatus for Fabrication of Three-Dimensional Objects
US20140353878A1 (en) * 2011-06-15 2014-12-04 Dsm Ip Assets B.V. Substrate-based additive fabrication process and apparatus
CN102529274A (zh) * 2011-12-30 2012-07-04 广东德冠薄膜新材料股份有限公司 一种聚烯烃热收缩薄膜及其制备方法

Also Published As

Publication number Publication date
US20190001569A1 (en) 2019-01-03
US11001049B2 (en) 2021-05-11
EP3245255A4 (en) 2018-07-18
CN107108814A (zh) 2017-08-29
EP3245255B1 (en) 2019-05-15
EP3245255A1 (en) 2017-11-22
WO2016115046A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
CN107108814B (zh) 用于聚合物配混物的3d印刷的支撑材料
Peterson Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective
US20230159739A1 (en) Dimensionally stable acrylic alloy for 3-d printing
Jia et al. Preparation of a new filament based on polyamide‐6 for three‐dimensional printing
CN107109035B (zh) 在基于挤出的增材制造中用作临时支撑材料的共混聚合物
US10953595B2 (en) Water soluble support materials for high temperature additive manufacturing applications
CN104725802A (zh) 一种用于热熔型3d打印的聚乳酸复合材料的制备方法
Koker et al. Enhanced interlayer strength and thermal stability via dual material filament for material extrusion additive manufacturing
Charles et al. On the assessment of thermo-mechanical degradability of multi-recycled ABS polymer for 3D printing applications
Subramanian Basics of polymers: fabrication and processing technology
BR112017010936B1 (pt) Artigo de polilactida conformado e método de preparação
Ong et al. Recycling of polylactic acid (PLA) wastes from 3D printing laboratory
Naqi et al. Dual material fused filament fabrication via core–shell die design
Xavier Thermoplastic polymer composites: processing, properties, performance, applications and recyclability
Bánhegyi Polymer Compatibility and Interfaces in Extrusion-Based Multicomponent Additive Manufacturing A Mini-Review
Zhang et al. Difference in mechanical properties between plastic and metal molds for injection molding a talc reinforced rubber modified polypropylene
CN101412842A (zh) 含聚乳酸树脂和聚丙烯酸酯类化合物的组合物的制备方法
CN111187456B (zh) 高密度聚乙烯组合物及其制备方法以及3d打印材料及其应用
Chatterjee et al. How open‐stage melt crystallization affects tensile and shrinkage properties of 3D printed polypropylene
CN106317913A (zh) 一种工业铸造蜡3d打印线材及其制作工艺
Srikhumsuk et al. Study on injection molding parameters on PET with bio-plastic material and hot runner mold
Gong et al. Optimizing process parameters of a material extrusion–based overprinting technique for the fabrication of tensile specimens
Stockham Rapid Tooling Carbon Nanotube-Filled Epoxy for Injection Molding Using Additive Manufacturing and Casting Methods
Liu et al. The influence of interface geometry on the joint strengths of hot plate welded composites
Makki et al. 3D AND 4D PRINTING: A REVIEW OF VIRGIN POLYMERS USED IN FUSED DEPOSITION MODELING

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Ohio, USA

Patentee after: Avin Co.,Ltd.

Address before: Ohio, USA

Patentee before: POLYONE Corp.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190423

Termination date: 20210111

CF01 Termination of patent right due to non-payment of annual fee