CN107105627B - 用于单子叶植物改良的方法 - Google Patents
用于单子叶植物改良的方法 Download PDFInfo
- Publication number
- CN107105627B CN107105627B CN201580072002.4A CN201580072002A CN107105627B CN 107105627 B CN107105627 B CN 107105627B CN 201580072002 A CN201580072002 A CN 201580072002A CN 107105627 B CN107105627 B CN 107105627B
- Authority
- CN
- China
- Prior art keywords
- ser
- pro
- leu
- ala
- arg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/8223—Vegetative tissue-specific promoters
- C12N15/8227—Root-specific
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physiology (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明提供了通过在禾本科植物中表达PEAPOD蛋白或其片段来增加所述禾本科植物中的根生物量和地上生物量中的至少一种的方法和材料。本发明还提供了通过在禾本科植物中表达PEAPOD蛋白或其片段来产生具有增加的根生物量和增加的地上生物量中的至少一种的禾本科植物的方法和材料。
Description
技术领域
本发明涉及从具有增加的根生物量和增加的地上生物量中的至少一种的禾本科中产生单子叶植物的方法。
背景技术
单子叶植物的禾本科(也称为禾本科(Gramineae)或真禾本科(true grasses))是当前经济上最重要的植物科系,提供了大量人用粮食作物,以及可用于饲料、建筑材料(竹子、茅草)和生物燃料生产的物种。
这些应用中的一些至少部分地受限于植物的结构和生产力,包括所产生的根生物量和地上生物量的量。
具有增加的地上生物量的禾本科植物具有很多优势,特别是生物燃料作物和饲料作物中的其中植物的地上部分被收获的作物。
具有增加的根生物量的禾本科植物也潜在地具有多种优势,包括更好的固着、更有效的水摄取、更有效的养分摄取和提高的耐旱性。这些特征的组合也可导致产量(包括谷物生物量和叶生物量)提高。
目前,对控制禾本科植物中的根生物量和地上生物量的产生的遗传机制的理解有限。
因此,获得控制禾本科植物中的根生物量和地上生物量的可用替代方法是有利的。
因此,本发明的目的是提供改变禾本科植物中的根生物量和地上生物量中的至少一种的产生的方法和材料,和/或至少为公众提供有用的选择。
发明内容
之前,White(2006)在拟南芥属(Arabidopsis)中发现了两个邻近的同源基因(命名为PEAPOD,PPD1和PPD2),其在叶和种荚(seed pod)发育的后期阶段调控拟分生组织的细胞增殖。在苔藓植物、所有的双子叶植物、松柏科植物和棕榈植物中发现了这些基因的同源物,但是发现它们并不存在于禾本科植物(grass family,Poaceae)中。
在拟南芥属中这些基因的缺失导致叶肥大和种荚变宽,而PPD1的过表达导致叶和长角果(silique)的尺寸减小(White,2006)。此外,PPD表达的降低结合油菜素类固醇受体(brassinosteroid receptor,BRI1)或生长素应答基因家族(auxin responsive genefamily)中的一个成员(SAUR19)的过表达证明了关于拟南芥属中叶生长的正上位效应(Vanhaeren et al 2014)。
本申请人现已令人惊讶地证明PEAPOD蛋白在禾本科植物中的表达导致产生的根生物量和地上生物量的增加。
因此,本申请人的发明涉及通过异位表达PEAPOD来增加禾本科植物中的根生物量和地上生物量中的至少一种的方法。具体地,本发明涉及表达PEAPOD蛋白,其特征在于存在对于由广泛的植物物种表现出的所有PEAPOD蛋白均常见的至少一种共有氨基酸基序。
因为禾本科植物天然不含有PEAPOD基因,所以在本发明的方法中使用的植物或由本发明的方法产生的植物天然不存在。
方法
第一方面,本发明提供了增加禾本科植物中根生物量和地上生物量中的至少一种的方法,该方法包括在禾本科植物中表达PEAPOD蛋白的步骤。
在一种实施方式中,根生物量和地上生物量中的至少一种相对于同一物种或品种的对照植物(其不表达PEAPOD蛋白)是增加的。
在一种实施方式中,所述PEAPOD蛋白被表达为用编码PEAPOD蛋白的多核苷酸转化的植物、或其祖先植物或植物细胞的结果。
在其他实施方式中,所述植物为用表达PEAPOD蛋白的多核苷酸进行转基因的。
在其他方面,本发明提供了产生具有增加的根生物量和增加的地上生物量中的至少一种的禾本科植物的方法,该方法包括在所述禾本科植物中表达PEAPOD蛋白的步骤。
在一种实施方式中,使用编码所述PEAPOD蛋白的多核苷酸转化所述禾本科植物。
在其他实施方式中,该方法包括用编码所述PEAPOD蛋白的多核苷酸转化禾本科植物、或转化再生为禾本科植物的禾本科植物细胞的步骤。
在一种实施方式中,所述方法包括测试或评估植物的增加的根生物量和增加的地上生物量中的至少一种的额外步骤。在一种实施方式中,所述方法包括测试或评估植物的增加的地上生物量的额外步骤。在一种实施方式中,所述方法包括测试或评估植物的增加的根生物量的额外步骤。
在其他实施方式中,所述方法包括通过无性或有性繁殖被测试其增加的根生物量和增加的地上生物量中的至少一种的植物来进一步产生具有增加的根生物量和增加的地上生物量中的至少一种的植物的步骤。
PEAPOD蛋白
在一种实施方式中,所述PEAPOD蛋白是包含SEQ ID NO:28、29、31、32、34和35中的至少一种序列的多肽。
在其他实施方式中,所述PEAPOD蛋白包含SEQ ID NO:28的序列。在其他实施方式中,所述PEAPOD蛋白包含SEQ ID NO:29的序列。在其他实施方式中,所述PEAPOD蛋白包含SEQ ID NO:31的序列。在其他实施方式中,所述PEAPOD蛋白包含SEQ ID NO:32的序列。在其他实施方式中,所述PEAPOD蛋白包含SEQ ID NO:34的序列。在其他实施方式中,所述PEAPOD蛋白包含SEQ ID NO:35的序列。
在其他实施方式中,所述PEAPOD蛋白是包含与SEQ ID NO:1-26中任意一项具有至少70%同一性的序列的多肽。
在其他实施方式中,所述PEAPOD蛋白是包含选自SEQ ID NO:1-26中任意一项的序列的多肽。
在其他实施方式中,所述PEAPOD蛋白是包含与SEQ ID NO:1具有至少70%同一性的序列的多肽。
在其他实施方式中,所述PEAPOD蛋白是包含SEQ ID NO:1的序列的多肽。
表达PEAPOD
在植物中表达蛋白的方法是本领域技术人员公知的,并在本文中进行描述。所有这些方法都包括在本发明的范围内。
通过引入多核苷酸增加PEAPOD的表达
在一种实施方式中,通过将多核苷酸引入至植物细胞或植物以增加表达。
在一种优选的实施方式中,所述多核苷酸编码如本文所定义的PEAPOD蛋白。
在其他实施方式中,所述多核苷酸包含与SEQ ID NO:80-104中任意一项的编码序列具有至少70%同一性的序列。
在其他实施方式中,所述多核苷酸包含与SEQ ID NO:80-104中任意一项的序列具有至少70%同一性的序列。
在其他实施方式中,所述多核苷酸包含SEQ ID NO:80-104中任意一项的编码序列。
在其他实施方式中,所述多核苷酸包含SEQ ID NO:80-104中任意一项的序列。
在其他实施方式中,所述多核苷酸包含上述序列的片段,其能够编码与PEAPOD蛋白具有相同功能的多肽。在一种实施方式中,所述片段编码能够增加叶和根生物量中的至少一种的多肽。
通过表达构建体表达PEAPOD
在一种优选的实施方式中,将所述多核苷酸作为表达构建体的一部分被引入植物。
在一种优选的实施方式中,所述表达构建体包含与所述多核苷酸可操作地连接的启动子。
用于增加PEAPOD表达的启动子
在一种实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的所有组织中的组成型表达。
在其他实施方式中,所述启动子是组织优选的启动子。
在其他实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的地上部分中的表达。
在其他实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的叶中的表达。
在一种实施方式中,所述启动子是地上部分优选的启动子。
在一种实施方式中,所述启动子是叶优选的启动子。
在其他实施方式中,所述启动子是叶特异性的启动子。
在其他实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的地下组织中的表达。
在一种实施方式中,所述启动子是地下组织优选的启动子。
在其他实施方式中,所述启动子是地下组织特异性的启动子。
在一种实施方式中,所述启动子是光阻遏型启动子(light-repressedpromoter)。
在其他实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的根中的表达。
在一种实施方式中,所述启动子是根优选的启动子。
在其他实施方式中,所述启动子是根特异性的启动子。
多核苷酸和多肽的来源
本发明的或本发明的方法中使用的多核苷酸和多核苷酸的变体可衍生自任何物种。所述多核苷酸和变体也可以是合成产生的或重组产生的,还可以是“基因改组(geneshuffling)”方法的产物。
本发明的或本发明的方法中使用的多核苷酸和多核苷酸的变体可衍生自任何物种。所述多核苷酸和变体也可以是重组产生的,还可以由“基因改组”方法的产物表达。
在一种实施方式中,所述多核苷酸、多肽或变体衍生自植物物种。
在其他实施方式中,所述多核苷酸、多肽或变体衍生自裸子植物(gymnospermplant)物种。
在其他实施方式中,所述多核苷酸、多肽或变体衍生自被子植物(angiospermplant)物种。
在其他实施方式中,所述多核苷酸、多肽或变体衍生自双子叶植物(dicotyledonous)物种。
在一种优选的实施方式中,所述多核苷酸、多肽或变体衍生自真双子叶植物(eudicot)物种。
在其他实施方式中,所述多核苷酸、多肽或变体衍生自单子叶植物物种。优选的单子叶植物包括:棕榈、香蕉、浮萍和兰花物种。
待转化的禾本科植物细胞和植物
优选的禾本科亚科包括:柊叶竺亚科(Anomochlooideae)、服叶竺亚科(Pharoideae)、姜叶竺亚科(Puelioideae)、竹亚科(Bambusoideae)、早熟禾亚科(Pooideae)、稻亚科(Ehrhartoideae)、三芒草亚科(Aristidoideae)、芦竹亚科(Arundinoideae)、虎尾草亚科(Chloridoideae)、黍亚科(Panicoideae)、扁芒草亚科(Danthonioideae)和百生草亚科(Micrairoideae)。
优选的禾本科亚科为早熟禾亚科。优选的早熟禾亚科植物包括小麦、大麦、燕麦、雀麦草和芦苇草。
另一种优选的禾本科亚科为稻亚科。优选的稻亚科植物包括水稻。
另一种优选的禾本科亚科为黍亚科。优选的黍亚科植物包括稗草、玉米、高粱、甘蔗(sugar cane)、能源甘蔗(energy cane)、小米、福尼奥米(fonio)和须芒草。
另一种优选的禾本科亚科为芦竹亚科。优选的芦竹亚科植物包括芦竹(Arundodonax)。
另一种优选的禾本科亚科为竹亚科。优选的竹亚科植物包括竹子。
优选的禾本科物种包括来自黑麦草属(Lolium)的那些物种。优选的黑麦草属物种包括长花黑麦草(Lolium longiflorum)、多花黑麦草(Lolium multiflorum)、多年生黑麦草(Lolium perenne)、西方黑麦草(Lolium westerwoldicum)、毒麦(Lolium temulentum)和杂种黑麦草(Lolium hybridum)。
其他优选的禾本科物种包括来自羊茅属(Festuca)的那些物种。优选的羊茅属物种包括高羊茅(Festuca arundinacea)、硬羊茅(Festuca ovina)、草甸羊茅(Festucapratensis)和紫羊茅(Festuca rubra)。
植物和植物部分
在其他方面,本发明提供了表达PEAPOD蛋白或其片段的禾本科植物,该禾本科植物由于表达PEAPOD蛋白或其片段而具有以下中的至少一种:
a)增加的根生物量,和
b)增加的地上生物量。
在一种实施方式中,所述PEAPOD蛋白或其片段被表达为用编码PEAPOD蛋白或其片段的多核苷酸转化的植物、或其祖先植物或植物细胞的结果。
在其他实施方式中,所述禾本科植物为用表达PEAPOD蛋白或其片段的多核苷酸进行转基因的。
在其他实施方式中,所述多核苷酸或其片段是与组织优选的启动子可操作地连接的多核苷酸。
在一种实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸或其片段在植物的地上部分中的表达。
在其他实施方式中,所述启动子能够驱动或驱动可操作地连接的多核苷酸或其片段在植物的地下组织中的表达。
在其他实施方式中,所述PEAPOD蛋白如本文所定义。
在其他实施方式中,所述编码PEAPOD蛋白的多核苷酸如本文所定义。
在其他实施方式中,所述禾本科植物如本文所定义。
在其他方面,本发明提供了植物的细胞、部分、繁殖体或子代,其为用以下中的至少一种进行转基因的:
a)多核苷酸,和
b)多核苷酸和可操作地连接的启动子。
具体实施方式
在本说明书中,提及专利说明书、其他外部文献或其他信息来源时,通常是为了提供用于讨论本发明特征的上下文。除非另有具体说明,对这些外部文献的参考并不被解释为承认这些文献或这些信息来源以任何权限作为现有技术,或形成本领域的公知常识的一部分。
本说明书中使用的术语“包含(comprising)”意指“至少部分由…组成”。当解释本说明书中的每个包括术语“包含”的语句时,除了以该术语开始的特征以外的特征也可能存在。相关的术语如“包含(comprise)”将以相同的方式解释。
增加的根生物量
具有“增加的根生物量”的植物比同一类型和年龄的对照植物产生更多的根生物量。因此,“增加的”意指相对于同一类型和年龄的对照植物的增加。
优选地,具有“增加的根生物量”的植物比同一类型和年龄的对照植物产生的根生物量多至少10%、优选至少20%、更优选至少30%、更优选至少40%、更优选至少50%、更优选至少60%、更优选至少70%、更优选至少80%、更优选至少90%、更优选至少100%、更优选至少150%、更优选至少200%、更优选至少300%、更优选至少400%。
在一种实施方式中,具有“增加的根生物量”的植物相比于对照植物具有以下中的至少一种:更大的根、更长的根、更多的根、更多的侧根或更延伸的根系。
根生物量
术语根生物量是指由植物产生的根组织的总质量。这可以由干重或湿重来评估。
根
本文使用的术语根包含初生根、次生根、不定根、根分枝和根毛。根通常在地下,但是该术语也包含气生根。在一种实施方式中,术语根包含植物的非含叶、非含节部分。
增加的耐旱性
在一种实施方式中,具有“增加的根生物量”的植物也具有增加的耐旱性。同样地,“增加的”意指相对于同一类型和年龄的对照植物的增加。
术语“增加的耐旱性”旨在描述在次优的水化条件下其在生长和发育的任一方面都比在相同条件下的适宜的对照植物表现更好的植物。
增加的地上生物量
具有“增加的地上生物量”的植物比同一类型和年龄的对照植物产生更多的地上生物量。因此,“增加的”意指相对于同一类型和年龄的对照植物的增加。
优选地,具有“增加的地上生物量”的植物比同一类型和年龄的对照植物产生的地上生物量多至少10%、优选至少20%、更优选至少30%、更优选至少40%、更优选至少50%、更优选至少60%、更优选至少70%、更优选至少80%、更优选至少90%、更优选至少100%、更优选至少150%、更优选至少200%、更优选至少300%、更优选至少400%。
在一种实施方式中,具有“增加的地上生物量”的植物相比于对照植物具有以下中的至少一种:更大的叶、更多的叶、更长的茎(秆)、更粗的茎(秆)、更多的分蘖(tiller)、更大的分蘖、更多的匍匐茎(stolon)、更大的匍匐茎。
优选地,具有“增加的地上生物量”的植物比对照植物具有更大的叶。
地上生物量
术语地上生物量是指由植物产生的地上组织的总质量。这可以由干重或湿重来评估。
地上生物量可由叶、茎、秆、分蘖和匍匐茎中任意一项而形成。
叶
本文使用的术语叶意指与该术语的标准用法相同。优选地,术语叶包括叶片(leafblade)(或叶身(leaf lamina))和任何叶柄。
茎(stem)/秆(culm)
茎(或秆)是成熟的禾本科植物芽的中心轴,其由节(node)和节间(internode)组成,每一个节都含有叶。
分蘖
分蘖是子株,能够产生新植物的芽。
匍匐茎
匍匐茎是于节处生根的平卧茎或横走的地上茎,并且是无性繁殖的方式。
增加的花分支
在一种实施方式中,具有增加的根生物量和增加的地上生物量中的至少一种的植物也具有“增加的花分支”。同样地,“增加的”意指相对于同一类型和年龄的对照植物的增加。
术语“增加的花分支”意指以下中的至少一种:含有花序的茎秆数目的增加和花序内小穗数目的增加。
增加的种子产量
在一种实施方式中,具有“增加的花分支”的植物也具有“增加的种子产量”。同样地,“增加的”意指相对于同一类型和年龄的对照植物的增加。
具有“增加的种子产量”的植物比同一类型和年龄的对照植物产生更多的种子生物量。这可以由干重或湿重来评估。具有增加的种子产量的植物可比对照植物产生更多的种子,和/或更大的种子。优选地,所述植物比对照植物产生更多的种子。
对照植物
在一种实施方式中,所述对照植物是野生型植物。在其他实施方式中,所述对照植物是不表达PEAPOD基因的植物。在其他实施方式中,所述对照植物是未转化的植物。在其他实施方式中,所述对照植物是尚未用PEAPOD多核苷酸转化的植物。在其他实施方式中,所述对照植物是尚未用构建体转化的植物。在其他实施方式中,所述对照植物是用对照构建体转化的植物。在一种实施方式中,所述构建体是空载体构建体。
组织优选的启动子
在某些实施方式中,所述编码多核苷酸的PEAPOD蛋白在组织优选的启动子的控制下表达。关于组织优选的启动子的术语“优选的”意指启动子首先在该组织中驱动表达。因此,例如,叶优选的启动子在叶组织中比在植物的其他组织或器官中驱动更高水平的可操作地连接的多核苷酸的表达。类似地,根优选的启动子在根组织中比在植物的其他组织或器官中驱动更高水平的可操作地连接的多核苷酸的表达。
叶优选的启动子
叶优选的启动子在叶组织中比在植物的其他组织或器官中驱动更高水平的可操作地连接的多核苷酸的表达。
叶优选的启动子可以包括光合组织优选的启动子和光调节型启动子。
光合组织优选的启动子
光合组织优选的启动子包括优选在植物的光合组织中表达的启动子。植物的光合组织包括植物的叶、茎、芽和地上部分。光合组织优选的启动子包括光调节型启动子(lightregulated promoter)。
光调节型启动子
许多光调节型启动子是本领域技术人员已知的,包括例如叶绿素a/b(Cab)结合蛋白启动子和Rubisco小亚基(SSU)启动子。光调节型启动子的实例可见于US 5,750,385。本上下文中的光调节型意指光诱导型或光诱导的。
根优选的启动子
根优选的启动子在根组织中比在植物的其他组织或器官中驱动更高水平的可操作地连接的多核苷酸的表达。
根优选的启动子可以包括非光合组织优选的启动子和光阻遏调节型启动子。
非光合组织优选的启动子
非光合组织优选的启动子包括优选在植物的非光合组织/器官中表达的启动子。
非光合组织优选的启动子也可包括光阻遏型启动子。
光阻遏型启动子
光阻遏型启动子的实例可见于US 5,639,952和US 5,656,496。
根特异性启动子
根特异性启动子的实例可见于US 5,837,848和US 2004/0067506以及US 2001/0047525。
关于优选在某一组织中表达的启动子的术语“优选表达”意指在该组织中比在植物的其他组织中以更高水平表达的启动子。
关于启动子的术语“组织特异性的”意指所述启动子基本上仅在该组织而非植物的其他组织中表达。
在一种实施方式中,所述叶优选的启动子是叶特异性启动子。
在一种实施方式中,所述根优选的启动子是根特异性启动子。
本文使用的术语“基因”意指包括编码多肽或蛋白的编码序列的内源基因组序列。所述编码序列被一个或多个内含子间隔。基因通常还包括启动子序列、5’非翻译序列、3’非翻译序列和终止子序列。调节蛋白表达的基因组序列也可被认为是基因的一部分。
多核苷酸和片段
本文使用的术语“多核苷酸”意指任意长度但优选至少15个核苷酸的单链或双链脱氧核糖核苷酸或核糖核苷酸聚合物,并且包括以下非限制性实例:基因的编码和非编码序列、正义和反义序列互补物、外显子、内含子、基因组DNA、cDNA、前mRNA、mRNA、rRNA、siRNA、miRNA、tRNA、核酶、重组多肽、分离的和纯化的天然存在的DNA或RNA序列、合成的RNA和DNA序列、核酸探针、引物和片段。
多核苷酸的“片段”是指较长的多核苷酸序列的连续子序列。优选地,所述片段为所公开的多核苷酸的至少15个核苷酸、优选至少16个核苷酸、更优选至少17个核苷酸、更优选至少18个核苷酸、更优选至少19个核苷酸、更优选至少20个核苷酸、更优选至少21个核苷酸、更优选至少22个核苷酸、更优选至少23个核苷酸、更优选至少24个核苷酸、更优选至少25个核苷酸、更优选至少26个核苷酸、更优选至少27个核苷酸、更优选至少28个核苷酸、更优选至少29个核苷酸、更优选至少30个核苷酸、更优选至少31个核苷酸、更优选至少32个核苷酸、更优选至少33个核苷酸、更优选至少34个核苷酸、更优选至少35个核苷酸、更优选至少36个核苷酸、更优选至少37个核苷酸、更优选至少38个核苷酸、更优选至少39个核苷酸、更优选至少40个核苷酸、更优选至少41个核苷酸、更优选至少42个核苷酸、更优选至少43个核苷酸、更优选至少44个核苷酸、更优选至少45个核苷酸、更优选至少46个核苷酸、更优选至少47个核苷酸、更优选至少48个核苷酸、更优选至少49个核苷酸、更优选至少50个核苷酸、更优选至少51个核苷酸、更优选至少52个核苷酸、更优选至少53个核苷酸、更优选至少54个核苷酸、更优选至少55个核苷酸、更优选至少56个核苷酸、更优选至少57个核苷酸、更优选至少58个核苷酸、更优选至少59个核苷酸、更优选至少60个核苷酸、更优选至少61个核苷酸、更优选至少62个核苷酸、更优选至少63个核苷酸、更优选至少64个核苷酸、更优选至少65个核苷酸、更优选至少66个核苷酸、更优选至少67个核苷酸、更优选至少68个核苷酸、更优选至少69个核苷酸、更优选至少70个核苷酸、更优选至少71个核苷酸、更优选至少72个核苷酸、更优选至少73个核苷酸、更优选至少74个核苷酸、更优选至少75个核苷酸、更优选至少76个核苷酸、更优选至少77个核苷酸、更优选至少78个核苷酸、更优选至少79个核苷酸、更优选至少80个核苷酸、更优选至少81个核苷酸、更优选至少82个核苷酸、更优选至少83个核苷酸、更优选至少84个核苷酸、更优选至少85个核苷酸、更优选至少86个核苷酸、更优选至少87个核苷酸、更优选至少88个核苷酸、更优选至少89个核苷酸、更优选至少90个核苷酸、更优选至少91个核苷酸、更优选至少92个核苷酸、更优选至少93个核苷酸、更优选至少94个核苷酸、更优选至少95个核苷酸、更优选至少96个核苷酸、更优选至少97个核苷酸、更优选至少98个核苷酸、更优选至少99个核苷酸、更优选至少100个核苷酸、更优选至少150个核苷酸、更优选至少200个核苷酸、更优选至少250个核苷酸、更优选至少300个核苷酸、更优选至少350个核苷酸、更优选至少400个核苷酸和最优选至少500个核苷酸的连续核苷酸。多核苷酸序列的片段可用于反义RNA干扰(RNAi)、基因沉默、三螺旋或核酶技术中,或作为包括在微阵列中的引物、探针,或用于本发明的基于多核苷酸的可选方法中。
在一种实施方式中,所述片段编码执行或能够执行与由该片段是其一部分的更长的多核苷酸编码的多肽相同的功能的多肽。
术语“引物”是指通常具有游离的3’OH基团的短多核苷酸,其与或能够与模板杂交,并用于引发与靶标互补的多核苷酸的聚合。
术语“探针”是指在基于杂交的测定中,用于或可用于检测与探针互补的多核苷酸序列的短多核苷酸。所述探针可由如本文所定义的多核苷酸的“片段”组成。
多肽和片段
本文使用的术语“多肽”包含任意长度但优选至少5个氨基酸的氨基酸链,包括其中氨基酸残基通过共价肽键连接的全长蛋白。本发明的或用于本发明的方法中的多肽可以是纯化的天然产物,或者可以部分或全部使用重组或合成技术产生。该术语可是指多肽、多肽的聚合体,例如,二聚体或其他多聚体、融合多肽、多肽片段、多肽变体或其衍生物。
多肽的“片段”是指较长的多肽的连续子序列。优选所述片段的长度为至少5个、更优选至少10个、更优选至少20个、更优选至少30个、更优选至少40个、更优选至少50个、更优选至少100个、更优选至少120个、更优选至少150个、更优选至少200个、更优选至少250个、更优选至少300个、更优选至少300个、更优选至少400个氨基酸。
在一种实施方式中,所述片段执行或能够执行与该片段是其一部分的多肽相同的功能。
优选地,所述片段执行生物活性所必需的功能和/或提供多肽的三维结构。
应用于本文公开的多核苷酸或多肽序列的术语“分离的”用于指从其天然细胞环境中去除的序列。在一种实施方式中,所述序列与其天然存在的侧翼序列相分离。分离的分子可以通过包括生化、重组和合成技术的任意方法或方法的组合来获得。
术语“重组体(recombinant)”是指经合成产生的或从在其天然环境中围绕它的序列中去除的多核苷酸序列。所述重组序列可以与其天然环境中不存在的序列重新组合。
“重组体”多肽序列通过从“重组体”多核苷酸序列的翻译而产生。
关于衍生自特定属或物种的本发明的多核苷酸或多肽的术语“衍生自”意指所述多核苷酸或多肽与天然存在于该属或物种中的多核苷酸或多肽具有相同的序列。衍生自特定属或物种的多核苷酸或多肽因此可以合成产生或重组产生。
变体
本文使用的术语“变体”是指不同于特定鉴定的序列的多核苷酸或多肽序列,其中一个或多个核苷酸或氨基酸残基被缺失、置换或添加。变体可以是天然存在的等位基因变体或非天然存在的变体。变体可以来自同一物种或来自其他物种并且可以包含同源物(homologue)、旁系同源物(paralogue)和直系同源物(orthologue)。在某些实施方式中,本文公开的多肽和多核苷酸的变体具有与所公开的多肽或多核苷酸的生物活性相同或相似的生物活性。关于多肽和多核苷酸的术语“变体”包含如本文所定义的多肽和多核苷酸的所有形式。
多核苷酸变体
变体核苷酸序列优选显示出与本发明的序列至少50%、更优选至少51%、更优选至少52%、更优选至少53%、更优选至少54%、更优选至少55%、更优选至少56%、更优选至少57%、更优选至少58%、更优选至少59%、更优选至少60%、更优选至少61%、更优选至少62%、更优选至少63%、更优选至少64%、更优选至少65%、更优选至少66%、更优选至少67%、更优选至少68%、更优选至少69%、更优选至少70%、更优选至少71%、更优选至少72%、更优选至少73%、更优选至少74%、更优选至少75%、更优选至少76%、更优选至少77%、更优选至少78%、更优选至少79%、更优选至少80%、更优选至少81%、更优选至少82%、更优选至少83%、更优选至少84%、更优选至少85%、更优选至少86%、更优选至少87%、更优选至少88%、更优选至少89%、更优选至少90%,更优选至少91%、更优选至少92%、更优选至少93%、更优选至少94%、更优选至少95%、更优选至少96%、更优选至少97%、更优选至少98%和最优选至少99%的同一性。同一性通过至少20个核苷酸位置、优选至少50个核苷酸位置、更优选至少100个核苷酸位置以及最优选本发明的全长多核苷酸的比较窗口而发现。
多核苷酸序列同一性可以通过以下方式测定。使用bl2seq中的BLASTN(来自BLAST程序套件,2.2.5版本[2002年11月])将目标多核苷酸序列与候选多核苷酸序列进行比较(Tatiana A.Tatusova,Thomas L.Madden(1999),"Blast 2sequences-a new tool forcomparing protein and nucleotide sequences",FEMS Microbiol Lett.174:247-250),该程序可从NCBI公开获得(ftp:jjftp.ncbi.nih.govjblastj)。在一种实施方式中,使用bl2seq的默认参数。在其他实施方式中,使用bl2seq的默认参数,除了应该关闭对低复杂度部分的过滤以外。
也可以使用全局序列比对程序(例如,Needleman,S.B.and Wunsch,C.D.(1970)J.Mol.Biol.48,443-453)在候选多核苷酸序列和目标多核苷酸序列之间的整个重叠长度上计算多核苷酸序列同一性。Needleman-Wunsch全局比对算法的完整实施方式可见于EMBOSS程序包中的needle程序(Rice,P.Longden,l.and Bleasby,A.EMBOSS:The EuropeanMolecular Biology Open Software Suite,Trends in Genetics June 2000,第16卷,第6期,第276-277页),其可从http://www.hgmp.mrc.ac.uk/Software/EMBOSS/获得。欧洲生物信息学研究所服务器也提供了在线上(在http:/www.ebi.ac.uk/emboss/align/上)进行两条序列之间的EMBOSS-needle全局比对的工具。
或者,可以使用GAP程序,其计算两条序列的最佳全局比对,而不会对末端空位进行罚分。GAP记载于以下文章中:Huang,X.(1994)On Global SequenceAlignment.Computer Applications in the Biosciences 10,227-235。
计算多核苷酸的序列同一性%的优选方法基于使用Clustal X比对待比较的序列(Jeanmougin et al.,1998,Trends Biochem.Sci.23,403-5)。
本发明的多核苷酸变体还包含表现出与一个或多个特定鉴定的序列具有相似性的那些,其可能保留这些序列的功能等效性并且无法被合理预期已随机发生。所述关于多肽的序列相似性可以使用可公开获得的NCBI的BLAST程序套件的bl2seq程序(2.2.5版本[2002,11月])(ftp://ftp.ncbi.nih.gov/blast/)来确定。
或者,本发明的变体多核苷酸在严格条件下与特定的多核苷酸序列或其互补体杂交。
术语“在严格条件下杂交”及其语法上的同义语是指多核苷酸分子与靶多核苷酸分子(如固定在DNA或RNA印迹(如Southern印迹或Northern印迹)上的靶多核苷酸分子)在确定的温度和盐浓度的条件下杂交的能力。在严格杂交条件下杂交的能力可以通过在较不严格条件下初始杂交然后增加严格性至预期严格性的条件下杂交来测定。
对于长度大于约100个碱基的多核苷酸分子,典型的严格杂交条件是不超过25至30℃(例如,10℃),低于天然双链的解链温度(Tm)(通常参见,Sambrook et al.,Eds,1987,Molecular Cloning,A Laboratory Manual,第2版,Cold Spring Harbor Press;Ausubelet al.,1987,Current Protocols in Molecular Biology,Greene Publishing)。大于约100个碱基的多核苷酸分子的Tm可通过公式Tm=81.5+0.41%(G+C-log(Na+)来计算(Sambrook et al.,Eds,1987,Molecular Cloning,A Laboratory Manual,第2版,ColdSpring Harbor Press;Bolton and McCarthy,1962,PNAS 84:1390)。长度大于约100个碱基的多核苷酸的典型严格条件为杂交条件,如在6X SSC、0.2%SDS的溶液中预洗涤;在65℃、6X SSC、0.2%SDS中过夜杂交;然后在65℃下在1X SSC、0.1%SDS中洗涤两次,每次30分钟,以及在65℃下在0.2X SSC、0.1%SDS中洗涤两次,每次30分钟。
对于长度小于100个碱基的多核苷酸分子,示例性的严格杂交条件为低于Tm5至10℃。平均而言,长度小于100bp的多核苷酸分子的Tm降低约(500/寡核苷酸长度)℃。
对于已知作为肽核酸(PNA)的DNA模拟物(Nielsen et al.,Science.1991Dec 6;254(5037):1497-500),Tm值比DNA-DNA杂交体或DNA-RNA杂交体的Tm值高,并且可以使用Giesen et al.,Nucleic Acids Res.1998Nov 1;26(21):5004-6中记载的公式计算。具有长度小于100个碱基的DNA-PNA杂交体的示例性严格杂交条件为低于Tm 5至10℃。
本发明的变体多核苷酸还包含这样的多核苷酸,其不同于本发明的序列,但是因遗传密码的简并性而编码与由本发明的多核苷酸编码的多肽具有相似活性的多肽。不改变多肽的氨基酸序列的序列改变是“沉默变异”。除了ATG(甲硫氨酸)和TGG(色氨酸),相同氨基酸的其他密码子可以通过本领域公知的技术改变,例如,在特定的宿主生物体中以优化密码子的表达。
本发明还包括这样的多核苷酸序列改变,其导致所编码的多肽序列的一个或几个氨基酸的保守置换,而不明显改变其生物活性。本领域技术人员将会知晓制备表型沉默氨基酸置换的方法(参见,例如,Bowie et al.,1990,Science 247,1306)。
由于所编码的多肽序列中的沉默变异和保守置换而导致的变体多核苷酸可通过如前所述的tblastx算法使用可公开获得的NCBI的BLAST程序套件的bl2seq程序(2.2.5版本[2002,11月])(ftp://ftp.ncbi.nih.gov/blast/)来测定。
多肽变体
关于多肽的术语“变体”包含天然存在的、重组产生的和合成产生的多肽。变体多肽序列优选表现出与本发明的序列至少50%、更优选至少51%、更优选至少52%、更优选至少53%、更优选至少54%、更优选至少55%、更优选至少56%、更优选至少57%、更优选至少58%、更优选至少59%、更优选至少60%、更优选至少61%、更优选至少62%、更优选至少63%、更优选至少64%、更优选至少65%、更优选至少66%、更优选至少67%、更优选至少68%、更优选至少69%、更优选至少70%、更优选至少71%、更优选至少72%、更优选至少73%、更优选至少74%、更优选至少75%、更优选至少76%、更优选至少77%、更优选至少78%、更优选至少79%、更优选至少80%、更优选至少81%、更优选至少82%、更优选至少83%、更优选至少84%、更优选至少85%、更优选至少86%、更优选至少87%、更优选至少88%、更优选至少89%、更优选至少90%,更优选至少91%、更优选至少92%、更优选至少93%、更优选至少94%、更优选至少95%、更优选至少96%、更优选至少97%、更优选至少98%和最优选至少99%的同一性。同一性通过至少20个氨基酸位置、优选至少50个氨基酸位置、更优选至少100个氨基酸位置以及最优选本发明的全长多肽的比较窗口而发现。
多肽序列同一性可以通过以下方式确定。使用bl2seq中的BLASTN(来自BLAST程序套件,2.2.5版本[2002年11月],其可从NCBI公开获得(ftp://ftp.ncbi.nih.gov/blast/))将所述目标多肽序列与候选多肽序列进行比较。在一种实施方式中,使用bl2seq的默认参数。在其他实施方式中,使用bl2seq的默认参数,除了应关闭对低复杂度部分的过滤。
也可以使用全局序列比对程序在候选多肽序列和目标多肽序列之间的整个重叠长度上计算多肽序列同一性。如上所讨论的EMBOSS-needle(可从http:/www.ebi.ac.uk/emboss/align/上获得)和GAP(Huang,X.(1994)On Global Sequence Alignment.ComputerApplications in the Biosciences 10,227-235)也是用于计算多肽序列同一性的合适的全局序列比对程序。
计算多肽的序列同一性%的优选方法基于使用Clustal X比对待比较的序列(Jeanmougin et al.,1998,Trends Biochem.Sci.23,403-5)。
变体多肽包括这样的多肽,其中氨基酸序列与本文的多肽的区别在于一个或多个不影响肽的生物活性的保守氨基酸置换、缺失、添加或插入。保守置换通常包括一个氨基酸置换为具有相似特征的另一个,例如,以下组中的置换:缬氨酸、甘氨酸;甘氨酸、丙氨酸;缬氨酸、异亮氨酸、亮氨酸;天冬氨酸、谷氨酸;天冬酰胺、谷氨酰胺;丝氨酸、苏氨酸;赖氨酸、精氨酸;和苯丙氨酸、酪氨酸。
非保守置换需要将这些类别之一的一个成员换成另一类别的成员。
对进化的生物序列的分析已证明并不是所有的序列改变都具有同样可能性,反映了保守置换和非保守置换在生物水平上的至少部分差异。例如,某些氨基酸置换可频繁发生,而其他则非常少见。氨基酸残基的进化性改变或置换可以通过评分矩阵(也称为置换矩阵)来模拟。将所述矩阵用于生物信息学分析中以鉴定序列之间的关系,一个实例为以下所示的BLOSUM62矩阵(表1)。
表1:含有所有可能的置换分数的BLOSUM62矩阵[Henikoff and Henikoff,1992]。
使用所示的BLOSUM62矩阵生成相应的行和列的交汇点处存在的各比对的氨基酸对的分数。例如,从谷氨酸残基(E)至天冬氨酸残基(D)的置换分数为2。对角线示出了还未改变的氨基酸的分数。大部分置换改变具有负分数。所述矩阵只包含整数。
确定合适的评分矩阵以产生对给定序列组最佳的比对被认为是在本领域技术的范围内。表1中的BLOSUM62矩阵也可以用作BLAST检索中的缺省矩阵,尽管并不局限于此。
其他变体包括具有影响肽稳定性的修饰的肽。这种类似物可以包含,例如,肽序列中的一个或多个非-肽键(其替换肽键)。也包括这样的类似物,其包括非天然存在的L-氨基酸的残基,例如,D-氨基酸或非天然存在的合成氨基酸,例如,β或γ氨基酸和环状类似物。
构建体、载体和其组件
术语“遗传构建体”是指多核苷酸分子,通常为双链DNA,其可能已经被插入至另一个多核苷酸分子(插入多核苷酸分子)(例如,但不限于cDNA分子)中。遗传构建体可以包含必要的元件,其允许转录插入多核苷酸分子,并且,任选地,将转录物翻译为多肽。所述插入多核苷酸分子可衍生自宿主细胞,或可衍生自不同的细胞或生物体和/或可以是重组多核苷酸。一旦在宿主细胞内,所述遗传构建体可以整合在宿主染色体DNA中。所述遗传构建体可以与载体连接。
术语“载体”是指多核苷酸分子,通常为双链DNA,其被用于将所述遗传构建体转运到宿主细胞中。所述载体能够在至少一种其他宿主系统(如大肠杆菌)中复制。
术语“表达构建体”是指包括必要元件的遗传构建体,所述元件允许转录所述插入多核苷酸分子,并且,任选地,将转录物翻译为多肽的必要的元件。表达构建体通常在5’至3’方向上包含:
a)在所述构建体将转化至其中的宿主细胞中具有功能的启动子;
b)待表达的多核苷酸;
c)在所述构建体将转化至其中的宿主细胞中具有功能的终止子。
术语“编码区域”或“开放阅读框”(ORF)是指能够在适当的调控序列的控制下产生转录产物和/或多肽的基因组DNA序列的正义链或cDNA序列。所述编码序列通过5’翻译起始密码子和3’翻译终止密码子的存在而鉴定。当插入到遗传构建体中时,“编码序列”在其与启动子序列和终止子序列可操作地连接时能够被表达。
“可操作地连接”意指待表达的序列被置于调控元件的控制下,所述调控元件包括启动子、组织特异性调控元件、时间调控元件、增强子、抑制子和终止子。
术语“非编码区域”是指非翻译序列,其为翻译起始位点的上游和翻译终止密码子的下游。这些序列也分别称为5’UTR和3’UTR。这些区域包括转录起始和终止以及调控翻译效率所必需的元件。
终止子是终止转录的序列,并存在于所翻译序列下游的基因的3’非翻译末端。终止子是mRNA稳定性的重要决定因素,并且在一些情况下被发现具有空间调控功能。
术语“启动子”是指编码区域上游的调控基因转录的非转录顺式调控元件。启动子包含指定转录起始位点和保守框(如TATA框)以及被转录因子结合的基序的顺式起始元件。
启动子可以与待表达的多核苷酸是同源的。这意指所述启动子和多核苷酸天然以可操作地连接的形式存在。
或者,所述启动子可以与待表达的多核苷酸是异源的。这意指所述启动子和多核苷酸天然不以可操作地连接的形式存在。
“转基因”是通过转化被引入至生物体中的多聚核苷酸。所述转基因可以衍生自相同物种或与所述转基因被引入至其中的生物体的物种不同的物种。所述转基因也可以是合成的并且天然不存在于任何物种中。
“转基因植物”是指含有作为遗传操作或转化结果的新遗传物质的植物。所述新遗传物质可以衍生自与所得转基因植物的物种相同或不同的植物,或者可以是合成的。
优选地,所述“转基因的”由于转基因的存在而与天然存在的任何植物不同。
“反向重复”是重复的序列,其中,重复序列的后半段是互补链,例如:
(5’)GATCTA…….TAGATC(3’)
(3’)CTAGAT…….ATCTAG(5’)
只要在重复区域间具有3-5个碱基对的间隔区,通读转录将产生经过互补碱基配对来形成发卡结构的转录物。所述间隔区可以是通常长度至少为3个碱基对的任意多核苷酸序列。
宿主细胞
宿主细胞可以衍生自,例如,细菌、真菌、昆虫、哺乳动物或植物生物体。
分离或产生多核苷酸的方法
本发明的多核苷酸分子可以使用本领域普通技术人员已知的多种技术分离。例如,可以通过使用Mullis et al.,Eds.1994The Polymerase Chain Reaction,Birkhauser(以引用的方式纳入本文)中记载的聚合酶链式反应(PCR)分离所述多肽。本发明的多肽可以使用如本文所定义的衍生自本发明的多核苷酸序列的引物来扩增。
分离本发明的多核苷酸的其他方法包括使用具有如本文所示的杂交探针的序列的多肽的全部或部分。将标记的多核苷酸探针与固定在固体支持物(如硝化纤维素滤膜或尼龙膜)上的多核苷酸杂交的技术可以被用于筛选基因组文库或cDNA文库。示例性的杂交和洗涤条件为:在65℃下在5.0X SSC、0.5%十二烷基硫酸钠、1X Denhardt溶液中杂交20小时;在1.0X SSC,1%(w/v)十二烷基硫酸钠中洗涤(在55℃下洗涤3次,每次20分钟),以及任选地,在60℃下在0.5X SSC、1%(w/v)十二烷基硫酸钠中洗涤1次(20分钟)。在60℃、0.1XSSC、1%(w/v)十二烷基硫酸钠的条件下进行任选的进一步洗涤(20分钟)。
本发明的多核苷酸片段可以通过本领域公知的技术(例如,限制性内切酶消化、寡核苷酸合成和PCR扩增)来产生。
部分多核苷酸序列可以在本领域公知的方法中使用,以鉴定相应的全长多核苷酸序列。这种方法包括基于PCR的方法,5’RACE(Frohman MA,1993,Methods Enzymol.218:340-56)和基于杂交的方法、基于计算机/数据库的方法。此外,例如,使用以基于已知区域的引物为起始的反向PCR允许捕获位于本文公开的多核苷酸序列侧翼的未知序列(Trigliaet al.,1998,Nucleic Acids Res 16,8186,以引用的方式纳入本文)。该方法使用若干个限制性酶以在基因的已知区域中产生合适的片段。所述片段然后通过分子内连接进行环化并用作PCR模板。发散引物(divergent primer)从已知区域设计而来。为了完全组装全长的克隆,可以使用标准分子生物学方法(Sambrook et al.,Molecular Cloning:ALaboratory Manual,第2版Cold Spring Harbor Press,1987)。
当从特定物种产生转基因植物时,使用衍生自该物种的序列转化这样的植物可能是有益的。益处可能是改善公众对在产生转基因生物中的物种间转化的关注。此外,当基因的下调是期望的结果时,利用与所述植物中的序列相同(或至少是高度相似的)的序列可能是必需的,对该基因而言,降低的表达是期望的。因为这些以及其他原因,能够在几个不同植物物种中鉴定和分离出特定基因的直系同源物是可期望的。
变体(包括直系同源物)可以通过所描述的方法进行鉴定。
用于鉴定变体的方法
物理方法
变体多肽可以通过使用基于PCR的方法进行鉴定(Mullis et al.,Eds.1994ThePolymerase Chain Reaction,Birkhauser)。通常,可用于通过PCR扩增本发明的多聚核苷酸分子变体的引物的多聚核苷酸序列可以基于编码相应氨基酸序列的保守区域的序列。
或者,可以使用本领域技术人员所公知的文库筛选方法(Sambrook et al.,Molecular Cloning:A Laboratory Manual,第2版,Cold Spring Harbor Press,1987)。当鉴定探针序列的变体时,相对于当寻找精确的序列匹配时,其杂交和/或洗涤的严格性通常将被降低。
多肽变体也可以通过物理方法进行鉴定,例如,通过使用抗本发明的多肽的抗体筛选表达文库(Sambrook et al.,Molecular Cloning:A Laboratory Manual,第2版,ColdSpring Harbor Press,1987)或在这样的抗体的帮助下将多肽从天然来源中鉴定出。
基于计算机的方法
包括多核苷酸和多肽变体的本发明的变体序列也可以通过本领域技术人员所公知的基于计算机的方法使用公开的域序列比对算法和序列相似性搜索工具来搜索序列数据库(公开的域数据库包括Genbank、EMBL、Swiss-Prot、PIR等)而进行鉴定。参见,例如,Nucleic Acids Res.29:1-10and 11-16,2001中在线资源的实例。相似性搜索检索和比对用于与待分析序列相比较的靶序列(即查询序列)。序列比较算法使用评分矩阵来为每一条比对序列赋予总分数。
用于鉴定序列数据库中变体的示例性程序族是包括BLASTN、BLASTP、BLASTX、tBLASTN和tBLASTX的BLAST程序套件(2.2.5版本[2002年11月]),它们可以从(ftp://ftp.ncbi.nih.gov/blast/)或从美国马里兰州贝塞斯达市(邮编20894)38A栋8N805房间的国家医学图书馆国家生物技术信息中心(NCBI)公开获得。NCBI服务器也提供了使用这些程序来筛选大量可公开获得的序列数据库的工具。BLASTN比较核苷酸查询序列和核苷酸序列数据库。BLASTP比较氨基酸查询序列和蛋白序列数据库。BLASTX比较在所有阅读框中被翻译的核苷酸查询序列和蛋白序列数据库。tBLASTN比较蛋白查询序列和在所有阅读框中动态翻译的核苷酸序列数据库。tBLASTX比较核苷酸查询序列的六读码框翻译和核苷酸序列数据库的六读码框翻译。BLAST程序可以以默认参数使用或者可以根据需要改变参数以改进筛选。
包括BLASTN、BLASTP和BLASTX的BLAST算法族的使用在出版物Altschul et al.,Nucleic Acids Res.25:3389-3402,1997中进行了描述。
由BLASTN、BLASTP、BLASTX、tBLASTN、tBLASTX或相似算法产生的查询序列产生的对于一个或多个数据库序列的“击中序列数”(hit)比对和鉴定了序列的相似部分。击中序列数以相似性的程度和序列重叠的长度的顺序排列。对于数据库序列的击中序列数通常代表了仅是被查询序列的序列长度的部分的重叠。
BLASTN、BLASTP、BLASTX、tBLASTN和tBLASTX算法也针对比对产生“期望”值。期望值(E)表明当搜索含有随机连续序列的相同大小的数据库时,人们能“期望”随机看到的击中的数目。期望值用作决定对于数据库的击中是否表明真的相似性的显著性阈值。例如,指定多核苷酸击中数的E值为0.1被解释为意味着,在被筛选的数据库大小的数据库中,人们可能期望看到具有简单随机地相似分数的序列的被比对部分的0.1匹配。对于被比对和匹配部分具有0.01或更低的E值的序列,通过使用所述BLASTN、BLASTP、BLASTX、tBLASTN或tBLASTX算法在那个数据库中发现随机匹配的可能性是1%或更低。
一组相关序列的多序列比对可以使用CLUSTALW(Thompson,J.D.,Higgins,D.G.and Gibson,T.J.(1994)CLUSTALW:improving the sensitivity of progressivemultiple sequence alignment through sequence weighting,positions-specific gappenalties and weight matrix choice.Nucleic Acids Research,22:4673-4680,http://www-igbmc.u-strasbg.fr/BioInfo/ClustalW/Top.html)或T-COFFEE(CedricNotredame,Desmond G.Higgins,Jaap Heringa,T-Coffee:A novel method for fast andaccurate multiple sequence alignment,J.Mol.Biol.(2000)302:205-217))或PILEUP进行,这些算法使用渐进配对比对。(Feng and Doolittle,1987,J.Mol.Evol.25,351)。
模式识别软件应用可用于发现基序或标记序列。例如,MEME(用于基序挖掘的多重Em)在一组序列中发现基序标记序列,和MAST(基序比对和搜索工具)使用这些基序来鉴定查询序列中的相似或相同基序。MAST结果以具有适当统计数据和发现的基序的可视化概况的系列比对的形式提供。MEME和MAST在圣地亚哥的加利福尼亚大学开发。
PROSITE(Bairoch and Bucher,1994,Nucleic Acids Res.22,3583;Hofmann etal.,1999,Nucleic Acids Res.27,215)是鉴定从基因组或cDNA序列翻译而来的未表征的蛋白的功能的方法。PROSITE数据库(www.expasy.org/prosite)含有生物学上重要的模式和配置文件并被设计以使其能与适当的计算机工具一起使用,以指定新的序列至已知的蛋白家族或测定哪些已知的结构域存在于所述序列中(Falquet et al.,2002,NucleicAcidsRes.30,235)。Prosearch是能够使用给定序列模式或标记搜索SWISS-PROT和EMBL数据库的工具。
分离多肽的方法
包括变体多肽的本发明的,或在本发明的方法中使用的多肽可以通过使用本领域公知的肽合成方法进行制备,例如,使用固相合成技术的定向肽合成(例如Stewart etal.,1969,in Solid-Phase Peptide Synthesis,WH Freeman Co,加利福尼亚圣弗朗西斯科)或自动化合成,例如,使用应用Applied Biosystems 431A肽合成仪(加利福尼亚,福斯特市)。所述多肽的突变形式也可以在该合成过程中产生。
本发明的或在本发明的方法中使用的多肽和变体多肽也可以通过使用本领域公知的各种技术从天然来源中纯化而来(例如,Deutscher,1990,Ed,Methods inEnzymology,Vol.182,Guide to Protein Purification)。
或者,本发明的或在本发明的方法中使用的多肽和变体多肽可能在合适的宿主细胞中重组表达并按照如下所述从细胞分离而来。
产生构建体和载体的方法
本发明的遗传构建体包含一条或多条本发明的多核苷酸序列和/或编码本发明的多肽的多核苷酸,并可用于转化例如细菌、真菌、昆虫、哺乳动物或植物生物体。本发明的遗传构建体旨在包括如本文所定义的表达构建体。
产生和使用遗传构建体和载体的方法在本领域中是公知的并通常记载于Sambrook et al.,Molecular Cloning:A Laboratory Manual,第2版,Cold SpringHarbor Press,1987;Ausubel et al.,Current Protocols in Molecular Biology,Greene Publishing,1987)中。
产生包含多核苷酸、构建体或载体的宿主细胞的方法
本发明提供了包含本发明的遗传构建体或载体的宿主细胞。
包含本发明的遗传构建体(如表达构建体)的宿主细胞可用于本领域公知的方法中(例如,Sambrook et al.,Molecular Cloning:A Laboratory Manual,第2版,ColdSpring Harbor Press,1987;Ausubel et al.,Current Protocols in MolecularBiology,Greene Publishing,1987)以用于重组产生本发明的多肽。该方法可以涉及在适当的培养基中在适于或有助于本发明的多肽的表达的条件下培养宿主细胞。可任选地分泌至培养物中的经表达的重组多肽然后可以从培养基、宿主细胞或培养物培养基中通过本领域公知的方法分离(例如,Deutscher,Ed,1990,Methods in Enzymology,第182卷,Guideto Protein Purification)。
产生包含构建体和载体的植物细胞和植物的方法
本发明还提供了包含本发明的遗传构建体的植物细胞,以及被修饰以改变本发明的多核苷酸或多肽的表达的植物细胞。包含该细胞的植物也形成了本发明的一个方面。
用多肽转化植物细胞、植物和其部分的方法在下述文献中进行了描述:Draper etal.,1988,Plant Genetic Transformation and Gene Expression.A Laboratory ManualBlackwell Sci.Pub.Oxford,p.365;Potrykus and Spangenburg,1995,Gene Transfer toPlants.Springer-Verlag,Berlin.;和Gelvin et al.,1993,Plant MolecularBiol.Manual.Kluwer Acad.Pub.Dordrecht。包括转化技术的转基因植物的综述在Galunand Breiman,1997,Transgenic Plants.Imperial College Press,London中提供。
植物遗传操纵的方法
大量植物转化策略是可获得的(例如,Birch,1997,Ann Rev Plant Phys PlantMol Biol,48,297,Hellens RP,et al(2000)Plant Mol Biol 42:819-32,Hellens R etal Plant Meth 1:13)。例如,在多核苷酸/多肽被正常表达时,可以设计策略以增加多核苷酸/多肽在植物细胞、器官中和/或在特定发育阶段的表达,或在多核苷酸/多肽不能正常被表达时,设计策略以在细胞、组织、器官中和/或在特定发育阶段异位表达多核苷酸/多肽。所表达的多核苷酸/多肽可以衍生自待转化的植物物种或可衍生自不同的植物物种。
在转基因植物中用于表达基因的遗传构建体通常包括驱动一个或多个克隆多核苷酸表达的启动子、终止子和用于检测遗传构建体在被转化的植物中存在的选择性标记序列。
适用于遗传构建体的启动子在单子叶植物或双子叶植物的细胞、组织或器官中具有功能,并包括细胞、组织和器官特异性启动子,细胞周期特异性启动子,时间启动子,诱导型启动子,在大多数植物组织中有活性的组成型启动子和重组启动子。启动子的选择将依赖于所期望的克隆的多核苷酸在时间和空间上的表达。所述启动子可能是与目的转基因正常相关的启动子,或衍生自其他植物、病毒和植物病原性细菌和真菌的基因的启动子。无需过多的实验,本领域技术人员将能够通过使用包含本发明的多核苷酸序列的遗传构建体选择适用于修饰和调控植物特性的启动子。组成型植物启动子的实例包括CaMV 35S启动子、胆脂碱合成酶启动子和章鱼碱合成酶启动子和来自于玉米的Ubi 1启动子。在特定组织中有活性并对内部发育信号或外部非生物胁迫或生物胁迫产生应答的植物启动子记载于科学文献中。示例性的启动子记载于例如WO 02/00894中,其以引用的方式纳入本文。
在植物转化遗传构建体中普遍使用的示例性的终止子包括,例如,花椰菜花叶病毒(CaMV)35S终止子、根癌农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶或章鱼肉碱合成酶终止子、玉米(Zea mays)醇溶蛋白基因终止子、水稻(Oryza sativa)ADP葡糖焦磷酸化酶终止子和马铃薯(Solanum tuberosum)PI-II终止子。
在植物转化中普遍使用的选择性标志物包括赋予卡那霉素抗性的新霉素磷酸转移酶II基因(NPT II)、赋予壮观霉素和链霉素抗性的aadA基因、赋予Ignite(AgrEvo)和Basta(Hoechst)抗性的膦丝菌素乙酰基转移酶(bar基因)和赋予潮霉素抗性的潮霉素磷酸转移酶基因(hpt)。
包含可能用于植物和植物组织中启动子表达分析的报告基因(表达对于宿主而言是外来的、通常是酶活性和/或可视信号(例如荧光素酶、GUS、GFP)的活性的编码序列)的遗传构建体的使用也是被考虑的。报告基因的文献在Herrera-Estrella et al.,1993,Nature 303,209,和Schrott,1995,In:Gene Transfer to Plants(Potrykus,T.,Spangenberg.Eds)Springer Verlag.Berline,pp.325-336中进行了综述。
基因沉默
在多核苷酸/多肽被正常表达时,可以设计转化策略以降低多核苷酸/多肽在植物细胞、组织、器官中和/或在特定发育阶段的表达。
基因沉默策略可能会关注基因本身或影响所编码的多肽的表达的调控元件。“调控元件”在本文中以其最广泛可能的意义使用并包括与目的基因相互作用的其他基因。
被设计用于降低或沉默本发明的多核苷酸/多肽的表达的遗传构建体可以包括本发明多核苷酸的反义拷贝。在这样的构建体中,多核苷酸被以相对于启动子和终止子的反义方向进行放置。
“反义”多核苷酸通过将多核苷酸或多核苷酸或片段反向获得,以使得所产生的转录物将与该基因的mRNA转录物互补,例如,
5’GATCTA 3’(编码链) 3’CTAGAT 5’(反义链)
3’CUAGAU 5’mRNA 5’GAUCUCG 3’反义RNA
被设计用于基因沉默的遗传构建体也可以包括反向重复序列。“反向重复序列”是重复的序列,其中,重复序列的后半段是互补链,例如,
5’-GATCTA………TAGATC-3’
3’-CTAGAT………ATCTAG-5’
所形成的转录物可能经历互补碱基配对以形成发卡结构。通常在重复区域之间的至少3-5个碱基对的间隔区是允许发卡形成所必需的。包括这种反向重复序列的构建体可用于RNA干扰(RNAi)中,并因此可称为RNAi构建体。
另一种沉默方法涉及靶向于miRNA的转录等价物的小反义RNA的使用(Llave etal.,2002,Science 297,2053)。这样的对应于本发明的多核苷酸的小反义RNA的使用是特别考虑的。
本文所用的术语遗传构建体也包括小反义RNA和其他影响基因沉默的这样的多肽。
如本文所定义的,用表达构建体进行的转化也可以通过被称为有义抑制的过程产生基因沉默(例如,Napoli et al.,1990,Plant Cell 2,279;de Carvalho Niebel etal.,1995,Plant Cell,7,347)。在一些情况下,有义抑制可涉及全部或部分编码序列的过表达但也可涉及所述基因的非编码区(如内含子或5’或3’非翻译区(UTR))的表达。嵌合的部分正义构建体能用于协调沉默多个基因(Abbott et al.,2002,Plant Physiol.128(3):844-53;Jones et al.,1998,Planta 204:499-505)。这样的用于沉默本发明的多核苷酸的表达的有义抑制的使用也是被考虑的。
被设计用于基因沉默的遗传构建体中多核苷酸插入物可能对应于相应基因的编码序列和/或非编码序列(如启动子和/或内含子和/或5’或3’UTR序列)。
其他基因沉默策略包括显性负向方法和核酶构建体的使用(McIntyre,1996,Transgenic Res,5,257)。
转录前沉默可能通过基因本身或其调控元件的突变而实现。这样的突变可以包括点突变、移码、插入、缺失和置换。
转化方案
以下是公开的能够被用于遗传转化下述植物物种的遗传转化方案的代表性出版物:水稻(Alam et al.,1999,Plant Cell Rep.18,572)、苹果(Yao et al.,1995,PlantCell Reports 14,407-412)、玉米(美国专利序列No.5,177,010和5,981,840)、小麦(Ortizet al.,1996,Plant Cell Rep.15,1996,877)、番茄(美国专利序列No.5,159,135)、马铃薯(Kumar et al.,1996Plant J.9,:821)、木薯(Li et al.,1996Nat.Biotechnology 14,736)、莴苣(Michelmore et al.,1987,Plant Cell Rep.6,439)、烟草(Horsch et al.,1985,Science 227,1229)、棉花(美国专利序列No.5,846,797和5,004,863)、草(美国专利No.5,187,073和6,020,539)、薄荷(Niu et al.,1998,Plant Cell Rep.17,165)、柑橘植物(Pena et al.,1995,Plant Sci.104,183);葛缕子(Kren et al.,1997,Plant Cell Rep,17,39)、香蕉(美国专利序列No.5,792,935)、大豆(美国专利No.5,416,011、5,569,834、5,824,877、5,563,04455和5,968,830)、菠萝(美国专利序列No.5,952,543)、白杨(美国专利No.4,795,855)、普通单子叶植物(美国专利No.5,591,616和6,037,522)、芸苔(美国专利No.5,188,958、5,463,174和5,750,871)、谷物(美国专利No.6,074,877)、梨(Matsuda etal.,2005,Plant Cell Rep.24(1):45-51)、李子(Ramesh et al.,2006、Song和Sink 2005、Gonzalez Padilla et al.,2003)、草莓(Oosumi et al.,2006、Oosumi et al.,2006Planta.223(6):1219-30;Folta et al.,2006Planta Apr 14;PMID:16614818Foltaetal.,2006)、玫瑰(Li et al.,2003)、悬钩子(Graham et al.,1995Methods MolBiol.1995;44:129-33)、番茄(Dan et al.,2006,Plant Cell Reports V25:432-441)、苹果(Yao et al.,1995,Plant Cell Rep.14,407-412)和毛花猕猴桃(Actinidia eriantha)(Wang et al.,2006,Plant Cell Rep.25,5:425-31)、欧洲桦(silver birch)(Keinonen-Mettala et al.,1998,Plant Cell Rep.17:356-361.)和山杨(Nilsson O,et al.,1992,Transgenic Research.1:209-220)。其他物种的转化也被本发明所考虑。合适的方法和方案在科学文献中可以获得。
本领域已知的多个其他方法可能被用于改变本发明的核苷酸和/或多肽的活性的表达。这样的方法包括但不限于Tilling(Till et al.,2003,Methods Mol Biol,2%,205)、所谓的“Deletagene”技术(Li et al.,2001,Plant Journal 27(3),235)和人工转录因子(如合成的锌指转录因子)的使用(例如,Jouvenot et al.,2003,Gene Therapy 10,513)。此外,靶向于特定多肽的抗体或其片段也可以在植物中表达以调控该多肽的活性(Jobling et al.,2003,Nat.Biotechnol,21(1),35)。转座子标签方法也可以被使用。此外,与本发明的多肽相互作用的肽可以通过如相位展示技术(Dyax Corporation)进行鉴定。这样的相互作用的多肽可以在植物中表达或被应用到植物以影响本发明的多肽的活性。上述改变本发明的核苷酸和/或多肽的表达的每一种方法的使用都是被特别考虑的。
术语“改变本发明的或在本发明的方法中使用的多核苷酸或多肽的表达”或“改变的本发明的或在本发明的方法中使用的多核苷酸或多肽的表达”旨在包括对应于本发明的多核苷酸的基因组DNA被修饰从而导致本发明的多核苷酸或多肽的改变的表达的情况。所述基因组DNA的修饰可能是通过遗传转化或其他的本领域已知的诱导突变的方法进行。所述“改变的表达”可能与产生的信使RNA和/或多肽的量的增加或减少有关,并可能由于产生的多核苷酸和多肽的序列的改变而导致多肽的活性改变。
选择植物的方法
还提供了选择具有增加的叶或根生物量的植物的方法。该方法包括测试植物中是否存在至少一种PEAPOD多核苷酸或多肽的表达改变,包括本文所定义的或所公开的那些。当增加的叶或根生物量特征不必然易于测量时,该方法可以在幼年或早期发育阶段使用。
多核苷酸(如信使RNA)的表达经常被用作相应多肽表达的指标。测量多核苷酸的表达的示例性的方法包括但不限于Northern分析、RT-PCR和斑点印记(dot-blot)分析(Sambrook et al.,Molecular Cloning:A Laboratory Manual,第2版,Cold SpringHarbor Press,1987)。因此,如本文所定义的,本发明的多核苷酸或其部分在鉴定具有增加的叶或根生物量的植物的方法中可用作探针或引物。本发明或本文公开的多肽可以在被设计以鉴定这样的植物的杂交实验中用作探针或基于PCR的实验中用作引物。
或者,可以获得抗本文所述或所公开的PEAPOD多肽的抗体。获得和使用抗体的方法是本领域中的标准方法(参见例如:Antibodies,A Laboratory Manual,Harlow A Lane,Eds,Cold Spring Harbour Laboratory,1998)。这样的抗体可以被用在检测所述多肽的表达改变的方法中。这样的方法可以包括ELISA(Kemeny,1991,A Practical Guide toELISA,NY Pergamon Press)和Western分析(Towbin&Gordon,1994,J Immunol Methods,72,313)。
这些分析多核苷酸或多肽表达和选择具有增加的叶或根生物量的植物的方法在被设计以产生具有所述改变的特征的品种的传统育种程序中是有用的。
植物
术语“植物”旨在包括完整的植物或植物的任意部分、植物的繁殖体和子代。
术语“繁殖体”意指可用在有性或无性生殖或繁殖中的植物的任意部分,包括种子和插穗。
本发明的植物可能被种植,并且进行自交或与不同的植物植株进行杂交且所产生的具有期望的表型特征的杂交体可以被鉴定。两代或更多代植物可以被种植以确保目标表型特征被稳定维持和遗传。从这样的标准育种方法产生的植物也形成本发明的一个方面。
通过赤霉素(GA)、油菜素内酯(BR)和其他植物激素控制植物生长和发育
赤霉素(GA)和油菜素内酯(BR)是两类植物激素,它们参与植物形态发生和生长的很多方面,包括:种子萌发、细胞伸长、维管组织发育、种子大小、叶直立、开花、叶和果实衰老(Mathew et al 2009,NZJAR 52,213-225;Hou et al 2010,Developmental Cell 19,884-894;Jiang and Lin 2013,Plant Signaling and Behaviour 8:10,e25928)。
考虑到GA和BR在植物发育中的作用,调控GA和BR的水平或它们下游靶标的能力在提高很多植物物种的产量和质量方面是高度期望的。实际上,有一些这两种激素中的一种的外源施用被用于提高农艺价值的商业实例。
GA可以被应用于黑麦草以刺激过季生长以及促进开花(Mathew et al 2009,NZJAR 52,213-225),其也可以被用于抵消较低温度对甘蔗(热带C4草)的副作用。GA也可以用于增大无籽葡萄和樱桃的果实大小,以促进苹果和梨的结实并延迟特别是柑橘属作物的果皮老化(Sun 2011,Current Biology 21,R338-R345)。类似地,建议将BR制品用于提高马铃薯、番茄、黄瓜、辣椒和大麦、水稻、玉米、小麦、棉花和烟草的作物产量和质量(Prusakovaet al 1999,Agrarian Russia,41-44;Khripach et al 2000Annals of Botany 86,441-447;Anjum et al 2011J.Agronomy Crop Sci.197,177-185;Vardhini 2012J.Phytology4,1-3)。但是,商业上应用的油菜素内酯的低采用率可以反映出成本和在类固醇被外源施用时植物不能对其进行有效吸收的事实。此外,需要严格控制时机和外源施用的GA和BR的浓度限制了它们的应用。
在大多数情况下,被子植物中的GA和BR生物合成和分解代谢途径已经被表征并包括负调控因子和下游转录因子靶标。GA或BR一旦结合至其各自的受体,复杂的信号通路便接续发生,在这两种情况中,调控的中心点均涉及改变负调控因子DELLA(在GA的情况下)和转录调控因子(在BR的情况下)的泛素-蛋白酶体通路。
DELLA蛋白的去除导致对生长抑制的去除和对GA应答的生长和发育的促进。相反地,对BR的检测导致未被磷酸化的BZR1蛋白在细胞核中的累积。BZR1的去磷酸化阻止了其被蛋白酶体降解并反而使得BZR1能与其他DNA结合转录因子结合并与转录辅因子相互作用。这导致对参与生长和其他细胞过程的成千上万个基因的调控,包括抑制BR生物合成基因的表达(He et al 2005,Science 307,1634-1638;Guo et al 2013,Current OpinionPlant Biol.16,545-553)。
存在很多外源信号和环境提示,它们影响GA-GID1-DELLA调控模块,在该模块中DELLA通过与多种来自其他通路的关键调控蛋白的直接蛋白-蛋白相互作用整合了不同的信号传导活性。因此,DELLA蛋白是主要的生长抑制子,其通过整合来自其他激素通路的内部信号(植物生长素、脱落酸、茉莉酸和乙烯)和外部生物刺激(病原体)和非生物刺激(光照条件、冷和盐胁迫)来控制植物生长和发育(Sun 2011,Current Biology 21,R338-R345)。干旱是限制植物生长和农业生产力的最重要的环境限制因素之一。不出所料地,在提高的耐旱性和更延伸的根系之间存在正相关性,所述更延伸的根系包括更深的根和更多的侧根,它们都能够进行土壤勘探和地下资源获取(Yu et al 2008,Plant Cell 20,1134-1151;Werner et al 2010,Plant Cell 22,3905-3920)。因此,由此可见,共同的农业目标是对根系结构的优化以有助于克服由水或养分缺乏造成的作物植物的产量限制。但是,在所有缩减作物产量的非生物胁迫中,干旱是最具破坏性的一种并且是对抗育种者工作的最顽固胁迫。因为性状受很多基因控制,传统的育种方法是困难的并且难以评估(Werner etal 2010,Plant Cell 22,3905-3920)。当标记辅助选择(MAS)、数量性状基因座(QTL)和其他基因组学方法被广泛用于辅助育种工作以产生抵抗干旱的栽培种时(Tuberosa andSalvi,2006,Trends in Plant Science,11:405-412),所述系统受限于筛选群体中存在的变异。
有趣的是,水稻仅具有一个DELLA蛋白(SLR1),玉米具有两个(d8和d9)(Lawit etal 2010,Plant Cell Physiol 51,1854-1868),而拟南芥属具有5个(GA1、RGA、RGL1、RGL2和RGL3)(Achard and Genschik 2009,J.Exp.Bot.60,1085-1092)。此外,在最近的系统进化分析中,Chen et al 2013发现了它们所分析的六个禾本科物种有5个仅具有单个DELLA,而18个双子叶植物物种中有14个具有两个或更多个DELLA蛋白。相比之下,水稻中存在BZR家族中的6个成员,玉米中存在10个成员(www.Grassius.org)以及拟南芥属中存在6个成员(Wang et al 2002,Developmental Cell 2,505-513)。
植物的生长和发育依赖于提供其固着生活习性所需的高发育可塑性的信号传导通路之间的多种连接(Gallego-Bartolome et al 2012,PNAS 109,13446-13451)。因此,目前的证据,而不是以绝缘形式存在的各激素信号传导通路,表明不同的通路之间存在高程度的相互作用,以及给定的激素通常调控由其余激素引起的输出。例如,近来已证明GA和BR信号传导通路之间的相互干预包括DELLA和BZR1/BES1之间的直接相互作用,由此DELLA蛋白不仅影响蛋白稳定性而且抑制BZR1的转录活性(Li and He 2013,Plant Signaling andBehaviour 8:7,e24686及其中的文献)。因此,由GA促进细胞伸长部分是通过去除DELLA介导的对BZR1的抑制。
近来已证明植物生长和发育可以通过直接操控主生长调节子DELLA(Lawit,Kundu,Rao and Tomes,2007,Isolated polynucleotide molecules corresponding tomutant and wild-type alleles of the maize D9gene and methods of use,WO2007124312 A2)和BZR1(Chory and Wang,2005,Genes involved in brassinosteroidhormone action on plants,US 6,921,848 B2)来改变。
类固醇激素在协调植物和动物的广泛的发育和生理过程中起着重要作用(Thummel and Chory 2002,Genes Dev.16,3113-3129)。在植物中,类固醇激素油菜素内酯(BR)在生长、发育和对生物和非生物胁迫的应答中起着广泛的作用(Zhu et al 2013,Development 140,1615-1620;Clouse 2011,Plant Cell 23,1219-1230)。相比于通过核受体起作用的动物类固醇激素信号传导,在植物中,BR结合于细胞表面受体激酶BRASSINOSTEROID INSENSITIVE 1(BRI1)的胞外结构域并激活调控基因表达的细胞内信号转导级联(Clouse 2011,Plant Cell 23,1219-1230;Kinoshita et al 2005,Nature 433,167-171)。有包括中间体的激活和失活的多个步骤,所述中间体导致两个转录因子Brassinazole Resistant 1(BZR1)和BZR2(也称为BES1)的磷酸化。因此,信号转导BZR转录因子是将信号传导转换为BR应答基因表达的靶组分。
在植物激素信号传导中存在一种新兴模式,其中,由激素激活的靶转录因子也被特定的阻遏因子复合物负调控。例如,在茉莉酸(JA)、植物生长素、脱落酸(ABA)和独角金内酯(SL)信号传导通路中,所述靶转录因子被利用作为由激素通路特异性抑制因子招募的常用协同阻遏物的TOPLESS(TPL)的抑制因子复合物负调控(Pauwels et al 2010,Nature464,788-791)。在JA转导通路中,JASMONATE ZIM DOMAIN(JAZ)家族的转录阻遏因子直接地或通过衔接蛋白Novel Interactor of JAZ(NINJA)与靶JA-应答转录激活子MYC2相互作用并招募TPL(Pauwels et al 2010,Nature 464,788-791)。
因此,调控影响很多不同的目的农业性状的GA和BR通路的能力对于商业性农业具有相当大的价值。
本申请人的发明
如上所述,本发明涉及通过异位表达PEAPOD以增加禾本科植物中的叶生物量和根生物量中的至少一种的方法。
不希望被理论所束缚,本申请人已经证明PEAPOD(PPD)似乎通过与主生长调节子DELLA和BZR的直接或间接相互作用来调控GA和BR通路。
对PPD蛋白的一级氨基酸结构的分析表明高度保守的新的植物特异性结构域仅存在于这些蛋白中。在广泛的双子叶植物、松柏类植物和一些单子叶植物(棕榈、香蕉、兰花和浮萍)而非禾本科植物中发现了这些基因的同源物。
拟南芥属的PPD基因编码植物特异性TIFY家族(其以称为ZIM的结构域内发现的核心TIF[F/Y]XG基序命名)成员的蛋白(Vanholme et al 2007,Trends Plant Sci.12,239-244)。这两个拟南芥属PPD蛋白PPD1和PPD2包括在与12个已被充分表征的充当茉莉酮酸酯应答的阻遏因子的JAZ蛋白相同的II类TIFY组中。但是,PPD蛋白和该组中的另一个非-JAZ蛋白似乎并不参与对茉莉酮酸酯激素信号传导的应答(Pauwels et al 2010,Nature 464,788-791)。
同样地,不希望被理论所束缚,本申请人提出根据本发明,叶和根生物量的增加由新的机制介导,该机制使用PPD基因调控禾本科中的GA和BR通路。以下实施例3和4支持该提议。
本发明也可以广义地说是由本申请的说明书中单独或共同提及或指出的部分、元素和特征,以及所述部分、元素或特征中的任意两个或更多个的任意或全部组合组成,并且其中在本文中提到的特定整体在本发明涉及的领域中具有已知的等同性,这种已知的等同性被认为如同单独提出一样被纳入本文。
附图说明
参照以下附图可以更好地理解本发明,其中:
图1A示出了在多种双子叶植物和单子叶植物中PPD基因座附近的侧翼基因的同线性图,以及禾本科植物在相同位置的PPD基因的缺失。
图1B示出了水稻染色体中多个重复序列的存在,其中同线性表明应该存在PPD。
图2示出了包含来自一些植物物种的PEAPOD区域的46个氨基酸残基,相同的残基用星号表示。
图3示出了来自一些植物物种的PEAPOD区域内的内部27个氨基酸残基,相同的残基用星号表示。
图4示出了来自一些植物物种的PEAPOD蛋白的TIFY结构域的6个氨基酸残基,相同的残基用星号表示。
图5示出了PPD蛋白和保守的PPD、TIFY和Jas*区域的大致位置的示意图。
图6示出了在Y2H测定中PPD蛋白的二聚化以及TPL和NINJA之间的相互作用。
图7示出了在Y2H测定中PPD和NINJA之间的相互作用以及TPL和BZR1之间的相互作用。
图8示出了使用BiFC测定证明的在嫩叶(A和B)和老叶(C)中的PPD、NINJA、TPL和BZR1之间的相互作用。
图9示出了PPD-NINJA-TPL-BZR1复合物的示意图。
图10示出了在Y1H测定中PPD和BZR1之间的相互作用。
图11示出了野生型、Δppd突变体和PEAPOD过表达子(PPD-OX)下胚轴长度对外源GA和PAC施用的反应。
图12A和12B示出了与野生型和载体对照相比,过表达来自拟南芥(Arabidopsisthaliana)的PEAPOD或来自无油樟(Ambroella trichopoda)的PEAPOD的黑麦草植物的芽和根生长的增加。
图13示出了来自拟南芥、北美云杉(Picea sitchensis)、无油樟、小果野蕉(Musaacuminate)、白三叶草(Trifolium repens)和江南卷柏(Selaginella moellendorffii)的PEAPOD蛋白是功能等效的。来自每一个的优化的PEAPOD编码序列被用于互补PEAPOD缺失突变体Δppd拟南芥(生态型兰兹贝格(Landsberg erecta))。在等同的发育阶段拍摄幼苗图片。
实施例
现在参照以下非限制性实施例对本发明进行说明。
实施例1:对多个植物物种的PEAPOD基因的表征
为了鉴定其他植物物种中的PPD基因直系同源物,将来自拟南芥属PPD1基因(SEQID NO:27)的保守的PPD区域(46个氨基酸)用于使用搜索程序TBLASTN和BLASTP进行公共植物基因序列数据库搜索(Altschul et al 1990)。从多种植物物种(包括苔藓植物、松柏类植物、所检查的双子叶植物的所有目和一些单子叶植物目,包括棕榈、香蕉、兰花和浮萍)中鉴定PEAPOD序列。同一搜索方法表明PEAPOD序列不存在于禾本科植物中。广泛的同线性比较表明在所分析的禾本科植物(二穗短柄草(Brachypodium distachyon)、水稻和玉米)基因组中,预期包含PPD基因的区域已被破坏(图1A),并且现在包含多个重复序列(图1B)。代表性的PEAPOD蛋白序列分别示于SEQ ID NO:1-26中,并且核酸序列分别示于SEQ ID NO:80-104中。
来自拟南芥PPD1的46个氨基酸PEAPOD区域示于SEQ ID NO:27中。如图2所示,用vector NTI(VNTI)比对来自多肽SEQ ID NO:1-的该区域。
SEQ ID NO:28示出了这46个氨基酸PPD区域的共有序列。SEQ ID NO:29示出了相同的共有区域,但是示出了哪些氨基酸可存在于各可变位置。
来自拟南芥PPD1的46个氨基酸PEAPOD区域内的27个氨基酸子序列示于SEQ IDNO:30中。
对图2中的每个相同序列的这27个氨基酸子序列的比对示于图3中。
SEQ ID NO:31示出了这27个氨基酸PPD区域的共有序列。SEQ ID NO:32示出了相同的共有区域,但是示出了哪些氨基酸可存在于各可变位置。
在每一个SEQ ID NO:1-26的PPD肽序列中,也有保守的TIFY基序,其位于所述46个氨基酸PPD区域之后。分隔开PPD区域的C-末端和TIFY基序的N-末端的氨基酸残基的数目取决于PPD的来源;例如,对于SEQ ID NO:1-26,所述数目在46至140个氨基酸之间变化。
SEQ ID NO:33示出了拟南芥属PPD1序列的TIFY基序。对来自SEQ ID NO:1-26的TIFY基序的比对(如Vanholme et al 2007,Trends Plant Sci.12,239-244中所述)示于图4中。
SEQ ID NO:34示出了这6个氨基酸TIFY基序的共有序列。SEQ ID NO:35示出了相同的共有区域,但是示出了哪些氨基酸可存在于各可变位置。PPD和TIFY结构域中完全保守的残基在图2-4中用星号突出显示。
本申请人认为以上所述的这些区域和基序存在于所有鉴定的PEAPOD蛋白中并且可用于诊断这些PEAPOD蛋白。
实施例2:证明来自多个植物物种的PEAPOD序列的PEAPOD功能
可以通过拟南芥属Δppd突变体叶表型的互补作用来确认任意PEAPOD序列的功能。首先将拟南芥属Δppd突变体叶表型的互补作用用于鉴定拟南芥属PPD基因(White2006)。这可以通过将与圆顶叶和玫瑰花结的扭曲相反的野生型扁平叶表型和正常玫瑰花结形恢复为“螺旋桨”表型而看到。
PEAPOD序列,如SEQ IN NO:1-26中的那些(包括棕榈、松柏类植物、苔藓、兰花和其他双子叶植物物种),或任意其他待测试的PEAPOD序列可以通过本领域技术人员公知的方法被转化到拟南芥属Δppd突变体中。这类方法中的一个实例在下文描述。
克隆和基因构建体
用于在拟南芥属Δppd突变体中过表达拟南芥属PPD1的CaMV35s::拟南芥PPD1构建体的产生
合成表达构建体以使得在拟南芥属Δppd突变体中拟南芥PPD1在CaMV35s启动子(SEQ ID NO:129)下过表达。优化PPD ORF以用于在拟南芥属中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。然后将该构建体(有或没有所述尾部)通过LR反应置于CaMV35s启动子和ocs终止子之间,其分别编码为SEQ ID NO:105和SEQ ID NO:111。
用于在拟南芥属Δppd突变体中过表达白三叶草PPD1的CaMV35s::白三叶草PPD构建体的产生
合成表达构建体以使得在拟南芥属Δppd突变体中白三叶草PPD在CaMV35s启动子(SEQ ID NO:129)下过表达。优化PPD ORF以用于在拟南芥属中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。然后将该构建体(有或没有所述尾部)通过LR反应置于CaMV35s启动子和ocs终止子之间,其分别编码为SEQ ID NO:106和SEQ ID NO:112。
用于在拟南芥属Δppd突变体中过表达无油樟PPD的CaMV35s::无油樟PPD构建体的产生
合成表达构建体以使得在拟南芥属Δppd突变体中无油樟PPD在CaMV35s启动子(SEQ ID NO:129)下过表达。优化PPD ORF以用于在拟南芥属中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。然后将该构建体(有或没有所述尾部)通过LR反应置于CaMV35s启动子和ocs终止子之间,其分别编码为SEQ ID NO:107和SEQ ID NO:113。
用于在拟南芥属Δppd突变体中过表达小果野蕉PPD的CaMV35s::小果野蕉PPD构建体的产生
合成表达构建体以使得在拟南芥属Δppd突变体中小果野蕉PPD在CaMV35s启动子(SEQ ID NO:129)下过表达。优化PPD ORF以用于在拟南芥属中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。然后将该构建体(有或没有所述尾部)通过LR反应置于CaMV35s启动子和ocs终止子之间,其分别编码为SEQ ID NO:108和SEQ ID NO:114。
用于在拟南芥属Δppd突变体中过表达北美云杉PPD的CaMV35s::北美云杉PPD1构建体的产生
合成表达构建体以使得在拟南芥属Δppd突变体中北美云杉PPD在CaMV35s启动子(SEQ ID NO:129)下过表达。优化PPD ORF以用于在拟南芥属中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。然后将该构建体(有或没有所述尾部)通过LR反应置于CaMV35s启动子和ocs终止子之间,其分别编码为SEQ ID NO:109和SEQ ID NO:115。
用于在拟南芥属Δppd突变体中过表达江南卷柏PPD1的CaMV35s::江南卷柏PPD构建体的产生
合成表达构建体以使得在拟南芥属Δppd突变体中江南卷柏PPD在CaMV35s启动子(SEQ ID NO:129)下过表达。优化PPD ORF以用于在拟南芥属中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。然后将该构建体(有或没有所述尾部)通过LR反应置于CaMV35s启动子和ocs终止子之间,其分别编码为SEQ ID NO:110和SEQ ID NO:116。
植物材料和生长条件
拟南芥(L.)Heynh生态型Ler可以被用作野生型(WT)。功能缺失突变体(缺失PPD1和PPD2)的Δppd缺失如先前White 2006,PNAS 103,13238-13243中所述。
使植物生长于持续为21℃的温度可控的温室中或在23℃下在16h光照_8h黑暗循环下的可控环境室中。
拟南芥属的转化
可以通过蘸花(floral dip)浸润法将上述构建体转化到拟南芥属中(Clough andBent,1998,Plant J 16,735-43)。转化Δppd株系以通过标准技术表达PPD多肽。通过标准PCR分析技术并结合转基因特异性和T-DNA引物确认转基因植物。
在T1幼苗(经浸润的植物的子代)中产生野生型叶和玫瑰花结表型的Δppd株系的互补作用确认了所引入的基因的PEAPOD功能,如照片所示。
该方法可用于确认本申请人指定的任意基因的PEAPOD功能,表明其适用于本发明。
通过PEAPOD缺失突变体Δppd拟南芥生态型Landsberg erecta的互补作用证明来自拟南芥、北美云杉、无油樟、小果野蕉和江南卷柏的PEAPOD蛋白是功能等效的(图13)。
实施例3:PEAPOD可能参与调控油菜素类固醇信号传导通路
本申请人使用酵母双杂交(Y2H)测定、双分子荧光(BiFC)来研究PPD、NINJA、TPL和BZR1之间的相互作用。
克隆和构建体
如下产生用于Y2H和BiFC测定的构建体。合成编码以下开放阅读框的拟南芥属DNA序列:At4g14713(PPD1)和PPD1的截短和缺失衍生物、PPD1、PPD1Δppd(编码氨基酸1-61的序列的N-末端截短)、PPD1Δtify(编码氨基酸154-186的序列的内部缺失)、PPD1Δjas*(编码氨基酸229-313的序列的C-末端截短)(图5)、At4g28910(NINJA)、At1g15750(TPL)、At1g75080(BZR1)、合成的PUAS-35S启动子和编码GAL4DBD和c-myc融合蛋白的序列,并通过GeneArt验证序列。提供大部分序列作为备用于Gateway克隆到酵母和植物表达载体中的pENTR221中的克隆。例外的是,整合了5’Xho1和3’Nco1限制性酶切位点的用于植物内转录激活测定的启动子序列被提供在pMA-RQ中进行克隆。用于瞬时LUC报告测定的质粒:将具有-105bp CaMV35S启动子上游的5X UAS GAL4 DNA结合位点的合成启动子克隆至包含含内含子的萤火虫荧光素酶基因(LUC)和35Spro::海肾荧光素酶(REN)作为内标的双荧光素酶构建体pNWA62内的XhoI-NcoI位点,以构建pAML7。对于GAL4DBD融合蛋白的过表达,使用Gateway技术将编码GAL4 DNA结合结构域(GAL4DBD氨基酸1-147)以及N-末端GAL4DBD与2XVP16激活子结构域(GAL4DBD-VP16)或PPD1(GAL4DBD-PPD1)的融合体(使用编码GGGGS的接头)的DNA序列克隆至pRSh1(Winichayakul et al 2008)中以构建载体pRSh1-GAL4DBD、pRSh1-GAL4DBD-VP16和pRSh1-GAL4DBD-PPD1,用于在植物内表达该融合蛋白。
用于酵母双杂交分析的质粒
将BZR1、NINJA、TPL和PPD1,以及PPD1的截短或缺失衍生物(PPD1Δppd、PPD1Δtify和PPD1Δjas*)的全长编码序列Gateway亚克隆至pDEST32(N-末端GAL4DBD)或pDEST22(N-末端GAL4AD),以构建作为诱饵载体的pDEST32-PPD1、pDEST32-PPD1Δppd、pDEST32-PPD1Δtify、pDEST32-PPD1Δjas*、pDEST32-TPL以及作为猎物载体的pDEST22-PPD1、pDEST22-BZR1和pDEST22-NINJA。当被表达时,这些构建体产生序列53-69中所列的蛋白,包括DNA结合结构域(DBD)、激活结构域(AD)、与DBD融合的PPD1(PPD1-DBD)、与AD融合的PPD1(PPD1-AD)、未与AD融合的TIFY结构域的PPD1(PPD1-tify-AD)、未与AD融合的jas结构域的PPD1(PPD1-jas*-AD)、TOPLESS(TPL)、与DBD融合的TPL(TPL-DBD)、NINJA、与AD融合的NINJA(NINJA-AD)、与AD融合的BZR1(BZR1-AD)、不含与DBD融合的ppd结构域的PPD1(PPD1-Δppd-DBD)、不含与DBD融合的TIFY结构域的PPD1(PPD1-tify-DBD)、不含与DBD融合的jas结构域的PPD1(PPD1-jas*-DBD)。
用于双分子荧光互补的质粒
使用具有N-末端融合体的双元BiFC-Gateway YFP载体pDEST-VYNE(R)GW(Venus氨基酸1-173)和pDEST-VYCE(R)GW(Venus氨基酸156-239)构建以下载体:pDESTnYFP-BZR1、pDESTnYFP-NINJA、pDESTnYFP-PPD1、pDESTcYFP-BZR1、pDESTcYFP-PPD1、pDESTcYFP-PPD1Δppd、pDESTcYFP-PPD1Δtify和pDESTcYFP-PPD1Δjas*。对于与PPD1或BZR相互作用的蛋白在植物中的瞬时表达,将NINJA和TPL 亚克隆至pRSh1以构建pRSh1-NINJA和pRSh1-TPL。用于免疫共沉淀的质粒:将编码PPD1和3X c-myc C-末端融合体的合成的DNA构建体亚克隆至pRSh1以产生pRSh1-PPD1-3xc-myc,同时将NINJA cDNA序列亚克隆至pB7FWG2,0(Karimi et al 2002,Trends Plant Sci.7,193-195)以构建pB7FWG2-NINJA-GFP。当被表达时,这些构建体产生序列60、62、70、71、72、73、74、75、76、77、78、79中所列的蛋白,包括TOPLESS(TPL)、NINJA、双分子荧光(BiFC)nYFP、BiFC cYFP、BiFC nYFP-NINJA、BiFC nYFP-BZR1、BiFC cYFP-PPD1、BiFC cYFP-NINJA、BiFC cYFP-BZR1、BiFC cYFP-PPD1-ppd、BiFC cYFP-PPD1-tify、BiFC cYFP-PPD1-jas*。
使用ProQuest双杂交体系(Invitrogen)分析PPD1、NINJA、TPL和BZR1之间的相互作用。使用诱饵构建体和猎物构建体的组合共转化酵母菌株MaV203(Invitrogen),在合成缺陷型(SD)SD/-Leu/-Trp琼脂平板上进行选择。在具有不同浓度的3-氨基三唑(3-AT)(Sigma)的SD/-Leu/-Trp/-His平板上使用10μl 1:10和1:100稀释度的液滴测试转化菌株的相互作用。
使用pDESTnYFP和pDESTcYFP质粒的组合,使用或不使用用于表达NINJA(pRSh1-NINJA)或TPL(pRSh1-TPL)和用于本氏烟(Nicotiana benthamiana)叶的农杆菌-浸润的质粒进行瞬时BiFC实验。对于浸润,从平板上重悬含有该双元载体的根癌农杆菌GV3101菌株并制备以用于如上所述用于LUC测定的转化。将所有的YFP和表达菌株以1:1(体积/体积)的比例混合,并添加1/10体积的菌株P19。40h后,从各经浸润的叶中取5个叶盘样品。在取样用于显微镜荧光观察之前2小时,将叶用1μg/ml DAPI溶液浸润以染色细胞核。使用OlympusFluoview FV10i共聚焦激光扫描显微镜检测YFP荧光和DAPI染色。每个实验重复两次。
使用PPD1作为诱饵蛋白的Y2H筛选鉴定NINJA为与PPD1的直接相互作用因子。BiFC测定的结果表明PPD1在植物中与NINJA相互作用,并且表明TIFY基序对于该相互作用也是必需的(图8)。可能NINJA作为TPL和PPD1之间的桥梁而发挥功能。使用Y2H,未观察到PPD1和BZR1之间的直接相互作用(图6)。但是,最近的串联亲和纯化(TAP)实验已表明TPL可能与BZR1相互作用(Wang et al 2013,Mol.Cell.Proteomics 12,3653-3665),并且在此,Y2H结果确认发生了直接的相互作用(图7)。
为了确定PPD蛋白的分子功能,在植物内研究了PPD1、NINJA、TPL和BZR1的相互作用。使用双分子荧光(BiFC)证明在未成熟的本氏烟叶的扁平细胞中,PPD1似乎在细胞核中与BZR1相互作用(图8A、B)。PPD1中的NINJA-结合TIFY基序对于该相互作用是必需的。此外,在完全展开的叶中当nYFP-PPD1和cYFP-BZR1共表达时,未观察到相互作用(图8C)。有意思的是,PPD1和BZR1之间的相互作用在共表达NINJA而非单独的TPL时得到恢复,表明在成熟的叶中缺少相互作用是由于受内源NINJA的限制。对于未成熟的叶,当PPD1NINJA-结合TIFY基序缺失时,甚至在NINJA和TPL共表达的存在下,也未观察到PPD1和BZR1之间的相互作用(图8C)。这些结果表明PPD1、NINJA、TPL和BZR1在植物内作为复合物存在,并且表明NINJA是招募PPD1以通过TPL与BZR1相互作用所必需的。
PPD1似乎并不直接与靶BZR1转录因子相互作用。相反地,PPD1蛋白相互作用实验结果表明了这样一种模式,其中PPD蛋白使用NINJA作为衔接体来招募TPL转录共表达子,该PPD-NINJA-TPL复合物与BZR转录因子的EAR基序相互作用(图9)。因此,在该模式中,拟南芥的PEAPOD1(PPD1)蛋白会充当BR信号传导通路的阻遏物并与NINJA和TPL组合来负调控BZR1。
实施例4:PEAPOD可能参与调控赤霉素信号传导通路
已知赤霉酸(GA)处理降低GA阻遏物DELLA蛋白(包括RGA1)的水平;为了确定PPD、DELLA和GA信号传导通路之间的关系,本申请人进行PPD和DELLA(RGA1)之间的酵母双杂交(Y2H)分析,并将赤霉酸(GA)激素和GA生物合成抑制剂(多效唑,PAC)施用至野生型、Δppd突变体和Δppd突变体PPD过表达子(PPD-OX)。
将ProQuest双杂交系统(Invitrogen)用于分析PPD1和RGA1之间的相互作用。将PPD1以及PPD1的截短或缺失衍生物(PPD1Δppd、PPD1Δtify和PPD1Δjas*)的全长编码序列(图5)Gateway亚克隆至pDEST32(N-末端GAL4DBD)或pDEST22(N-末端GAL4AD)。当被翻译时,这些产生了以下肽序列:55、65、66、67、68、7169,它们分别为PPD1-DBD、RGA1、RGA1-AD、PPD1-ppd-DBD、PPD1-tify-DBD、PP1-jas*-DBD。
使用诱饵构建体和猎物构建体的组合共转化酵母菌株MaV203(Invitrogen),在合成缺陷型(SD)SD/-Leu/-Trp琼脂平板上进行选择。在具有不同浓度的3-氨基三唑(3-AT)(Sigma)的SD/-Leu/-Trp/-His平板上使用10μl 1:10和1:100稀释度的液滴测试转化菌株的相互作用。使用PPD1-DBD作为诱饵测试PPD1-RGA1相互作用。将转化的酵母以10倍稀释液点样在对照培养基(-2)或具有15mM 3AT的选择培养基上。对照为空载体、DBD、GAL4DNA结合结构域、AD、GAL4激活结构域(图5)。Y2H结果表明PPD可以直接与DELLA结合(图10)。
对于外源施用GA或PAC,用70%乙醇、0.01%Triton X-100对种子进行表面消毒10min,然后用100%乙醇消毒5min,在无菌的滤纸上空气干燥,转移到含有半强度的MS盐、1%蔗糖和0.8%琼脂的培养基平板上。将平板在黑暗中于4℃孵育5天,然后转移到24℃下的14h光照/10h黑暗的日循环中。通过荧光灯管(Philips TLD 58W/865)以100μM m-2s-1的强度提供光照。使野生型(Col-0)Δppd突变体和转基因PPD-OX幼苗在含有不同浓度的GA(图11A)或PAC(图11B)的培养基上生长5天。将GA(ACROS有机物)和PAC(Sigma-Aldrich)分别溶解于乙醇和丙酮中,过滤消毒并添加到培养基平板中。将乙醇或丙酮(0.5%)用于对照处理。使幼苗在24℃下的14h光照/10h黑暗的日循环中生长5天,然后分析下胚轴长度(n=35)。每次处理重复2次,误差棒=平均值的标准误差。
DELLA的降低导致促进细胞扩增的DELLA靶基因的转录的增加并可以通过测量生长在含不同水平GA的培养基上的幼苗的下胚轴长度来定量。最低浓度的GA(1μM)不能促进野生型(WT)下胚轴的伸长,而功能丧失的PPD突变体(Δppd)和过表达苗的转基因PPD(PPD-OX)都显示出增加的下胚轴长度(图11A)。在更高的GA浓度(5-50μM)下,野生型下胚轴的伸长以剂量依赖的方式发生。在比较中,Δppd和PPD-OX幼苗分别显示出对高达5和10μM GA的超敏感性伸长,其中它们大约达到相同的长度(图11A)。
通过施用外源性多效唑(PAC)抑制GA生物合成;这导致DELLA阻遏蛋白的增加和细胞扩增的相应降低。野生型幼苗显示出下胚轴伸长从0至10μM PAC呈剂量依赖性降低(图11B)。再次,Δppd幼苗显示出高敏感性反应,观察到下胚轴伸长在相同范围的PAC施用下降低更大。但是,PPD-OX幼苗是相对不敏感的,直到PAC浓度增加超过0.1μM,这之后,它们也显示出下胚轴长度的降低(图11B)
Δppd幼苗对GA的超敏感性反应潜在地反映了不存在通过PPD的转录因子阻遏时,用于降解的增加的DELLA的靶标的组合。类似地,在Δppd背景中添加PAC可能导致与WT相比下胚轴伸长的降低更大,因为这种情况在不存在DELLA天然拮抗剂之一—PPD时发生的,表明PPD和GA竞争与DELLA结合。
可以预测的是PPD的过表达将导致更高水平的对DELLA的拮抗作用,因此,这些植物的下胚轴伸长应该对GA超敏感;实际上,这是本发明人在PPD-OX幼苗中所观察到的结果。在相反的情况下,当GA水平降低(通过施用PAC)时,PPD-OX幼苗无反应直到PAC浓度大于0.1μM。这可能反映了在该点内源GA水平具有足够的降低以观察到未被过表达的PPD拮抗的DELLA蛋白的影响。
实施例5:PEAPOD在单子叶植物中的表达
构建体
以下描述的是几种用于在不同启动子的控制下表达来自从不同物种的PEAPOD序列的构建体,用于在单子叶植物中表达。
用于拟南芥属PPD1的(组成型)表达的pRICE ACTIN::PPD构建体的产生
合成两个表达构建体以使得PPD1在水稻肌动蛋白启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:40和117中。优化PPD ORF以用于在单子叶植物中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
然后通过LR反应将构建体SEQ ID NO:40(具有或不具有尾部)置于水稻肌动蛋白启动子和NOS终止子之间以产生SEQ ID NO:41和SEQ ID NO:47,其分别编码为SEQ ID NO:36和SEQ ID NO:38。类似地,具有和不具有尾部的构建体SEQ ID NO:117分别编码为SEQ ID NO:105和SEQ ID NO:111。
用于白三叶草PPD的(组成型)表达的pRICE ACTIN::PPD构建体的产生
合成表达构建体以使得白三叶草PPD在水稻肌动蛋白启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:118中。优化PPD ORF以用于在水稻中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
用于无油樟PPD的(组成型)表达的pRICE ACTIN::PPD构建体的产生
合成表达构建体以使得无油樟PPD在水稻肌动蛋白启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:119中。优化PPD ORF以用于在水稻中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
用于小果野蕉PPD的(组成型)表达的pRICE ACTIN::PPD构建体的产生
合成表达构建体以使得小果野蕉PPD在水稻肌动蛋白启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:120中。优化PPD ORF以用于在水稻中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
用于北美云杉PPD的(组成型)表达的pRICE ACTIN::PPD构建体的产生
合成表达构建体以使得北美云杉PPD在水稻肌动蛋白启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:121中。优化PPD ORF以用于在水稻中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
用于江南卷柏PPD的(组成型)表达的pRICE ACTIN::PPD构建体的产生
合成表达构建体以使得江南卷柏PPD在水稻肌动蛋白启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:122中。优化PPD ORF以用于在水稻中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐蔽剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
用于拟南芥属PPD1的(光合组织优选的/光调节的)表达的pRICE CAB::PPD构建体的产生
合成两个表达构建体以使得PPD1在pRICE CAB启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:40和SEQ ID NO:117中。优化PPD ORF以用于在水稻中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
然后通过LR反应将构建体SEQ ID NO:40(具有或不具有尾部)置于水稻CAB启动子和NOS终止子之间以产生SEQ ID NO:45和SEQ ID NO:51,其分别编码为SEQID NO:36和SEQ ID NO:38。
类似地,具有或不具有尾部的构建体SEQ ID NO:117分别编码为SEQ ID NO:105和SEQ ID NO:111。
用于拟南芥属PPD1的(光合组织优选的/光调节的)表达的pRICE Rubisco::PPD构建体的产生
合成两个表达构建体以使得PPD1在pRICE Rubisco启动子下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:40和117中。优化PPD ORF以用于在水稻中表达;这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
然后通过LR反应将构建体SEQ ID NO:40(具有或不具有尾部)置于水稻Rubisco启动子和NOS终止子之间以产生SEQ ID NO:46和SEQ ID NO:52,其分别编码为SEQ ID NO:36和SEQ ID NO:38。
类似地,具有或不具有尾部的构建体SEQ ID NO:117分别编码为SEQ ID NO:105和SEQ ID NO:111。
用于拟南芥属PPD1的(根优选的)表达的pTobRB7Δ1.3::PPD构建体的产生
合成两个表达构建体以使得PPD1在pTobRB7Δ1.3启动子(Yamamoto et al1991Plant Cell,3:371-382)下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:40和117中。优化PPD ORF以用于在水稻中表达;这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
然后通过LR反应将构建体SEQ ID NO:40(具有或不具有尾部)置于pTobRB7Δ1.3启动子和NOS终止子之间以产生SEQ ID NO:42和SEQ ID NO:48,其分别编码为SEQ ID NO:36和SEQ ID NO:38。
类似地,具有或不具有尾部的构建体SEQ ID NO:117分别编码为SEQ ID NO:105和SEQ ID NO:111。
用于拟南芥属PPD1的(根优选的)表达的pTobRB7Δ0.6::PPD构建体的产生
合成两个表达构建体以使得PPD1在pTobRB7Δ0.6启动子(Yamamoto et al 1991Plant Cell,3:371-382)下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:40和117中。优化PPD ORF以用于在单子叶植物中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research 15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:37)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
然后通过LR反应将构建体SEQ ID NO:40(具有或不具有尾部)置于pTobRB7Δ0.6启动子和NOS终止子之间以产生SEQ ID NO:43和SEQ ID NO:49,其分别编码为SEQ ID NO:36和SEQ ID NO:38。
类似地,具有或不具有尾部的构建体SEQ ID NO:117分别编码为SEQ ID NO:105和SEQ ID NO:111。
用于拟南芥属PPD1的(根优选的)表达的pAtWRKY6::PPD构建体的产生
合成两个表达构建体以使得PPD1在pAtWRKY6启动子(Robatzek and Somssich2001)下在禾本科植物中过表达,核酸编码序列示于SEQ ID NO:40和117中。优化PPD ORF以用于在单子叶植物中表达,这包括修饰的Joshi序列(Joshi 1997,Nucleic Acid Research15,6643-6653)、密码子的优化、mRNA不稳定性序列的去除、多聚A信号序列的去除、隐性剪接位点的去除、来自多年生黑麦草DGAT1的第3个内含子的加入(SEQ ID NO:39)、BamHI可去除的C-末端V5表位和His标签尾部(编码SEQ ID NO:36)的添加和双终止密码子的添加。优化内含子的位置以用于剪接位点预测,通过deepc2进行(http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)。
然后通过LR反应将构建体SEQ ID NO 40(具有或不具有尾部)置于pAtWRKY6启动子和NOS终止子之间以产生SEQ ID NO:44和SEQ ID NO:50,其分别编码为SEQID NO:36和SEQ ID NO:38。
类似地,具有或不具有尾部的构建体SEQ ID NO:117分别编码为SEQ ID NO:105和SEQ ID NO:111。
黑麦草的转化
使用改良自Altpeter et al.2000(Molecular Breeding 6:519-528)的方法通过微粒轰击产生过表达Peapod构建体的黑麦草植物。
从高达7mm的不成熟花序诱导用于转化的愈伤组织。收获花分蘖,在次氯酸钠溶液(4%可用氯)中进行表面消毒,解剖,然后在黑暗中于25℃下培养4至6周,接着在含大量营养物、微量营养物和维生素的Murashige和Skoog(MS)基础培养基(1962Physiol Plant.15:473-497)上进行转化,该培养基补充有30g/L麦芽糖、5mg/L 2,4-D,pH被调节至5.8,并用6g/L琼脂糖固化。
使用Invitrogen Pure Link Hi Pure Plasmid Maxiprep试剂盒制备质粒,浓度调节至1μg/μL。将质粒pAcH1用于选择,该质粒包含含有由具有第一个内含子的水稻肌动蛋白启动子表达并终止于nos 3’聚腺苷酸化信号的嵌合潮霉素转移酶(HPH)基因(Bilang etal.1991Gene 100:247-250)的表达盒。将含有PPD表达盒的质粒以1:1的摩尔比与pAcH1混合。
使用Sanford et al.1993的方法(Meth.Enzymol.217:483-509.)将质粒DNA包被于M17钨颗粒(1.4μM平均直径分布)上,并使用DuPont PDS-1000/氦生物弹射粒子输送系统转化至靶组织中。在转化前高达6小时,将愈伤组织传代培养至含有64g/L甘露醇的愈伤组织起始培养基上。转化后(约16小时),然后将转化的愈伤组织转移到补充有2mg/L 2,4-D、不含甘露醇的MS基础培养基中。2天后,将愈伤组织转移至含有200mg/L潮霉素的相同培养基中,并在黑暗中培养4小时用于转基因株系的选择。在补充有0.2mg/L激动素、30g/L蔗糖、和50mg/L潮霉素,被调节至pH5.8并用8g/L植物用琼脂固化的MS基础培养基上在光照下发生来自体细胞胚胎的整株植物的再生。将转化的植物转移到含有温室的环境中用于分析。
转化体的PCR分析
进行PCR分析以确认HPH和PPD转基因稳定整合至从转化实验中回收的植物的基因组中。使用基因组DNA Mini试剂盒(Geneaid)从约50mg的体外生长的叶中提取基因组DNA。分别使用特异性针对HPH gene的引物对(hpt-1,5’-GCTGGGGCGTCGGTTTCCACTATCCG-3’(SEQID NO:131);hpt-2,5’-CGCATAACAGCGGTCATTGACTGGAGC-3’)(SEQ ID NO:132);和特异性针对nos3’聚腺苷酸化信号的引物对(nos3’-1f,5’-CTGTTGCCGGTCTTGCGATG-3’-SEQ ID NO:133;nos3’-1r,5’-GTCACATAGATGACACCGCG-3’-SEQ ID NO:134)产生375bp和202bp的扩增产物。也包括仅包含质粒DNA模板、未转化的植物DNA或水的对照反应。PCR反应的方案由如下组成:94℃下起始变性5分钟,30个循环的95℃30s、55℃15s、72℃1min,和72℃延伸10min。在TAE缓冲液中通过凝胶电泳将扩增产物在1.0%琼脂糖凝胶上进行分析并使用Bio-Rad Gel Doc成像系统进行显影。
禾本科植物转化体的DNA印迹分析
使用DNA印迹杂交评估每个株系的转基因拷贝数。使用Doyle J和Doyle J1990的方法(Focus,12:13-15)从温室生长的植物的叶材料提取基因组DNA用于DNA印迹杂交。将DNA(20μg)消化,并在0.8%琼脂糖凝胶上进行分离并使用0.4N NaOH通过毛细管转移将其转移至尼龙膜(Roche)上。当探测HPH和PPD转基因时,分别用XbaI或HindIII消化基因组DNA。使用DIG PCR合成试剂盒制备探针。分别使用特异性针对HPH基因的引物对(rgh1,5’-CTCGTGCTTTCAGCTTCGATGTAG-3’[SEQ ID NO:135];rgh5,5’-GCTGGGGCGTCGGTTTCCACTATCGG-3’[SEQ ID NO:136])和特异性针对PPD的引物对(GrPPD1F,5’-CACAGGATGGATTCTCCAAGG-3’[SEQ ID NO:137];GrPPD1R,5’-TAAGGTCCACGGAGAGGTTC-3’[SEQ ID NO:138])产生906bp和586bp的扩增产物用于探针。使用标准缓冲液(Roche)在45℃下进行预杂交(1小时)和杂交(12小时)。使用CDP-Star作为化学发光底物根据制造商的方案使用非放射性方法实现检测。使用Bio-Rad ChemiDoc MP系统和软件检测光信号。
抗PPD1蛋白的多克隆抗体的产生和免疫印迹
使用全长的拟南芥PPD1蛋白通过GenScript产生定制的抗PPD1亲和纯化的兔多克隆抗体。在1:5000的稀释度下所述抗体能够通过免疫印迹检测低于10ng的经纯化的PPD蛋白。将植物组织冷冻在液氮中,并研磨成细粉。将冷冻的组织粉末以1.0/1.5(重量/体积)的比例加入到含有50mM Tris pH 7.5、150mM NaCl、1mM EDTA、10%(体积/体积)甘油、5mMDTT、1%(体积/体积)完全蛋白酶抑制剂混合物(Sigma)和1%(体积/体积)Triton X-100的提取缓冲液中,均质化直到解冻,然后以16,300g在4℃下离心12min。通过Bradford测定(Coomassie Plus,Thermo Scientific)对上清液中的总的溶解蛋白定量,进行调节以得到等同的总蛋白浓度/样品(通常在10-40μg之间),在1XNuPAGE LDS样品缓冲液(Invitrogen)中变性并在4-12%Bis-Tris SDS/PAGE凝胶(Novex)上运行。在使用iBlot装置(Invitrogen)印迹到PVDF膜上后,使用1:5,000稀释度的10抗PPD1多克隆抗体,然后使用1:5,000稀释度的20山羊抗兔HRP抗体(Sigma),用Western Bright ECL试剂(Advansta)检测蛋白,并使用ChemiDocTM仪器(BioRad)捕获图像。
禾本科植物转化体的叶生物量分析
从野生型和用在两种绿色组织启动子之一下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在绿色组织启动子下的拟南芥属PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量。
从野生型和用在组成型启动子下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在组成型启动子下的拟南芥属PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量(表2)。
表2
从野生型和用在组成型启动子下的白三叶草PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在组成型启动子下的白三叶草PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量。
从野生型和用在组成型启动子下的无油樟PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在组成型启动子下的无油樟PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量。
从野生型和用在组成型启动子下的小果野蕉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在组成型启动子下的小果野蕉PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量。
从野生型和用在组成型启动子下的北美云杉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在组成型启动子下的北美云杉PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量。
从野生型和用在组成型启动子下的江南卷柏PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察叶生长可以看出,与野生型植物相比,用在组成型启动子下的江南卷柏PPD转化的黑麦草植物的叶生物量/生长/长度/分支增加(图12A)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对叶/芽生物量的增加进行定量。
禾本科植物转化体的根生物量分析
从野生型和用在三种根启动子之一下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在根启动子下的拟南芥属PPD转化的黑麦草植物的根生物量/生长/长度/分支增加(图12B)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量(表3和4)。
表3
表4
从野生型和用在组成型启动子下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在组成型启动子下的拟南芥属PPD转化的黑麦草植物的根生物量/生长/长度/分支增加(图12B)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量(表5)。
表5
从野生型和用在组成型启动子下的白三叶草PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在组成型启动子下的白三叶草PPD转化的黑麦草植物的根生物量/生长/长度/分支增加。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量。
从野生型和用在组成型启动子下的无油樟PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在组成型启动子下的无油樟PPD转化的黑麦草植物的根生物量/生长/长度/分支增加(图12B)。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量。
从野生型和用在组成型启动子下的小果野蕉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在组成型启动子下的小果野蕉PPD转化的黑麦草植物的根生物量/生长/长度/分支增加。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量。
从野生型和用在组成型启动子下的北美云杉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在组成型启动子下的北美云杉PPD转化的黑麦草植物的根生物量/生长/长度/分支增加。可以通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量。
从野生型和用在组成型启动子下的江南卷柏PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物的塑料生长袋中并修剪至相同的高度。使植物在温室中生长约6周,通过观察生长袋外的根生长可以看出,与野生型植物相比,用在组成型启动子下的江南卷柏PPD转化的黑麦草植物的根生物量/生长/长度/分支增加。可通过去除所连接的地上部分(叶和芽)并在65℃下干燥48小时,然后对干重进行称重来对根生物量的增加进行定量。
对禾本科植物转化体的耐旱性分析
从野生型和用在组成型启动子下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长(establish),然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
从野生型和用在组成型启动子下的白三叶草PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
从野生型和用在组成型启动子下的小果野蕉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
从野生型和用在组成型启动子下的无油樟PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
从野生型和用在组成型启动子下的北美云杉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
从野生型和用在组成型启动子下的江南卷柏PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
从野生型和用在三个根启动子之一下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将一半的各类型植物进行水胁迫(通常为12%的重量含水量,正好在永久凋萎点之上),同时使另一半保持含水(通常为22%的重量含水量,约为田间持水量)。通过与WT植物比较根和芽生物量可以对过表达PPD的植物的增加的干旱胁迫耐受性进行定量。
对禾本科植物转化体的花分支的分析
从野生型和用在组成型启动子下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
从野生型和用在组成型启动子下的白三叶草PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
从野生型和用在组成型启动子下的小果野蕉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
从野生型和用在组成型启动子下的无油樟PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
从野生型和用在组成型启动子下的北美云杉PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
从野生型和用在组成型启动子下的江南卷柏PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
从野生型和用在三个根启动子之一下的拟南芥属PPD转化的黑麦草植物中取等数量(通常为4-10个)的分蘖。将分蘖种植到含有盆栽混合物和土壤的大盆中。使植物在温室中生长,然后将通过使其于6℃在短日照(8小时光周期)下生长10周来诱导其开花以进行春化,然后转移到温室中以进行花的发育(长日照(16+小时光周期),在20-25℃下)。通过计算与野生型植物相比,过表达PPD的植物的开花分支(含有花序的茎秆和/或花序内小穗数目的增加)的数目来对花分支的增加进行定量。
文献
Achard,P.Genschik P.(2009).Releasing the brakes of plant growth:howGas shutdown DELLA proteins.J.Exp.Bot.,60:1985-1092.
Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.(1990).Basiclocal alignment search tool.J.Mol.Biol.215:403-410.
Anjum,SA.,Wang,LC.,Farooq,M.,Hussain,M.,Zou,CM.(2011)Brassinolideapplication improves the drought tolerance in maize through modulation ofenzymatic antioxidants and leaf gas exchange.J.Agronomy and Crop Sci.197:177-185.
Chory and Wang,2005,Genes involved in brassinosteroid hormone actionin plants,US 6,921,848 B2
Clouse,S.D.Brassinosteroid signal transduction:from receptor kinaseactivation to transcriptional networks regulating plant development.PlantCell 23,1219-1230(2011).
Clough S.J.and Bent A.F.(1998)Floral dip:a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana.Plant J.16:735-743.
Clouse,S.D.&Sasse,J.M.BRASSINOSTEROIDS:Essential regulators of plantgrowth and development.Annu.Rev.Plant Physiol.Plant Mol.Biol.16,427-451(1998).
Gallego-Bartolome,J.,Minguet,EG.,Grau-Enguix,F.,Abbas,M.,Locascio,A.,Thomas,SG.,Alabadi,D.,Blazquez,MA.(2012).Molecular mechanism for theinteraction between gibberellin and brassionosteroid signalling pathways inArabidopsis.PNAS,109:13446-13451.
Garcia,M.E.,Lynch,T.,Peeters,J.,Snowden,C.&Finkelstein,R.A smallplant-specific protein family of ABI five binding proteins(AFPs)regulatesstress response in germinating Arabidopsis seeds and seedlings.PlantMol.Biol.67,643-658(2008).Guo,H.,Li,L.,Aluru,M.,Sluru,S.,Yin,Y.(2013).Mechanisms and networkes for brassinosteroid regulated geneexpression.Current Opinion in Plant Biology 16:545-553.
He,J-X.,Gendron,JM.,Sun,Y.,Gampaia,SL.,Gendron,N.,Sun,CQ.,Wang,Z-Y.(2005).BZR1 is a transcriptional repressor with dual roles in brassinosteroidhomeostasis and growth responses.Science 307:1634-1638.
Hothorn,M.,Belkhadir,Y.,Dreux,M.,Dabi,T.,Noel,J.P.,Wilson,I.A.&Chory,J.Structural basis of steroid hormone perception by the receptor kinaseBRI1.Nature 474,467-471(2011).
Hou,X.,Lee LYC,Xia,K.,Yan,Y.,Yu H.(2010).DELLAs modulate jasmonatesignalling via competitive binding to JAZs.Devel.Cell 19:884-894.
Jiang,W-B.,Lin,W-H.(2013).Brassinosteroid functions in Arabidopsisseed development.Plant Signaling&Behavior 8:10,e25928;October 2013.
Jiang,L.,Liu,X.,Xiong,G.,Liu,H.,Chen,F.,Wang,L.,Meng,X.,Liu,G.,Yu,H.,Yuan,Y.,Yi,W.,Zhao,L.,Ma,H.,He,Y.,Wu,Z.,Melcher,K.,Qian,Q.,Xu,H.E.,Wang,Y.&Li,J.DWARF 53 acts as a repressor of strigolactone signalling in rice.Nature504,401-405(2013).
Karimi,M.,Inzé,D.&Depicker,A.Gateway vectors for Agrobacterium-mediated plant transformation.Trends Plant Sci.7,193-195(2002)
Khripach,V.,Zhabinskii,V.,Groot,AD.(2000).Twenty years ofbrassinosteroids:Steroidal plant hormones warrant better crops for the XXIcentury.Ann.Bot.,86:441-447.
Kinoshita,T.,-Delgado,A.,Seto,H.,Hiranuma,S.,Fujioka,S.,Yoshida,S.&Chory,J.Binding of brassinosteroids to the extracellular domain of plantreceptor kinase BRI1.Nature 433,167-171(2005).
Lawit,Kundu,Rao and Tomes,2007,Isolated polynucleotide moleculescorresponding to mutant and wild-type alleles of the maize D9 gene andmethods of use,WO 2007124312 A2
Li,Q-F.,He,J-X.(2013).Mechanisms of signalling crosstalk betweenbrassinosteroids and gibberellins.Plant Signaling&Behavior 8:7,e24686;July2013;2013Landes Bioscience.
Mathew,C.,Hofmann,WA.,Osborne,MA.(2009).Pasture response togibberellins:A review and recommendations.NZ.J.Agric.Res.,52:213-225.
Pauwels,L.,Barbero,G.F.,Geerink,J.,Tilleman,S.,Grunewald,W.,Pérez,A.C.,Chico,J.M.,Bossche,R.V.,Sewell,J.,Gil,E.,Garcia-Casado,G.,Witters,E.,Inzé,D.,Long,J.A.,Jaeger,G.D.,Solano,R.&Goossens,A.NINJA connects the co-repressor TOPLESS to jasmonate signalling.Nature 464,788-791(2010).
Pérez,A.C.,Durand,A.N.,Bossche,R.V.,De Clercq,R.,Persiau,G.,Van Wees,S.C.M.,Pieterse,C.M.J.,Gevaert,K.,De Jaeger,G.,Goossens,A.&Pauwels,L.The non-JAZ TIFY protein TIFY8 from Arabidopsis thalianais a transcriptionalrepressor.PLos ONE 9,e84891(2014).
Prusakova,LD.,Ezhov,MN.,Salnikov,AI.(1999).The use of emistim,epibrassinolide and uniconazole to overcome quality difference of buckwheatgrains.Agrarian Russia:41-44.
Robatzek and Somssich(2001).The Plant Journal,28:123-133She,J.,Han,Z.,Kim,T.W.,Wang,J.,Cheng,W.,Chang,J.,Shi,S.,Wang,J.,Yang,M.,Wang,Z-Y.&Chai,J.Structural insight into brassinosteroid perception by BRI1.Nature 474,472-476(2011).
Sun,T-P.(2011).The molecular mechanism and evolution of the GA-GID1-DELLA signalling module in plants.Review.Current Biology,21:R338-R345.
Szemenyei,H.,Hannon,M.&Long,J.A.TOPLESS mediates auxin-dependenttranscriptional repression during Arabidopsis embryogenesis.Science 319,1384-1386(2008).
Thummel,C.S.&Chory,J.Steroid signalling in plants and insects-commonthemes,different pathways.Genes Dev.16,3113-3129(2002).
Vanholme,B.,Grunewald,W.,Bateman,A.,Kohchi,T.,Gheysen,G.(2007).Thetify family previously known as ZIM.Trends in Plant Science,12:239-244.
Vardhini,BV.(2012).Application of brassinolide mitigates salinestress of certain metabolites of sorghum grown in Karaikal.J.Phytology,4:1-3.
Wang,Z-Y.,Nakano T.,Gendron,J.,He,J.,Chen,M.,Vafeados,D.,Yang,Y.,Fujioka,S.,Yoshida,S.,Asami,T.,Chory,J.(2002).Nuclear-localised BZR1 mediatesbrassinosteroid-induced growth and feedback suppression of brassinosteroidbiosynthesis.Developmental Cell 2:505-513.
Wang,C-M.,Shang,J-X.,Chen,Q-X.,Oses-Prieto,J.A.,Bai,M-Y,Yang,Y.,Yuan,M.,Zhang,Y-L.,Mu,C-C.,Deng,Z.,Wei C-Q.,Burlingame,A.L.,Wang,Z-Y.&Sun,Y.Identification of BZR1-interacting proteins as potential components of thebrassinosteroid signalling pathway in Arabidopsis through tandem affinity purification.Mol.Cell.Proteomics 12,3653-3665(2013).
WinichayakuL,S.,Pernthaner,A.,Scott,R.,Vlaming,R.&Roberts,N.(2008)Head-to-tail fusions of camelid antibodies can be expressed in planta andbind in rumen fluid.Biotech.&Appl.Biochem.53,111-122.
White,D.(2006)PEAPOD regulates lamina size and curvature inArabidopsis.PNAS,103:13238-13243.
White,D.(2007).Novel plant genes and uses thereof,WO2007105967A8.Yamamoto et al(1991).Characterization of cis-acting sequencesregulating root-specific gene expression in tobacco.Plant Cell,3:371-382
Zhu,J-Y.,Sae-Seaw,J.&Wang,Z-Y.Brassinosteroid signalling.Development140,1615-1620(2013).
序列汇总
SEQUENCE LISTING
<110> 农牧研究公司
<120> 用于单子叶植物改良的方法
<130> P44884MLI
<150> NZ 701641
<151> 2014-11-04
<160> 138
<170> PatentIn version 3.5
<210> 1
<211> 313
<212> PRT
<213> Arabidopsis thaliana
<400> 1
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
1 5 10 15
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
50 55 60
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
65 70 75 80
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
85 90 95
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
100 105 110
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
115 120 125
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
130 135 140
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
145 150 155 160
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
165 170 175
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
180 185 190
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
195 200 205
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
210 215 220
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
225 230 235 240
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
245 250 255
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
260 265 270
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
275 280 285
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
290 295 300
Ser Val Asp Leu Asn Ser Glu Gly Ile
305 310
<210> 2
<211> 315
<212> PRT
<213> Arabidopsis thaliana
<400> 2
Met Asp Val Gly Val Thr Thr Ala Lys Ser Ile Leu Glu Lys Pro Leu
1 5 10 15
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
50 55 60
Gly Asp Asp Ser Gly Ala Gly Ile Leu Arg Lys Ile Leu Val Ser Gln
65 70 75 80
Pro Pro Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Arg Asn
85 90 95
Glu Leu Glu Ala Cys Gly Arg Ile Pro Leu Gln Glu Asp Asp Gly Ala
100 105 110
Cys His Arg Arg Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Ser Ser
115 120 125
Gly Gln Phe Val Ala Asp Lys Asp Ser His Lys Thr Val Ser Val Ser
130 135 140
Pro Arg Ser Pro Ala Glu Thr Asn Ala Val Val Gly Gln Met Thr Ile
145 150 155 160
Phe Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Val Pro Pro Glu Lys
165 170 175
Ala Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu
180 185 190
Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Pro Met Ser Lys
195 200 205
Glu Lys Met Val Glu Leu Pro Gln Tyr Gly Leu Glu Lys Ala Pro Ala
210 215 220
Ser Arg Asp Ser Asp Val Glu Gly Gln Ala Asn Arg Lys Val Ser Leu
225 230 235 240
Gln Arg Tyr Leu Glu Lys Arg Lys Asp Arg Arg Phe Ser Lys Thr Lys
245 250 255
Lys Ala Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Arg
260 265 270
Gln Pro Arg Met Asn Ala Ala Tyr Ser Gln Asn Leu Ser Gly Thr Gly
275 280 285
His Cys Glu Ser Pro Glu Asn Gln Thr Lys Ser Pro Asn Ile Ser Val
290 295 300
Asp Leu Asn Ser Asp Leu Asn Ser Glu Asp Asn
305 310 315
<210> 3
<211> 375
<212> PRT
<213> Populus trichocarpa
<400> 3
Met Gln Pro Gly Glu Thr Val Phe Arg Ser Ala Leu Asp Lys Pro Leu
1 5 10 15
His Gln Leu Thr Glu Asp Asp Ile Ser Gln Val Thr Arg Glu Asp Cys
20 25 30
Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Thr Leu Leu Glu Ala
50 55 60
Thr Pro Glu Thr Glu Ser Pro Arg Arg Arg Leu Tyr Ile Pro Arg Pro
65 70 75 80
Pro Pro His Pro Pro Asp Asn Thr Pro Arg Val Arg Phe Ser Ala Val
85 90 95
Pro Pro Asn Ser Ser Val Ser Glu Arg Gly Ala Ser Ala Glu Thr Pro
100 105 110
Ile Ser Val Pro Ala Glu Glu Pro Val Pro Cys Arg Gln His Asp Pro
115 120 125
Pro Asn Pro Asp Asp Pro Ala Asp Pro Leu Pro Pro Val His Ala Ala
130 135 140
Val Thr Glu Asn Ala Ser Val Ser Pro Arg Thr Thr Gly Met Ala Glu
145 150 155 160
Glu Ser Ala Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn Val
165 170 175
Tyr Asp Asp Val Pro Gly Asp Lys Ala Gln Ala Ile Met His Leu Ala
180 185 190
Ala Ser Pro Phe Ala Pro Pro Gln Asp Ala Ser Ser Asp Val Ile Pro
195 200 205
Thr Leu Arg Pro Leu Gln Cys Gln Leu Asp Thr Pro Gly Val Lys Ala
210 215 220
Ala Pro Asn Ser Ile Val Ala Asn Phe Pro Thr Leu Pro Thr Val Lys
225 230 235 240
Gly Ala Asp Ser Gly Gln Leu Leu Trp Glu Glu Ser Asn Ile Ala Arg
245 250 255
Glu Asp Asn Leu Glu Gly Ser Thr Ser Arg Lys Ala Ser Leu Gln Arg
260 265 270
Tyr Phe Glu Lys Lys Lys Asp Arg Phe Lys Asn Lys Arg Lys Val Ala
275 280 285
Val Pro Ser Ala Ser Leu Asp Val Phe Leu Ser His Leu Val Gly Asp
290 295 300
Gln Ile Ser Asn Asp His Trp Asn Leu Asn Asp Ala Cys Ser Pro Ser
305 310 315 320
Gln Pro Arg Pro Pro Gln Thr Pro Asn Arg Cys Asn Ser Val Asp Asn
325 330 335
Val Ala Lys Asn Gly Ile Leu Lys Ala Asp Leu Asn Asn Lys Gly Asp
340 345 350
Ala Asp Leu Ser Cys Cys Leu Asp Phe Ser Ser Lys Gln Ile Asn Ala
355 360 365
Trp Cys Leu Cys Leu Gly Cys
370 375
<210> 4
<211> 346
<212> PRT
<213> Picea abies
<400> 4
Met Arg Gly Gly Gly Gly Ala Asp Arg Leu Pro Ala Arg Ala Asn Leu
1 5 10 15
Glu Lys Pro Leu Glu Asp Leu Ser His Glu Asp Ile Met Gln Leu Thr
20 25 30
Arg Glu Asp Cys Arg Arg Tyr Leu Ile Glu Lys Gly Met Arg Arg Pro
35 40 45
Ser Trp Asn Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Lys
50 55 60
Leu Phe Glu Ser Gly Pro Asn Asp Glu Lys Arg Ser Ala Ala Thr Asn
65 70 75 80
Arg Pro Asn Pro Asp Glu Asn Leu Lys Glu Ala Ala Ser Val Ser Leu
85 90 95
Leu Tyr Gly Ser Gln Pro Glu Ser Pro Ser Val Val Phe Ala Ser Lys
100 105 110
Asp Ser Asp Thr Phe Asn Leu Glu Trp Leu Ala Lys Thr Glu Leu Pro
115 120 125
Val Leu Ala Ser Gln Pro Arg His Ile Ala Gln Gln Asn Val Phe Leu
130 135 140
Ser Ser Leu Ser Ala Gln Gln Ser Gly Ala Gln Leu Thr Ile Phe Tyr
145 150 155 160
Ser Gly Asn Val Asn Val Tyr Asp Asp Val Pro Ala Glu Lys Ala Gln
165 170 175
Glu Ile Met Leu Leu Ala Gly Ser Gly Asn Tyr Pro Pro Ser Ser Thr
180 185 190
Cys Gln Ser Thr Arg Asn Thr Gln Gln Asn Ala Val Arg Ala Ala Tyr
195 200 205
Pro Ser Asn Pro Thr Asn Thr Pro Phe Ile His Gly Val Gly Pro Pro
210 215 220
Leu Ala Thr Val Ala Ser Ser Ser Val Met Ser Ser Pro Ile His Lys
225 230 235 240
Glu Ser Pro Ile Thr Arg Lys Ala Ser Leu Gln Arg Phe Leu Glu Lys
245 250 255
Arg Lys Asp Arg Ser Arg Gly Lys Leu Gly Ala Pro Thr Ile Ser Lys
260 265 270
Lys Pro Leu Leu Met Gly Met Phe Met His Pro Ser Ile Val His Arg
275 280 285
Gln Tyr Trp Thr Asp Thr Ala Lys Arg Lys Ser Gly Lys Pro Asp Ile
290 295 300
Pro Ala Ser Ile Ser Pro Thr Arg Pro Pro His Thr Pro Arg Arg Thr
305 310 315 320
Ser Ser Asp Glu Gln Leu Ser Ala Arg His Ala Arg Gly Asp Ile Ser
325 330 335
Ala Gln Gly Gly Ser Leu His Asn Ser Asn
340 345
<210> 5
<211> 222
<212> PRT
<213> Picea sitchensis
<400> 5
Met Arg Gly Gly Glu Arg Ala Pro Gly Ser Arg Pro Ser Leu Asp Lys
1 5 10 15
Pro Leu Glu Glu Leu Thr Glu Glu Asp Ile Phe Gln Leu Thr Arg Glu
20 25 30
Asp Cys Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp
35 40 45
Asn Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ser Leu Phe
50 55 60
Glu Ser Lys Pro Asn Gln Gln Ser Lys Lys Pro Ser Lys His Lys Pro
65 70 75 80
Ala Thr Leu Gln Phe Glu Thr Ala Arg Asp Ser Thr Phe Ala Gln Ser
85 90 95
Ser Val Ser Gln Glu Gln Ser Leu Gly Phe Ser Trp Ser Lys Glu Val
100 105 110
Leu Asp Lys Gly Thr Ala Glu Arg Gln Arg Leu Cys Ser Asp Ser Gln
115 120 125
Glu Ala His Glu Ile Pro Arg Leu Gly Ser Lys Pro Pro Gln Ser Asn
130 135 140
Thr Glu Gly Lys Arg Cys Ala His Asp Gly His Gly Arg Lys Ser Ala
145 150 155 160
Gln Pro Leu Val Arg Leu Pro Ala Asn Phe Lys Asn Asp Cys Ser Asn
165 170 175
Arg Gln Ser Ser His Thr Ser Glu Ser Gln Pro Asp Thr Leu Leu Arg
180 185 190
Ser Asp Ser Phe Gln Gln Pro Thr Ala Gln Leu Thr Ile Phe Tyr Ala
195 200 205
Gly Met Val Asn Val Tyr Asp Asp Val Pro Leu Asp Lys Ala
210 215 220
<210> 6
<211> 365
<212> PRT
<213> Gossypium raimondii
<400> 6
Met Glu Ala Gly Val Thr Thr Thr Ala Thr Thr Thr Ala Ser Phe Ser
1 5 10 15
Ser Ile Leu Asp Lys Pro Leu Ser Gln Leu Thr Glu Glu Asp Ile Ser
20 25 30
Gln Leu Thr Arg Glu Asp Cys Arg Lys Phe Leu Lys Glu Lys Gly Met
35 40 45
Arg Arg Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln Gln Val Ile Ser
50 55 60
Phe Lys Ala Leu Leu Glu Ser Asn Glu Asp Ser Gly Ala Gly Ala Arg
65 70 75 80
Arg Lys Ile Leu Val Cys Pro Pro Pro Ser His Phe Pro Pro Gln Asn
85 90 95
Ala Val Ala Ser Asn Ser Gly Glu Ser Val Lys Glu Ala Val Phe Gly
100 105 110
Glu Glu Glu Ser Leu Tyr Gly Gln Lys Asp Leu Ser Leu Lys Ala Ala
115 120 125
Pro Val Val Gln Met Asn Cys Gln Gly Gly Asp Thr Asp Asp Lys Thr
130 135 140
Leu Ser Pro Ser Leu Gly Ser Pro Arg Glu Tyr Ser Lys Leu Pro Gly
145 150 155 160
Arg Ser Gln Cys Glu Thr Asn Glu Leu Gly Gly Gln Met Thr Ile Phe
165 170 175
Tyr Cys Gly Lys Ile Asn Val Tyr Asp Gly Val Pro Leu Ala Lys Ala
180 185 190
Arg Ala Ile Met His Leu Ala Ala Ser Pro Ile Asp Phe Pro Gln Gly
195 200 205
Asn Leu Cys Asn Gln Asn Gly Ala Phe Arg Ser Phe Leu Gly His Val
210 215 220
Gln Glu Ala Glu Asp Lys Asn Asp Leu Thr Ser Ser Ile Ala Leu Asn
225 230 235 240
Leu Asn Ser His Thr Met His Thr Glu Lys Met Thr Glu Tyr Gln Gln
245 250 255
Gln Phe Arg Gly Lys Ala Asn Ile Ser Arg Asp Ser Asp Val Asp Gly
260 265 270
Gln Val Ser Arg Lys Glu Ser Leu Gln Arg Tyr Leu Glu Lys Arg Lys
275 280 285
Asp Arg Gly Arg Phe Phe Lys Gly Arg Lys Asn Ala Gly Gln Ala Leu
290 295 300
Ser Ser Ser Glu Met Tyr Leu Asn His Gln Ile Arg Ala His Tyr Leu
305 310 315 320
Asn Gly Gln Thr Asn Gln Ser Arg Thr Ser Ser Pro Pro Gln Ser Gly
325 330 335
Val Pro His Ala Phe Tyr Ser Ser Ala Asp Asn Gln Glu Leu Val Asn
340 345 350
Phe Ser Val Asp Leu Asn Asp Glu Gly Gly Gln Glu His
355 360 365
<210> 7
<211> 357
<212> PRT
<213> Aquilegia coerulea
<400> 7
Met Lys Pro Asp Glu Thr Val Ser Arg Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Phe Gln Leu Thr Asp Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Arg Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Glu Gln Val Ile Ser Leu Lys Thr Leu Leu Glu Pro
50 55 60
Arg Thr Glu Ser Asp Thr Asn Ala Thr Gly Ile Arg Gln Lys Leu Leu
65 70 75 80
Val Ser Arg Leu Glu Asn Ser Thr Gln Val Pro Leu Asn Asp Lys Thr
85 90 95
Asn Ala Ser Asn Leu Lys Thr Ser Val Gln Ala Ile Asn Ser Gly Lys
100 105 110
Ala Asp Ile His Gly Asp Arg Pro Cys Arg Val Pro Val Pro Val Pro
115 120 125
Asp Asp Asn Thr Ile Thr Val Pro Val Pro Asp Asn Asn Thr Ile Thr
130 135 140
Val Pro Val Pro Asp Asn Asn Ile Thr Ser Ser Arg Asn Leu Asn Ser
145 150 155 160
Thr Asn Gly Leu Val Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val
165 170 175
Ile Val Tyr Asp Asp Met Pro Ala Glu Lys Ala His Ala Ile Met Lys
180 185 190
Phe Ala Gly Ser His Ile Asn Val Pro Glu Asp Ser Ser Pro Ala Gly
195 200 205
Ala Ala Val Ile Gln Ser Phe Ala Cys Gln Leu Gln Ala Ala Ser Ile
210 215 220
Arg His Gly Leu Ala Phe Pro Ser Ala Val Ser Pro Pro Leu His Asn
225 230 235 240
Val Val Ala Asp Thr Ser Gln His Cys Arg Glu Glu Val Thr Val Ser
245 250 255
Arg Glu Val Glu Pro Glu Gly Pro Val Ser Arg Lys Ala Ser Val Gln
260 265 270
Arg Tyr Leu Glu Lys Arg Lys Asp Arg Gly Arg Phe Lys Asn Lys Arg
275 280 285
Lys Ile Glu Ser Ser Ser Ser Leu Glu Ile Tyr Leu Asn His Gln Leu
290 295 300
Gly Asp Gln Tyr Leu Asn Glu Lys Ser Ser Gln Ser Arg Ala Cys Ser
305 310 315 320
Pro Pro Gln Pro Arg Ala Pro His Thr Pro Thr Arg Cys Ser Ser Val
325 330 335
Glu Asn Gln Val Thr Asn Val Val Phe Ser Ile Asp Leu Asn Asp Asn
340 345 350
Asp Val Arg Glu Gly
355
<210> 8
<211> 347
<212> PRT
<213> Aquilegia coerulea
<400> 8
Met Lys Pro Asp Glu Thr Val Ser Arg Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Phe Gln Leu Thr Asp Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Arg Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Glu Gln Val Ile Ser Leu Lys Thr Leu Leu Glu Pro
50 55 60
Arg Thr Glu Ser Asp Thr Asn Ala Thr Gly Ile Arg Gln Lys Leu Leu
65 70 75 80
Val Ser Arg Leu Glu Asn Ser Thr Gln Val Pro Leu Asn Asp Lys Thr
85 90 95
Asn Ala Ser Asn Leu Lys Thr Ser Val Gln Ala Ile Asn Ser Gly Glu
100 105 110
Ala Asp Ile His Gly Asp Arg Pro Cys Arg Val Pro Val Pro Val Pro
115 120 125
Asp Asp Asn Thr Ile Thr Val Pro Val Pro Asp Asn Asn Ile Thr Ser
130 135 140
Ser Arg Asn Leu Asn Ser Thr Asn Gly Leu Val Gly Gln Met Thr Ile
145 150 155 160
Phe Tyr Cys Gly Lys Val Ile Val Tyr Asp Gly Met Pro Ala Glu Lys
165 170 175
Ala His Ala Ile Met Lys Phe Ala Gly Ser His Ile Asn Val Pro Glu
180 185 190
Asp Ser Ser Pro Ala Gly Ala Ala Val Ile Gln Ser Phe Ala Cys Gln
195 200 205
Leu Gln Ala Ala Ser Ile Arg His Gly Leu Ala Phe Pro Ser Ala Val
210 215 220
Ser Pro Pro Leu His Asn Val Val Ala Asp Thr Ser Gln His Cys Arg
225 230 235 240
Glu Glu Val Thr Val Ser Arg Glu Val Glu Pro Glu Gly Pro Val Ser
245 250 255
Arg Lys Ala Ser Val Gln Arg Tyr Leu Glu Lys Arg Lys Asp Arg Gly
260 265 270
Arg Phe Lys Asn Lys Arg Lys Ile Glu Ser Ser Ser Ser Leu Glu Ile
275 280 285
Tyr Leu Asn His Gln Leu Gly Asp Gln Tyr Leu Asn Glu Lys Ser Ser
290 295 300
Gln Ser Arg Ala Cys Ser Pro Pro Gln Pro Arg Ala Pro His Thr Pro
305 310 315 320
Thr Arg Cys Ser Ser Val Glu Asn Gln Val Thr Asn Val Val Phe Ser
325 330 335
Ile Asp Leu Asn Asp Asn Asp Val Arg Glu Gly
340 345
<210> 9
<211> 328
<212> PRT
<213> Medicago truncatula
<400> 9
Met Asn Gly Gly Ser Thr Val Ser Phe Arg Ser Ile Leu Asp Arg Pro
1 5 10 15
Leu Asn Gln Leu Thr Glu Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp
20 25 30
Cys Arg Arg Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
35 40 45
Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu
50 55 60
Pro Thr Asp Asp Asp Ile Pro Ala Thr Val Gly Val Gly Val Ser Ser
65 70 75 80
Ala Ile His His His His His His His Pro Pro Gln Pro Pro Pro Lys
85 90 95
Ala Leu Asp Pro Glu Asp Thr Ala Leu Glu Leu Gln Lys Ser Thr Ser
100 105 110
Pro Val Ala Glu Arg Pro Thr Glu Thr Asn Asp Ala Asn Val Val Asn
115 120 125
Asn Pro Gly Gly Cys Ala Pro Ser Gly Ser Phe Gly Gln Met Thr Ile
130 135 140
Phe Tyr Cys Gly Lys Val Asn Val Tyr Asp Gly Val Ser Pro Asp Lys
145 150 155 160
Ala Arg Ser Ile Met Gln Leu Ala Ala Ala Cys Pro Ser Ser Phe Pro
165 170 175
Gln Asp Asn Pro Ser Asn Lys Asn Ala Ala Val Trp Ala Ser Pro Cys
180 185 190
Asn Leu Pro Ile Asp Lys Glu Val Leu Phe Pro Thr Asp Thr Ala Ile
195 200 205
Leu Gln Val Ala Gln Thr Asp Lys Met Val Glu Tyr Pro Leu Gln Tyr
210 215 220
Arg Glu Lys Gly Ser Thr Ala Arg Asp Ala Glu Gly Gln Ala Ser Arg
225 230 235 240
Lys Val Ser Leu Gln Arg Tyr Leu Glu Lys Arg Lys Asp Arg Gly Arg
245 250 255
Ser Lys Gly Lys Lys Leu Thr Gly Ile Thr Ser Ser Asn Phe Glu Met
260 265 270
Tyr Leu Asn Leu Pro Val Lys Leu His Ala Ser Asn Gly Asn Ser Ser
275 280 285
Arg Ser Ser Thr Asp Ser Pro Pro Gln Pro Arg Leu Pro Leu Val Ser
290 295 300
Ser Gly Ser Ala Glu Asn Gln Pro Lys Val Thr Leu Pro Ile Asp Leu
305 310 315 320
Asn Asp Lys Asp Val Gln Glu Cys
325
<210> 10
<211> 339
<212> PRT
<213> Solanum lycopersicum
<400> 10
Met Ser Leu Glu Gln Thr Val Tyr Lys Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Tyr Leu Leu Thr Asp Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Phe Leu Lys Ala Lys Gly Met Arg Lys Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Phe Glu Thr
50 55 60
Thr Pro Glu Ser Asp Thr Gly Gln Arg Lys Lys Arg His Ile Pro Arg
65 70 75 80
Pro Asp Thr Ser Leu Gln Arg Val Gln Lys Glu Thr Ser Ile Asp Ala
85 90 95
Glu Phe Ala Glu Ser Ala Glu Glu Thr Val Pro Tyr Gly Arg Lys Pro
100 105 110
Pro Asn Lys Pro Asp Leu Ser Gly Asp Lys Ala Ala Ser Ala Val Ala
115 120 125
Val Val Asn Asn Leu Ala Pro Ser Arg Thr Thr Asp Ser Gly Asn Ala
130 135 140
Ser Ser Gly Gln Leu Thr Ile Phe Tyr Cys Gly Lys Val Asn Val Tyr
145 150 155 160
Asp Asp Val Pro Ala Glu Lys Ala Glu Ala Ile Met His Leu Ala Ala
165 170 175
Ser Pro Leu Phe Val Pro Ser Glu Thr Pro Leu Asp Ala Asn Arg Ala
180 185 190
Ala Gln His Ser Glu Cys His Leu Gln Ala Ala Asn Val Lys Leu Gly
195 200 205
Gln Asp Ser Pro Met Val Phe Met Pro Thr Met Gln Thr Gly Lys Ile
210 215 220
Thr Glu Val Thr Arg Leu His Leu Glu Glu Ser Asn Thr Ser Tyr Glu
225 230 235 240
Asp Asn Pro Glu Ala Val Asn His Val Ser Arg Lys Ala Leu Leu Glu
245 250 255
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Phe Lys Arg Lys Met Gly Met
260 265 270
Pro Ser Ser Ala Ser Leu Asp Ile Tyr Leu Asn His Arg Thr Ile Asn
275 280 285
His Thr Gln Ser Glu Leu Ser Ser Arg Ser Asn Thr Cys Ser Pro Pro
290 295 300
Ala Ile Arg Leu Ser Ala Ala Pro Ala Pro Ser Gly Ser Met Asp Asn
305 310 315 320
Ile Leu Gln Met Asp Ala Asn Ala Ser Gly Phe Leu Asp Asp Lys Asp
325 330 335
Gly Lys Glu
<210> 11
<211> 338
<212> PRT
<213> Trifolium repens
<400> 11
Met Asn Gly Gly Ser Thr Val Ser Phe Arg Ser Ile Leu Asp Lys Pro
1 5 10 15
Leu Asn Gln Leu Thr Glu Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp
20 25 30
Cys Arg Arg Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
35 40 45
Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu
50 55 60
Pro Thr Asp Asp Asp Leu Pro Ala Pro Val Gly Val Ser Ser Ala Ile
65 70 75 80
His His His His His His His Pro Gln Pro Pro Gln Arg Asn Leu Asn
85 90 95
Glu Ala Pro Val Lys Gly Ser Asp Leu Asp Asp Thr Gly Phe His Thr
100 105 110
Ala Glu Asp Leu Asn Lys Ser Thr Ser Thr Ala Val Glu Ile Pro Thr
115 120 125
Glu Thr Asn Asp Ala Asn Val Val Lys Ser Ser Gly Gly Cys Val Ala
130 135 140
Ser Gly Ser Phe Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn
145 150 155 160
Val Tyr Asp Gly Val Ser Pro Asp Lys Ala Arg Ser Ile Met Gln Leu
165 170 175
Ala Ala Cys Pro Ser Ser Phe Pro Gln Asp Asn Leu Leu Asn Lys Asn
180 185 190
Ala Ala Val Trp Ala Ser Pro Cys Asn Ile Pro Ile Asp Lys Asp Val
195 200 205
Leu Phe Pro Asn Asp Thr Ala Ile Leu Gln Val Ala Gln Thr Asp Lys
210 215 220
Met Val Glu Tyr Pro Leu Gln Tyr Arg Glu Lys Gly Ser Ile Ala Arg
225 230 235 240
Asp Ala Asp Val Glu Gly Gln Ala Ser Arg Asn Ala Ser Leu Gln Arg
245 250 255
Tyr Arg Glu Lys Arg Lys Asp Arg Gly Arg Ser Lys Gly Asn Lys Leu
260 265 270
Thr Gly Ile Thr Ser Ser Asn Phe Glu Met Tyr Leu Asn Leu Pro Val
275 280 285
Lys Leu His Ala Ser Asn Gly Asn Ser Ser Arg Ser Ser Thr Asp Ser
290 295 300
Pro Pro Gln Pro Arg Leu Pro Leu Val Ser Gly Gly Ser Ala Glu Asn
305 310 315 320
Gln Pro Lys Val Thr Leu Pro Ile Asp Leu Asn Asp Lys Asp Val Gln
325 330 335
Glu Cys
<210> 12
<211> 311
<212> PRT
<213> Amborella trichopoda
<400> 12
Met Thr Ala Gly Asp Gly Ser Ile Arg Ser Ile Leu Asp Lys Pro Leu
1 5 10 15
Glu Glu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Tyr Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Gly Leu Leu Glu Gly
50 55 60
Lys Pro Cys Asp Asp Asn Ser Asp Val Phe Ser His Arg Ser Pro Ile
65 70 75 80
Thr Val Ile Pro Asn Val Gly Ser Met Arg Glu Lys Glu Lys Ala Val
85 90 95
Asn Ile Ala Asp Pro Glu Ile Ser Gly Ser His Gln Pro Asn Phe Arg
100 105 110
Arg Glu Ile His Glu Thr Thr Arg Glu Arg Ala Leu Pro Ala Ser Asp
115 120 125
Trp Pro Pro Ser Gln Glu Pro Val Ser Gln Met Thr Ile Phe Tyr Ala
130 135 140
Gly Ala Val Asn Val Tyr Asn Asp Ile Pro Glu Asp Lys Val Gln Ala
145 150 155 160
Ile Ile Tyr Leu Ala Gly Lys Ser Asp Ser Leu Gln Gln Thr Asn Val
165 170 175
Ile Arg Thr Gly Pro Asp Gln Cys Ile Ala Ser Ala Ala Ser Pro Ser
180 185 190
Leu Asn Asp Leu His Ser Arg Arg Ile His Pro Thr Ser Asn Ile Thr
195 200 205
Thr Ser Gln Ser Leu Arg Val Ala Thr Ser Leu Pro Val Gly Pro His
210 215 220
Ser Glu Val Pro Lys Thr Arg Lys Thr Ser Val Gln Arg Phe Leu Glu
225 230 235 240
Lys Arg Lys Asp Arg Gly Arg Leu Lys Gly Thr Leu Ala Ser Gly Gly
245 250 255
Ser Ser Lys Arg Gly Ser Ser Cys Leu Glu Leu Tyr Ala Thr Ser Arg
260 265 270
Leu Lys Ser Glu Gly Val Ala Thr Thr Thr Thr Gln Ser Asn Met Asn
275 280 285
Asn Val Val Val Ser Pro Ser Asn Pro Arg Met Pro Leu Asn Pro Gly
290 295 300
Ser Cys Ser Trp Val Glu Asn
305 310
<210> 13
<211> 416
<212> PRT
<213> Selaginella moellendorffii
<400> 13
Met Ala Ala Ser Ile Leu Gly Cys Gly Ser Ser Asn Gly Val Ala Val
1 5 10 15
Thr Gly Asn Pro Ala Pro Ala Ala Ala Ala Glu Val Pro Ala Pro Leu
20 25 30
Arg Pro Leu Glu Glu Leu Thr Glu Leu Asp Ile Arg Gln Leu Thr Arg
35 40 45
Glu Asp Cys Arg Arg Tyr Leu Lys Glu Arg Gly Met Arg Arg Pro Ser
50 55 60
Trp Asn Lys Ala Gln Ala Ile Gln Gln Val Leu Ser Leu Arg Ser Leu
65 70 75 80
Leu Cys Pro Ser Asn Pro Val Gly Pro Ser Ser Lys Asn Pro Gly Ser
85 90 95
Ala Ala Asn Ala Pro Pro Ala Glu Ala Ala Ala Ala Gly His Thr Lys
100 105 110
Gln Leu Leu Asp Lys Val Ser Gln Gln Ser Met Pro Asp Ser Cys Pro
115 120 125
Ser Asn Asn Ala Ser Asp Pro Arg Pro Leu Ala Gly Cys Phe Gly Ser
130 135 140
Leu Ala Pro Thr Leu Ser Val Leu Asn Pro Asp Ala Lys Arg Asn Pro
145 150 155 160
Leu Ser Ser Lys Pro Ala Ser Thr Thr Lys Pro His Ser Ala Gln Leu
165 170 175
Thr Ile Phe Tyr Ser Gly Ile Val Asn Val Tyr Asp Asp Val Pro Leu
180 185 190
Asp Lys Ala Gln Ala Ile Met Leu Leu Ala Ala Ser Lys Thr Phe His
195 200 205
Val Pro Thr Ser Ser Val Pro Gly His Pro Pro Phe Thr Ser Ala Thr
210 215 220
Gln Gln Gln Gln Gln Gln Gln Arg Glu Leu Asn Gln Gln Thr Glu Ala
225 230 235 240
Thr Gln Lys Tyr Pro Met Gln His Gln Gln Ala Pro Gln Ile Tyr Leu
245 250 255
Ser Ser Gly Ser Ala Leu Pro Asp Glu Ser Cys Thr Glu Pro Gly Leu
260 265 270
Pro Gln Val Arg Ser Ala Ser Leu Gln Arg Phe Leu Ala Lys Arg Arg
275 280 285
Asp Arg Leu Ser Gly Asn Pro Ser Ser Ser Arg Arg Asn Asp Arg Ser
290 295 300
Lys Lys Arg Arg Phe Ser Pro Pro Pro Ser Pro Leu Thr Ser Ala Ser
305 310 315 320
Phe Gln Phe Pro Pro Ser Ala Arg Thr Ser Gln Val Leu Arg Tyr Ser
325 330 335
Thr Thr Ser Thr Thr Thr Ile Thr Thr Ala Thr Ala Thr Ala Ala Thr
340 345 350
Thr Thr Thr Thr Thr Gly Thr Thr Asn Gly Gly His Cys Ser Asn Ser
355 360 365
Asn Gln Ala Ser Glu Asn Ala Gly Ser Asp Thr Ser Gly Gly Ser Ser
370 375 380
Gly Thr Pro Asp Thr Ser Asp Thr Thr Arg Asp Asn Asp Asn Gly Arg
385 390 395 400
Val Ser Asn Glu Asn Gly Arg Val Ser Thr Thr Cys Leu Ala Ala Thr
405 410 415
<210> 14
<211> 234
<212> PRT
<213> Selaginella moellendorffii
<400> 14
Met Ser Ser Met Val Asp Phe Leu Gly Ile Glu Glu Lys Val Ser Thr
1 5 10 15
Ser Val Ser Ala Glu Arg Leu Lys Lys Leu Glu Glu Leu Thr Asp Glu
20 25 30
Asp Val Met Gln Leu Thr Arg Glu Asp Cys Arg Arg Tyr Leu Lys Glu
35 40 45
Lys Gly Met Arg Arg Pro Ser Trp Asn Lys Ala Gln Ala Val Gln Gln
50 55 60
Leu Leu Ser Leu Lys Ser Leu Cys Asp Pro Ser Pro Ala Ser Ser Gly
65 70 75 80
Ala Ala Lys Arg Ser Pro Ser Pro Pro Leu Asp Glu Ala Pro Ala Lys
85 90 95
Lys Pro Met Ala Met Thr Ser Ile Asp Leu Lys Ala Ala Ala Ala Val
100 105 110
Asp Ala Ala Asn Leu Thr Met Phe Tyr Asp Gly Ala Val Ser Val Phe
115 120 125
Asp Asp Val Ser Pro Asp Lys Ala Ser Leu Phe Pro Leu Ala Tyr Ala
130 135 140
Ile Met Leu Leu Ala Gly Asn Val Lys Ser Trp Pro Ser Ile Asn Val
145 150 155 160
Ala Ala Asn Thr Asn Lys Val Val Ile Ser Ser Tyr Glu Leu Pro Gln
165 170 175
Ala Arg Lys Ala Ser Leu Gln Arg Phe Leu Gln Arg Arg Arg Glu Lys
180 185 190
Thr Ala Lys Glu Ala Ala Ser Lys Gly Asn Ser Asn Lys Ser Pro Cys
195 200 205
His Gly Glu Ser Ser Gly Lys His Ala Ser Asp Ala Thr Asp Pro Ala
210 215 220
Thr Ser Pro Leu Leu Thr Glu Val Ser Ser
225 230
<210> 15
<211> 271
<212> PRT
<213> Nicotiana tabacum
<400> 15
Met Pro Pro Glu Glu Thr Val Ser Lys Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
His Leu Leu Thr Asp Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Thr
50 55 60
Thr Pro Asp Ser Asp Thr Gly Pro Arg Arg Lys Leu His Ile Pro Arg
65 70 75 80
Pro Asp Thr Arg Val Gln Gln Val Gln Lys Gly Thr Asp Thr Asp Ala
85 90 95
Glu Phe Ser Lys Ser Ala Glu Gly Met Val Pro Tyr Gly Arg Lys His
100 105 110
Ser Lys Lys Pro Asp Ile Pro Gly Asp Ile Ala Ala Gly Ser Val Ala
115 120 125
Val Ala Ala Gly Asn Asn Leu Ala Pro Ser Arg Thr Thr Asp Leu Gly
130 135 140
Asn Thr Pro Ala Ser Gln Leu Thr Ile Phe Tyr Cys Gly Lys Val Asn
145 150 155 160
Val Tyr Asp Asp Val Pro Ala Glu Lys Ala Gln Ala Ile Met His Leu
165 170 175
Ala Ala Thr Pro Leu Phe Val Pro Ser Glu Thr Pro Leu Gly Ala Thr
180 185 190
Leu Ala Ala Arg His Ser Glu Cys His Leu Gln Ala Ala Ser Val Lys
195 200 205
Gln Gly Pro Asp Ser Ala Met Val Leu Met Pro Thr Met Gln Thr Gly
210 215 220
Lys Met Ser Glu Val Thr Arg Leu Arg Leu Glu Glu Ser Asn Thr Phe
225 230 235 240
Tyr Glu Asp Asn Ser Ala Asn Tyr Ala Glu Ala Val Glu Gly His Pro
245 250 255
Ser Arg Lys Ala Ser Val Gln Arg Tyr Leu Glu Lys Arg Lys Asp
260 265 270
<210> 16
<211> 327
<212> PRT
<213> Solanum tuberosum
<400> 16
Met Pro Pro Glu Glu Thr Val Ser Lys Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Asn Gln Leu Thr Asp Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Tyr Leu Lys Gln Lys Gly Met Arg Lys Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Pro
50 55 60
Asp Thr Asp Ala Gly Thr Arg Lys Lys Leu His Ile Pro Arg Ala Asp
65 70 75 80
Thr His Val Gln Ser Gly Lys Asn Thr Tyr Gly Glu Pro Ser Glu Pro
85 90 95
Val Pro Asp Arg Arg Asn Gln Gln Asp Arg Pro Asp Leu Ser Ser His
100 105 110
Ile Thr Ala Leu Pro Val Ala Val Val Asp Asn Ser Ala Pro Ser Arg
115 120 125
Thr Ile Gly Ser Ala Asp Lys Pro Val Gly Gln Met Thr Ile Phe Tyr
130 135 140
Arg Gly Lys Val Asn Val Tyr Asp Asp Val Pro Ala Asp Lys Ala Gln
145 150 155 160
Lys Ile Met Cys Leu Ala Ser Ser Pro Leu Cys Val Pro Ser Glu Thr
165 170 175
Pro Ser Asn Ala Thr Val Ala Ala Arg His Ser Ala Cys Cys Leu Gln
180 185 190
Ala Ala Asn Ser Lys Leu Arg Leu Asp Thr Asn Ile Val Pro Thr Ile
195 200 205
Gln Thr Val Lys Met Ser Glu Val Ser Arg Val Pro Ile Glu Glu Ser
210 215 220
Asn Arg Leu Tyr Asn Asp Asn Pro Glu Ala Val Glu Ser Pro Ala Ser
225 230 235 240
Arg Lys Ala Ser Val Gln Arg Tyr Leu Glu Lys Arg Lys Glu Arg Phe
245 250 255
Lys Trp Lys Arg Lys Val Glu Thr Thr Ser Ser Ala Ser Leu Asp Ile
260 265 270
Tyr Leu Ser Asp Arg Ile Gly Thr Arg Thr Pro Ser Asp Tyr Ala Ser
275 280 285
Gly Ala Asp Leu Cys Phe Thr Pro His Ile Thr Pro Thr Gly Ser Gly
290 295 300
Pro Ile Gln Asp Asn Ile Gln Met Asn Pro Thr Phe Ser Ser Asp Leu
305 310 315 320
Asn Asp Arg Asp Val Arg Glu
325
<210> 17
<211> 348
<212> PRT
<213> Glycine max
<400> 17
Met Asn Gly Gly Ala Thr Thr Ala Thr Phe Arg Ser Ile Leu Asp Lys
1 5 10 15
Pro Leu Asn Gln Leu Thr Glu Asp Asp Ile Ser Gln Leu Thr Arg Glu
20 25 30
Asp Cys Arg Arg Phe Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp
35 40 45
Asn Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu
50 55 60
Glu Pro Ser Asp Asp Asp Thr Pro Pro Pro Thr Ala Met His His Arg
65 70 75 80
Ser His Ala Pro Pro Pro Pro Pro Gln Pro Gln Ser Gln Val Asn Leu
85 90 95
Thr Glu Pro Pro Pro Pro Pro Lys Ala Pro Pro Pro Glu Glu Ser Ser
100 105 110
Phe His Ala Ala Glu Asp Ile Gln Lys Pro Ala Ser Ser Gly Glu Lys
115 120 125
Pro Ser Glu Thr Asn Asp Thr Asn Thr Asn Val Ala Ser Pro Lys Gly
130 135 140
Cys Ala Thr Ser Gly Ser Phe Gly Gln Met Thr Ile Phe Tyr Cys Gly
145 150 155 160
Lys Val Asn Val Tyr Asp Gly Val Ser Pro Asp Lys Ala Arg Ala Ile
165 170 175
Met Gln Leu Ala Val Ser Pro Val Gln Phe Thr Gln Asp Asp Pro Ser
180 185 190
Asn Gly Asn Ala Ala Val Trp Pro Ser Pro Cys His Leu Pro Met Asp
195 200 205
Lys Asp Val Leu Ile Pro Val Asp Thr Thr Ile Leu Gln Val Ala Gln
210 215 220
Ser Asp Lys Met Met Glu Tyr Pro Leu Gln Tyr Arg Glu Lys Gly Ser
225 230 235 240
Ile Ala Arg Asp Ala Glu Gly Gln Ala Ser Arg Lys Val Ser Leu Gln
245 250 255
Arg Tyr Leu Glu Lys Arg Lys Asp Arg Gly Arg Leu Lys Gly Lys Lys
260 265 270
Leu Thr Gly Ile Thr Ser Ser Asn Phe Glu Met Tyr Leu Asn Leu Pro
275 280 285
Val Lys Val His Ala Ser Asn Gly Asn Ser Ser Arg Ser Ser Thr Ser
290 295 300
Ser Pro Pro Gln Pro Arg Leu Pro Leu Val Ser Ser Gly Ser Ala Asp
305 310 315 320
Asn Gln Leu Lys Val Ala Leu Pro Ile Asp Leu Asn Asp Lys Val Ser
325 330 335
Leu Gln Met Phe Lys Asn Ala Lys Thr Leu Thr Arg
340 345
<210> 18
<211> 338
<212> PRT
<213> Citrus clementine
<400> 18
Met Asp Val Asp Gly Gly Val Thr Ser Cys Arg Ser Ile Leu Glu Lys
1 5 10 15
Pro Leu Ser Gln Leu Thr Glu Glu Asp Ile Thr Gln Leu Thr Arg Glu
20 25 30
Asp Cys Arg Lys Phe Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp
35 40 45
Asn Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu
50 55 60
Glu Ser Ser Gly Asp Ser Gly Ser Gly Val Leu Arg Arg Val Leu Val
65 70 75 80
Ser Pro Pro Glu Ser Met Pro Pro Arg Val Asn Val Thr Ser Asn Ser
85 90 95
Ala Asp Leu Val Lys Glu Pro Thr Ile Ser Val Ser Gly Asp Gln Asn
100 105 110
Ser Ala Tyr Arg Arg Lys Tyr Pro Arg Asn Cys Ala Val Asp Ala Asp
115 120 125
Asn Lys Thr Ile Ser Asn Arg Asn Pro Cys Glu Ala Asn Gly Ser Ile
130 135 140
Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn Val Tyr Glu Gly
145 150 155 160
Val Pro Thr Asp Lys Ala Gln Glu Ile Met His Leu Ala Ala Thr Pro
165 170 175
Ile Asp Phe Ser Gln Asn Gly Ser Phe Gly Gly Ile Thr Ala Tyr Arg
180 185 190
Ala Ile Pro Cys His Leu Gln Val Thr Ser Asn Arg His Val Ser Leu
195 200 205
Pro Leu Arg Pro Ala Ala Met Ile Ser Gln Phe Met Gln Thr Gly Lys
210 215 220
Ile Ala Asp Tyr Ser Gln Glu Tyr Arg Glu Lys Ala Ile Ser Thr His
225 230 235 240
Asp Ser Asp Val Asp Gly Gln Val Asn Arg Lys Val Ser Leu Gln Arg
245 250 255
Tyr Leu Glu Lys Arg Lys Asp Arg Gly Arg Phe Phe Lys Gly Lys Lys
260 265 270
Asn Thr Gly Pro Thr Pro Ser Leu Glu Met Tyr Leu Asn His Pro Gly
275 280 285
Lys Thr His Ala Ser Asn Gly Gln Gln Ser Gln Ser Asn Thr Ser Ser
290 295 300
Pro Thr Gln Pro Glu Leu Ser Asn Thr Leu Gly Thr Ser Pro Asp Asn
305 310 315 320
Gln Ala Lys Thr Val Met Leu Pro Val Asp Leu Asn Asn Glu Asp Ile
325 330 335
Gln Asp
<210> 19
<211> 335
<212> PRT
<213> Ricinus communis
<400> 19
Met Asp Ala Gly Val Thr Ser Phe Arg Ser Ile Leu Asp Lys Pro Leu
1 5 10 15
Thr Gln Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Thr
50 55 60
Ser Glu Asp Ser Gly Ala Gly Ala Leu Arg Arg Ile Leu Val Ser Lys
65 70 75 80
Pro Pro Val Thr Ser Asn Ser Val Asp Ser Ala Lys Glu Pro Ser Asp
85 90 95
Ser Asn Asn Asn Asn Leu Leu Asp Glu Thr Ala Pro His Asp Ser Pro
100 105 110
Lys Ser Pro Pro Pro Ala Pro Ser Leu Asp Cys Pro Leu Glu Glu Ala
115 120 125
Asp Asn Lys Val Ile Ser Ser Arg Ser Pro Gly Ala Thr Asp Gly Leu
130 135 140
Val Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn Val Tyr Asp
145 150 155 160
Gly Val Pro Pro Asp Lys Ala Gln Ala Ile Met His Leu Ala Ala Thr
165 170 175
Pro Ile His Ser Pro Leu Asp Asp Pro Ile Arg Arg Pro Val Phe Ala
180 185 190
Phe Pro Tyr His Leu Gln Thr Pro Ser Asp Lys His Val Phe Val Pro
195 200 205
Ser Asn Ala Ala Ile Ser Pro Thr Thr Pro Thr Glu Lys Val Thr Glu
210 215 220
Tyr Ser Gln Gln Cys Arg Glu Lys Gly Asn Val Thr Tyr Asp His Asp
225 230 235 240
Val Glu Gly Gln Ala Asn Arg Lys Met Ser Leu Gln Arg Tyr Leu Glu
245 250 255
Lys Lys Lys Asp Arg Gly Arg Phe Lys Gly Arg Lys Asn Leu Gly Pro
260 265 270
Asn Ser Ser Ser Leu Asp Ala Tyr Leu Asn His Gln Met Arg Thr His
275 280 285
Ile Ser Asn Glu Gln Ser Thr Arg Ser Ser Thr Ser Ser Pro Thr Gln
290 295 300
Pro Gly Val Pro His Thr Ser Ser Asn Ser Ala Glu Asp Gln Leu Lys
305 310 315 320
Thr Ala Ser Phe Ala Val Asp Leu Asn Glu Asp Val Gln Glu Pro
325 330 335
<210> 20
<211> 393
<212> PRT
<213> Vitis vinifera
<400> 20
Met Asn Pro Gly Val Thr Thr Leu Arg Ser Ile Leu Asp Lys Pro Leu
1 5 10 15
His Glu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ser Leu Leu Glu Thr
50 55 60
Ser Glu Gly Ser Gly Ala Gly Val Leu Arg Lys Ile Thr Asp Ser Pro
65 70 75 80
Pro Ala Glu Asn Leu Pro Pro Val Thr Ser Asn Ser Ala Asp Ser Gly
85 90 95
Lys Glu Leu Ser Ala Asp Ile Gln Ile Ser Val Ser Ala Asp Glu Leu
100 105 110
Val Pro Leu Pro Pro Lys Asp His His Pro Glu Ser Thr Pro Ser Gly
115 120 125
Glu Leu Ala Ser Arg Pro Pro Glu Ala Asp Thr Lys His Thr Cys Pro
130 135 140
Arg Ser Pro Gly Ala Thr Asn Cys Leu Val Gly Gln Met Thr Ile Phe
145 150 155 160
Tyr Cys Gly Lys Val Asn Val Tyr Asp Gly Val Pro Asp Asp Lys Ala
165 170 175
Gln Ala Ile Met His Leu Ala Ala Ser Pro Phe His Leu Pro Ser Asp
180 185 190
Asp Pro Phe Ser Gly Ala Ala Met Leu Cys Ser Ser Pro Cys His Leu
195 200 205
His Thr Ala Asn Val Lys His Gly His Ile Pro Pro Arg Ala Met Val
210 215 220
Ser Gln Thr Met Gln Thr Glu Lys Phe Thr Glu Tyr Ser Gln Gln Tyr
225 230 235 240
Arg Glu Glu Val Asn Phe Thr Arg Gly His Gly Ser Glu Ala Leu Ser
245 250 255
Gly Leu Arg Thr Val Gly Ser Pro Thr Ala Arg Pro Thr Glu Asp Met
260 265 270
Glu Gln Thr Thr Cys Leu Thr Ile Trp Gly Thr Phe Arg Tyr Lys Val
275 280 285
Met Pro Phe Glu Ile Tyr Glu Gly Ile Met Asp Val Glu Gly Gln Val
290 295 300
Asp Arg Lys Leu Ser Leu Gln Arg Tyr Phe Glu Lys Arg Lys Asp Arg
305 310 315 320
Phe Lys Ser Arg Lys Lys Ile Gly Leu Pro Ser Gly Ser Leu Glu Met
325 330 335
Tyr Val Asn His Gln Ala Arg Thr Gln Pro Ser Asn Gly Gln Ser Ser
340 345 350
Arg Ser Gly Thr Ser Ser Pro Pro Gln His Gly Leu Ser His Thr Leu
355 360 365
Cys Ser Ser Ala Asp Asn His Thr Lys Asn Phe Thr Pro Phe Val Asp
370 375 380
Leu Asn Ser Lys Asp Ile Gln Glu Ser
385 390
<210> 21
<211> 343
<212> PRT
<213> Morus notabilis
<400> 21
Met Ser Ala Gly Thr Thr Ala Phe Arg Ser Ile Leu Asp Lys Pro Leu
1 5 10 15
Asn Gln Leu Thr Glu Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Pro
50 55 60
Cys Asp Asp Ser Gly Ala Gly Ala Leu Arg Arg Ile Val Ala Ser Thr
65 70 75 80
Pro Pro Pro Pro Pro Thr Gln Asn Ala Pro Arg Val Ser Thr Phe Ser
85 90 95
Val Thr Ser Asn Ser Ala Asp Ser Gly Lys Glu Ala Ser Val Asp Val
100 105 110
Gln Val Ser Ala Glu Glu Ser Gly Pro Cys Gln Arg Lys Glu Gln Ala
115 120 125
Lys Ser Ala Pro Glu Thr Glu Glu Arg Pro Ala Asp Ala Gly Glu Arg
130 135 140
Ala Ser Pro Arg Ser His Cys Ala Thr Asp Ala Leu Val Gly Gln Met
145 150 155 160
Thr Ile Phe Tyr Cys Gly Lys Val Asn Val Tyr Glu Gly Val Pro Pro
165 170 175
Glu Lys Ala Arg Ala Ile Met His Leu Ala Ala Ser Pro Ile Pro Leu
180 185 190
Ser Arg Glu Asn Ser Phe Gly Val Leu Ala Ala Pro Arg Ser Phe Pro
195 200 205
Trp His Leu His Ala Ala Ser Asp Lys Gly Gly Leu Leu Pro Pro Ser
210 215 220
Ala Thr Ile Ser Gln Pro Met Gln Thr Asp Lys Leu Ala Asp Tyr Ser
225 230 235 240
Gln Gln Cys Trp Glu Lys Glu Asn Asp Gly Gln Ala Ser Arg Lys Leu
245 250 255
Ser Leu Gln Lys Tyr Arg Glu Lys Lys Lys Asp Arg Gly Arg Leu Lys
260 265 270
Thr Lys Arg Ser Thr Gly Phe Asn Ser Ser Ser Met Glu Val Tyr Phe
275 280 285
Asn His Gln Val Lys Thr His Met Ser Asn Gly Asn Ser Ser Arg Ser
290 295 300
Ser Thr Ser Ser Pro Thr Gln Pro Gly Leu Pro Gln Thr Leu Cys Ser
305 310 315 320
Thr Val Asp Asn Gln Pro Lys Ile Pro Cys Leu Pro Val Asp Leu Asn
325 330 335
Glu Lys Leu Thr Ile Glu Met
340
<210> 22
<211> 364
<212> PRT
<213> Phoenix dactylifera
<400> 22
Met Tyr Trp Val Gly Ser Ala Gln Glu Arg Arg Arg Asp Gly Gly Arg
1 5 10 15
Ser Pro Leu Asp Lys Pro Leu Ser Leu Leu Thr Glu Glu Asp Ile Ala
20 25 30
Gln Leu Thr Arg Glu Asp Cys Arg Arg Phe Leu Lys Glu Lys Gly Met
35 40 45
Arg Arg Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln Gln Val Ile Ser
50 55 60
Leu Lys Ala Leu Leu Glu Gly Arg Pro Glu Ser Gly Glu Leu Pro Val
65 70 75 80
Gly Ala Gly Tyr Arg Gln Lys Pro Pro Pro Arg Arg Pro Ala Ser Leu
85 90 95
Pro Ser Leu Gln Glu Ala Ala Gly Asp Ser Thr Ala Ala Ala Lys Glu
100 105 110
Pro Ser Pro Ser Ser Ser Leu Ser Pro Tyr Arg Arg Arg Asp Pro Ile
115 120 125
Pro Pro Ile Ile Ser Ala Gly Gly Pro Ser Cys Arg Phe Pro Val Ala
130 135 140
Gly Arg Asp Gln Gln Pro Pro Glu Thr Pro Ser Pro Ser Leu Arg Val
145 150 155 160
Thr Ala Glu Val Pro Ala Gly Gln Met Thr Ile Phe Tyr Asp Gly Lys
165 170 175
Val Asn Val Tyr Ser Asp Val Thr Val Asp Lys Ala Arg Ala Ile Leu
180 185 190
Leu Leu Ala Gly Arg Arg Asp Cys Tyr Gly Ala Ala Ala Leu Pro Gly
195 200 205
Pro Val His Ser Pro Gln Pro Ala Phe Leu Gly Pro Gly Gln Gly Pro
210 215 220
Val Pro Thr Ala Pro Pro Leu Ala Ala Ala Leu Pro Thr Ser Pro Ala
225 230 235 240
Gly Arg Leu Ala His Arg Phe Glu Gly Pro Ser Gly Val Pro Arg Gly
245 250 255
Lys Ser Ser Leu Val Arg Glu Arg Ser Thr Ser Pro Glu Gly Pro Thr
260 265 270
Ser Arg Lys Ala Ser Leu Gln Arg Tyr Leu Glu Lys Arg Lys Asp Arg
275 280 285
Leu Lys Gly Arg Lys Thr Leu Gly Gly Ala Ser Ser Ser Ser Met Glu
290 295 300
Ile Met Phe Leu Ser Gln Lys Phe Gly Gly Gln Ile Pro Asn Glu Gln
305 310 315 320
Leu Ser Arg Ser Asn Thr Ser Ser Pro Thr Gln Pro Arg Pro Pro Gly
325 330 335
Thr Pro Thr Arg Cys Ser Ser Ile Glu Asn Gln Ala Gln Lys Asn His
340 345 350
Leu Ser Val Asp Leu Asn Asp Asp Gly Cys Gly Asn
355 360
<210> 23
<211> 354
<212> PRT
<213> Theobroma cacao
<400> 23
Met Glu Ala Gly Val Ala Thr Thr Thr Thr Thr Thr Glu Ser Phe Arg
1 5 10 15
Ser Ile Leu Asp Lys Pro Leu Ser Gln Leu Thr Glu Glu Asp Ile Ser
20 25 30
Gln Leu Thr Arg Glu Asp Cys Arg Lys Phe Leu Lys Glu Lys Gly Met
35 40 45
Arg Arg Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln Gln Val Ile Ser
50 55 60
Leu Lys Ala Leu Leu Glu Ser Asn Glu Asp Ser Gly Ala Gly Ala Ile
65 70 75 80
Arg Lys Ile Leu Val Ser Pro Pro Ser Pro Ser Val Pro Pro Gln Asn
85 90 95
Ala Ala Ala Arg Val Ala Ser Asn Ser Cys Asp Ser Val Lys Glu Ala
100 105 110
Val Val Gly Glu Glu Gly Ser Pro Tyr Arg Arg Lys Asp Pro Pro Leu
115 120 125
Lys Pro Ser Pro Val Gly Glu Ile Asn Cys Leu Gly Gly Asp Thr Asp
130 135 140
Asn Lys Asn Leu Ser Pro Arg Ser Pro Cys Glu Ser Asn Glu Leu Gly
145 150 155 160
Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn Val Tyr Asp Gly
165 170 175
Val Pro Leu Asp Lys Ala Arg Ala Ile Met His Leu Ala Ala Thr Pro
180 185 190
Ile Asp Phe Pro Gln Asp Asn Gln Cys Ser Gly Asn Ala Ala Leu Arg
195 200 205
Ser Phe Met Cys His Val Gln Ala Val Gly Asp Lys Asn Gly Leu Val
210 215 220
Ala Ser Thr Ala Leu Asn Ser His Thr Met Gln Thr Glu Lys Leu Thr
225 230 235 240
Glu Tyr Gln His Gln Phe Arg Glu Lys Gly Asn Ile Ala Arg Asp Ala
245 250 255
Asp Val Asp Gly Gln Val Asn Arg Lys Val Ser Leu Gln Arg Tyr Arg
260 265 270
Glu Lys Arg Lys Asp Arg Gly Arg Phe Phe Lys Gly Arg Lys Asn Thr
275 280 285
Gly Gln Ala Ser Ser Ser Leu Glu Met Tyr Leu Asn His Gln Ile Arg
290 295 300
Thr His Asn Ser Asn Gly Gln Ser Ser Arg Ser Ser Thr Gly Ser Pro
305 310 315 320
Pro Gln Ser Gly Leu Pro His Ala Phe Cys Ser Ser Ala Asp Asn Gln
325 330 335
Ala Lys Leu Val Asn Leu Ser Val Asp Leu Asn Asp Lys Ser Val Gln
340 345 350
Glu His
<210> 24
<211> 293
<212> PRT
<213> Spirodela polyrrhiza
<400> 24
Met Ala Gly Ser Glu Ala Ala Ala Pro Glu Glu Ala Gly Arg Ala Gly
1 5 10 15
Glu Glu Glu Val Arg Ala Ala Ala Gly Ala Ala Ala Val Lys Ser Pro
20 25 30
Leu Glu Lys Pro Leu Ser Glu Leu Thr Glu Glu Asp Ile Ala Gln Val
35 40 45
Thr Arg Glu Asp Cys Arg Arg Phe Leu Lys Glu Lys Gly Met Arg Arg
50 55 60
Pro Ser Trp Asn Lys Ser Gln Ala Val Gln Gln Val Ile Ser Leu Lys
65 70 75 80
Ala Leu Leu Glu Pro Cys His Asp Ala Asp Asp Asp Ala Pro Ser Ala
85 90 95
Gly Ala Val Pro Ser Ile Ser Ser Phe Phe Ser Lys Arg Pro Ser Asp
100 105 110
Ala Leu Leu Pro Ala Ala Ala Ala Gln Phe Pro Val Ser Ser Pro Met
115 120 125
Arg Gly Glu Pro Ala Gly Gly Ala Pro Gln Ile Val Ser Glu Arg Pro
130 135 140
His Gly Arg Asp Pro Leu Ala Asn Val Phe Thr Cys Ser Asp Ala Leu
145 150 155 160
Gly Arg Phe Pro Ala Thr Gly Asn Gly Ala Leu Pro Pro Asn Ser Ala
165 170 175
Thr Leu Pro Pro Arg Gly Val Ala Ser Ala Glu Thr Leu Glu Gly Gln
180 185 190
Leu Thr Ile Phe Tyr Asp Gly Lys Ile Asn Val Tyr Asp Gly Val Thr
195 200 205
Pro Glu Lys Val Arg Ser Gly Gln Lys Gly Pro Thr Ser Arg Ala Ala
210 215 220
Ser Leu Gln Arg Tyr Leu Glu Lys Arg Lys Asp Arg Arg Asp Pro Gly
225 230 235 240
Pro Ala Ala Val Ala Thr Leu Tyr Arg Lys Val Phe Leu Ser Ala Thr
245 250 255
Ala Leu Leu Ile Gly Cys Ser Ser Gly Ala Asn Val Val Leu Pro Arg
260 265 270
Ala Glu Gly Pro Thr Ser Arg Ala Ala Ser Leu Gln Arg Tyr Leu Glu
275 280 285
Lys Arg Lys Asp Arg
290
<210> 25
<211> 293
<212> PRT
<213> Musa acuminata
<400> 25
Met Asn Pro Gly Glu Thr Thr Pro Pro Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Ala Glu Leu Thr Glu Glu Asp Ile Ala Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Phe Leu Lys Ala Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Gly
50 55 60
Arg Pro Gly Cys Asp Asp Cys Pro Ala Gly Gly Gly Ile Leu Gln Lys
65 70 75 80
Leu Leu Thr Ser Ser Pro Ser Glu Pro Leu Ser Pro Pro Gln Asp Ser
85 90 95
Pro Pro Pro Ala Pro Lys Glu Gly Gly Ser Gly Ser Gln Pro Leu Ala
100 105 110
Lys Glu Pro Ser Pro Tyr Arg Arg Arg Asp Pro Ile Pro Pro Pro Tyr
115 120 125
Ser Ala Gly Asn Pro Thr Cys Gln Thr Pro Ile Ala Gly Ala Asp Leu
130 135 140
Pro His Pro Pro Glu Lys Arg Cys Pro Ser Pro Arg Leu Thr Ala Glu
145 150 155 160
Val Pro Val Gly Gln Met Thr Ile Phe Tyr Asp Gly Met Val Asn Val
165 170 175
Tyr Asp Gly Val Ser Ala Asp Gln Ala Arg Ser Ile Met Glu Leu Ala
180 185 190
Ala Ser Pro Val Cys Phe Asp Asp Pro Thr Gly Ala Phe Ser Pro Ala
195 200 205
Arg Pro Pro Ala Phe Arg Phe Pro Pro Gly Leu Pro Arg Pro Ala Pro
210 215 220
Val Pro Thr Ala Pro Ser Phe Val Gly Thr Phe Pro Ile Ser Pro Ala
225 230 235 240
Gly Lys Arg Cys Tyr Ser Tyr Cys Ser Phe Arg Ser Ser Val Ser Leu
245 250 255
Leu Thr Thr Thr Glu Gly Pro Thr Ser Arg Lys Ala Ser Leu Gln Arg
260 265 270
Tyr Leu Glu Lys Arg Lys Asp Arg Tyr Gly His Leu Pro Thr Glu Ser
275 280 285
Ile Leu Leu Val Ser
290
<210> 26
<211> 171
<212> PRT
<213> Phalaenopsis aphrodite
<220>
<221> misc_feature
<222> (72)..(87)
<223> Xaa can be any naturally occurring amino acid
<400> 26
Met Asn Ser Asp Ala Ile Thr Met Gly Lys Ser Leu Leu Glu Lys Pro
1 5 10 15
Leu Ser Leu Leu Thr Glu Asp Asp Ile Ala Gln Ile Thr Arg Glu Glu
20 25 30
Cys Arg Arg Phe Leu Lys Asp Arg Gly Met Arg Arg Pro Ser Trp Asn
35 40 45
Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Phe Glu
50 55 60
Asn Arg Ser Asp Leu Glu Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Pro Glu His Ala Asp Leu Ser Ser
85 90 95
Ile Ser Pro Thr Ala Glu Ala Lys Glu Pro Glu Lys Ala Gln Leu Thr
100 105 110
Ile Phe Tyr Gly Gly Lys Val Leu Val Phe Asp Asn Phe Pro Val Asn
115 120 125
Lys Ala Gln Asp Leu Met Gln Ile Ala Gly Lys Glu Gln Asn Gln Asn
130 135 140
Tyr Gly Thr Ala Asn Thr Val Ala Pro Ser Ala Pro Ala Ala Asp Leu
145 150 155 160
His Ser Leu Pro Leu Pro Ala Lys Pro Pro Ala
165 170
<210> 27
<211> 46
<212> PRT
<213> Arabidopsis thaliana
<400> 27
Leu Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp
1 5 10 15
Cys Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
20 25 30
Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu
35 40 45
<210> 28
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> MISC_FEATURE
<222> (2)..(3)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (5)..(7)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (9)..(10)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (19)..(20)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (22)..(24)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (28)..(28)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (34)..(34)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (37)..(38)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (40)..(41)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (43)..(45)
<223> X is any amino acid
<400> 28
Leu Xaa Xaa Leu Xaa Xaa Xaa Asp Xaa Xaa Gln Xaa Thr Arg Glu Xaa
1 5 10 15
Cys Arg Xaa Xaa Leu Xaa Xaa Xaa Gly Met Arg Xaa Pro Ser Trp Asn
20 25 30
Lys Xaa Gln Ala Xaa Xaa Gln Xaa Xaa Ser Xaa Xaa Xaa Leu
35 40 45
<210> 29
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa is Glu, Phe, His, Tyr, Asn, Trp, Ser, Lys or Thr
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is Glu, Gln, or Leu
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is Thr or Ser
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is Glu or Asp
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Xaa is Glu, Leu or Asp
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Xaa is Ile or Val
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Xaa is Ser, Phe, Arg, Met or Thr
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Xaa is Leu or Val
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> Xaa is Asp or Glu
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Xaa is Arg or Lys
<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> Xaa is Tyr or Phe
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> Xaa is Lys or Arg
<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> Xaa is Glu, Asp, Gln or Ala
<220>
<221> misc_feature
<222> (24)..(24)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (28)..(28)
<223> Xaa is Arg or Lys
<220>
<221> MISC_FEATURE
<222> (34)..(34)
<223> Xaa is Tyr, Ser or Ala
<220>
<221> MISC_FEATURE
<222> (37)..(37)
<223> Xaa is Ile or Val
<220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Xaa is Gln or Glu
<220>
<221> MISC_FEATURE
<222> (40)..(40)
<223> Xaa is Val or Leu
<220>
<221> MISC_FEATURE
<222> (41)..(41)
<223> Xaa is Leu or Ile
<220>
<221> MISC_FEATURE
<222> (43)..(43)
<223> Xaa is Leu or Phe
<220>
<221> MISC_FEATURE
<222> (44)..(44)
<223> Xaa is Lys or Arg
<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> Xaa is Gly, Ser, Thr or Ala
<400> 29
Leu Xaa Xaa Leu Xaa Xaa Xaa Asp Xaa Xaa Gln Xaa Thr Arg Glu Xaa
1 5 10 15
Cys Arg Xaa Xaa Leu Xaa Xaa Xaa Gly Met Arg Xaa Pro Ser Trp Asn
20 25 30
Lys Xaa Gln Ala Xaa Xaa Gln Xaa Xaa Ser Xaa Xaa Xaa Leu
35 40 45
<210> 30
<211> 27
<212> PRT
<213> Arabidopsis thaliana
<400> 30
Thr Arg Glu Asp Cys Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg
1 5 10 15
Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln Gln
20 25
<210> 31
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (7)..(8)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (10)..(12)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (25)..(26)
<223> X is any amino acid
<400> 31
Thr Arg Glu Xaa Cys Arg Xaa Xaa Leu Xaa Xaa Xaa Gly Met Arg Xaa
1 5 10 15
Pro Ser Trp Asn Lys Xaa Gln Ala Xaa Xaa Gln
20 25
<210> 32
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa is Asp or Glu
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Xaa is Lys or Arg
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Xaa is Phe or Tyr
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Xaa is Lys or Arg
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Xaa is Asp, Ala, Glu or Gln
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Xaa is Lys or Arg
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> Xaa is Lys or Arg
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> Xaa is Tyr, Ser or Ala
<220>
<221> MISC_FEATURE
<222> (25)..(25)
<223> Xaa is Ile or Val
<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> Xaa is Gln or Glu
<400> 32
Thr Arg Glu Xaa Cys Arg Xaa Xaa Leu Xaa Xaa Xaa Gly Met Arg Xaa
1 5 10 15
Pro Ser Trp Asn Lys Xaa Gln Ala Xaa Xaa Gln
20 25
<210> 33
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 33
Thr Ile Phe Tyr Ser Gly
1 5
<210> 34
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (5)..(5)
<223> Xaa can be any naturally occurring amino acid
<400> 34
Thr Xaa Phe Tyr Xaa Gly
1 5
<210> 35
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa is Ile or Met
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is Ala, Ser, Asp, Cys, Arg or Gly
<400> 35
Thr Xaa Phe Tyr Xaa Gly
1 5
<210> 36
<211> 355
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 36
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
1 5 10 15
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
50 55 60
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
65 70 75 80
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
85 90 95
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
100 105 110
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
115 120 125
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
130 135 140
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
145 150 155 160
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
165 170 175
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
180 185 190
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
195 200 205
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
210 215 220
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
225 230 235 240
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
245 250 255
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
260 265 270
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
275 280 285
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
290 295 300
Ser Val Asp Leu Asn Ser Glu Gly Ile Gly Ser Gly Gly Gly Ser Ala
305 310 315 320
Lys Gly Glu Leu Arg Gly His Pro Phe Glu Gly Lys Pro Ile Pro Asn
325 330 335
Pro Leu Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His His
340 345 350
His Gly Ser
355
<210> 37
<211> 42
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 37
Gly Ser Gly Gly Gly Ser Ala Lys Gly Glu Leu Arg Gly His Pro Phe
1 5 10 15
Glu Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Arg
20 25 30
Thr Gly His His His His His His Gly Ser
35 40
<210> 38
<211> 315
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 38
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
1 5 10 15
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
50 55 60
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
65 70 75 80
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
85 90 95
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
100 105 110
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
115 120 125
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
130 135 140
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
145 150 155 160
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
165 170 175
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
180 185 190
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
195 200 205
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
210 215 220
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
225 230 235 240
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
245 250 255
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
260 265 270
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
275 280 285
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
290 295 300
Ser Val Asp Leu Asn Ser Glu Gly Ile Gly Ser
305 310 315
<210> 39
<211> 86
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 39
gtaatgttca gctctgctat agtgtgtgcc accctgcttg tttaataatg cgttctcttc 60
gtttttatga tatcttattc ttccag 86
<210> 40
<211> 1157
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 40
atggacgtgg gcgtgtcccc ggccaagtct attctcgcca agccggtaat gttcagctct 60
gctatagtgt gtgccaccct gcttgtttaa taatgcgttc tcttcgtttt tatgatatct 120
tattcttcca gctcaagctc ctcaccgagg aggacatctc tcagctcaca agagaggact 180
gccgcaagtt cctgaaggac aaggggatga gaaggccttc ctggaacaag tcccaggcca 240
tccagcaagt gctcagcctc aaggcccttt acgagccagg cgacgactcc ggcgctggca 300
ttttcagaaa gatcctcgtg tcccagccgg tgaacccacc aagggtgacc accacactca 360
tcgagccgtc caatgagctt gaggcttgcg gcagagtgtc ctacccagag gataatggcg 420
cctgccacag gatggattct ccaaggtctg ctgagttctc tggcggctcc ggccatttcg 480
tgtctgagaa ggatggccac aagaccacca tctccccaag atccccagcc gagacatctg 540
agcttgtggg ccagatgacc atcttctact ccggcaaggt gaacgtgtac gacggcatcc 600
caccagagaa ggcccgctcc attatgcact tcgccgccaa cccaatcgac ctcccagaga 660
atggcatctt cgcctccagc cgcatgatct ccaagctcat ctccaaggag aagatgatgg 720
agctgccgca gaagggcctc gagaaggcta attcctctcg cgactccggc atggagggcc 780
aggctaatag aaaggtgtcc ctccaacgct accgcgagaa gaggaaggac cgcaagttct 840
ccaaggccaa gaagtgccca ggcgttgcct cttccagcct cgagatgttc ctcaactgcc 900
agccgagaat gaaggccgcc tactcccaaa atctcggctg cacaggctcc ccactccatt 960
ctcagtcccc agagtctcag accaagtccc cgaacctctc cgtggacctt aactccgagg 1020
gcatcggatc cggcggcggc tctgctaagg gcgagctgag gggccacccg ttcgagggca 1080
agccaattcc aaatccactc ctcggcctcg actctaccag gaccggccac catcaccatc 1140
accacggatc ctaatga 1157
<210> 41
<211> 2771
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 41
tcgaggtcat tcatatgctt gagaagagag tcgggatagt ccaaaataaa acaaaggtaa 60
gattacctgg tcaaaagtga aaacatcagt taaaaggtgg tataagtaaa atatcggtaa 120
taaaaggtgg cccaaagtga aatttactct tttctactat tataaaaatt gaggatgttt 180
tgtcggtact ttgatacgtc atttttgtat gaattggttt ttaagtttat tcgcgatttg 240
gaaatgcata tctgtatttg agtcggtttt taagttcgtt gcttttgtaa atacagaggg 300
atttgtataa gaaatatctt taaaaaaccc atatgctaat ttgacataat ttttgagaaa 360
aatatatatt caggcgaatt ccacaatgaa caataataag attaaaatag cttgcccccg 420
ttgcagcgat gggtattttt tctagtaaaa taaaagataa acttagactc aaaacattta 480
caaaaacaac ccctaaagtc ctaaagccca aagtgctatg cacgatccat agcaagccca 540
gcccaaccca acccaaccca acccacccca gtgcagccaa ctggcaaata gtctccaccc 600
ccggcactat caccgtgagt tgtccgcacc accgcacgtc tcgcagccaa aaaaaaaaaa 660
agaaagaaaa aaaagaaaaa gaaaaacagc aggtgggtcc gggtcgtggg ggccggaaaa 720
gcgaggagga tcgcgagcag cgacgaggcc cggccctccc tccgcttcca aagaaacgcc 780
ccccatcgcc actatataca tacccccccc tctcctccca tccccccaac cctaccacca 840
ccaccaccac cacctcctcc cccctcgctg ccggacgacg agctcctccc ccctccccct 900
ccgccgccgc cggtaaccac cccgcccctc tcctctttct ttctccgttt tttttttcgt 960
ctcggtctcg atctttggcc ttggtagttt gggtgggcga gagcggcttc gtcgcccaga 1020
tcggtgcgcg ggaggggcgg gatctcgcgg ctggcgtctc cgggcgtgag tcggcccgga 1080
tcctcgcggg gaatggggct ctcggatgta gatcttcttt ctttcttctt tttgtggtag 1140
aatttgaatc cctcagcatt gttcatcggt agtttttctt ttcatgattt gtgacaaatg 1200
cagcctcgtg cggagctttt ttgtaggtag acaagcttga tatcacaagt ttgtacaaaa 1260
aagcaggctt caaaaaaaac catggacgtg ggcgtgtccc cggccaagtc tattctcgcc 1320
aagccggtaa tgttcagctc tgctatagtg tgtgccaccc tgcttgttta ataatgcgtt 1380
ctcttcgttt ttatgatatc ttattcttcc agctcaagct cctcaccgag gaggacatct 1440
ctcagctcac aagagaggac tgccgcaagt tcctgaagga caaggggatg agaaggcctt 1500
cctggaacaa gtcccaggcc atccagcaag tgctcagcct caaggccctt tacgagccag 1560
gcgacgactc cggcgctggc attttcagaa agatcctcgt gtcccagccg gtgaacccac 1620
caagggtgac caccacactc atcgagccgt ccaatgagct tgaggcttgc ggcagagtgt 1680
cctacccaga ggataatggc gcctgccaca ggatggattc tccaaggtct gctgagttct 1740
ctggcggctc cggccatttc gtgtctgaga aggatggcca caagaccacc atctccccaa 1800
gatccccagc cgagacatct gagcttgtgg gccagatgac catcttctac tccggcaagg 1860
tgaacgtgta cgacggcatc ccaccagaga aggcccgctc cattatgcac ttcgccgcca 1920
acccaatcga cctcccagag aatggcatct tcgcctccag ccgcatgatc tccaagctca 1980
tctccaagga gaagatgatg gagctgccgc agaagggcct cgagaaggct aattcctctc 2040
gcgactccgg catggagggc caggctaata gaaaggtgtc cctccaacgc taccgcgaga 2100
agaggaagga ccgcaagttc tccaaggcca agaagtgccc aggcgttgcc tcttccagcc 2160
tcgagatgtt cctcaactgc cagccgagaa tgaaggccgc ctactcccaa aatctcggct 2220
gcacaggctc cccactccat tctcagtccc cagagtctca gaccaagtcc ccgaacctct 2280
ccgtggacct taactccgag ggcatcggat ccggcggcgg ctctgctaag ggcgagctga 2340
ggggccaccc gttcgagggc aagccaattc caaatccact cctcggcctc gactctacca 2400
ggaccggcca ccatcaccat caccacggat cctaatgaag acccagcttt cttgtacaaa 2460
gtggtgatat cgaattcctg cagcccgggg gatccactag ttctaggtac cgagctcgga 2520
tcgttcaaac attggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg 2580
attatcatat aatttctgtt gattacgtta agcatgtaat aattaacatg taatgcatga 2640
cgttatttat gagatgggtt tttatgatta gagtcccgca attatacatt taatacgcga 2700
tagaaaacaa aatatagcgc gcaaactagg ataaattatc gcgcgcggtg tcatctatgt 2760
gactagatcg g 2771
<210> 42
<211> 2921
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 42
gcggccgctc tagaactagt ccccttattg tacttcaatt aattatcatt atatcagcat 60
aaacattata ataagtttct tgcgtgttgg aacgtcattt tagttattct aaagaggaaa 120
tagtttcttt tttgctcatg acatcagaca tctggactac tatactggag tttacctttt 180
cttctcctct ttttcttatt gttcctctaa aaaaaattat cactttttaa atgcattagt 240
taaacttatc tcaacaacgt ttaaaattca tttcttgaat gcccattaca atgtaatagt 300
ataacttaat tagtcgtctc catgaaccat taatacgtac ggagtaatat aaaacaccat 360
tggggagttc aatttgcaat aatttcttgc aaaaatgtaa agtacctttt tgttcttgca 420
aaattttaca aataaaaatt tgcagctctt ttttttctct ctctccaaat actagctcaa 480
aacccacaaa tatttttgaa tttatggcat acttttagaa tgcgtttgat gcaactattt 540
tcctttagga aatattcaca acaatctaag acaatcaaaa agtagaaaat agtttgtaaa 600
aagggatgtg gaggacatct taatcaaata ttttcagttt aaaacttgaa aatgaaaaaa 660
cacccgaaag gaaatgattc gttctttaat atgtcctaca caatgtgaat ttgaattagt 720
ttggtcatac ggtatatcat atgattataa ataaaaaaaa ttagcaaaag aatataattt 780
attaaatatt ttacaccata ccaaacacaa ccgcattata tataatctta attatcatta 840
tcaccagcat caacattata atgattcccc tatgcgttgg aacgtcatta tagttattct 900
aaacaagaaa gaaatttgtt cttgacatca gacatctagt attataactc tagtggagct 960
taccttttct tttccttctt ttttttcttc ttaaaaaaat tatcactttt taaatcttgt 1020
atattagtta agcttatcta aacaaagttt taaattcatt tcttaaacgt ccattacaat 1080
gtaatataac ttagtcgtct caattaaacc attaatgtga aatataaatc aaaaaaagcc 1140
aaagggcggt gggacggcgc caatcatttg tcctagtcca ctcaaataag gcccatggtc 1200
ggcaaaacca aacacaaaat gtgttatttt taattttttc ctcttttatt gttaaagttg 1260
caaaatgtgt tatttttggt aagaccctat ggatatataa agacaggtta tgtgaaactt 1320
ggaaaaccat caagttttaa gcaaaaccct cttaagaact taaattgagc ttcttttggg 1380
gcatttttct agtgagaact aaaaacaagt ttgtacaaaa aagcaggcta aaaaaaacca 1440
tggacgtggg cgtgtccccg gccaagtcta ttctcgccaa gccggtaatg ttcagctctg 1500
ctatagtgtg tgccaccctg cttgtttaat aatgcgttct cttcgttttt atgatatctt 1560
attcttccag ctcaagctcc tcaccgagga ggacatctct cagctcacaa gagaggactg 1620
ccgcaagttc ctgaaggaca aggggatgag aaggccttcc tggaacaagt cccaggccat 1680
ccagcaagtg ctcagcctca aggcccttta cgagccaggc gacgactccg gcgctggcat 1740
tttcagaaag atcctcgtgt cccagccggt gaacccacca agggtgacca ccacactcat 1800
cgagccgtcc aatgagcttg aggcttgcgg cagagtgtcc tacccagagg ataatggcgc 1860
ctgccacagg atggattctc caaggtctgc tgagttctct ggcggctccg gccatttcgt 1920
gtctgagaag gatggccaca agaccaccat ctccccaaga tccccagccg agacatctga 1980
gcttgtgggc cagatgacca tcttctactc cggcaaggtg aacgtgtacg acggcatccc 2040
accagagaag gcccgctcca ttatgcactt cgccgccaac ccaatcgacc tcccagagaa 2100
tggcatcttc gcctccagcc gcatgatctc caagctcatc tccaaggaga agatgatgga 2160
gctgccgcag aagggcctcg agaaggctaa ttcctctcgc gactccggca tggagggcca 2220
ggctaataga aaggtgtccc tccaacgcta ccgcgagaag aggaaggacc gcaagttctc 2280
caaggccaag aagtgcccag gcgttgcctc ttccagcctc gagatgttcc tcaactgcca 2340
gccgagaatg aaggccgcct actcccaaaa tctcggctgc acaggctccc cactccattc 2400
tcagtcccca gagtctcaga ccaagtcccc gaacctctcc gtggacctta actccgaggg 2460
catcggatcc ggcggcggct ctgctaaggg cgagctgagg ggccacccgt tcgagggcaa 2520
gccaattcca aatccactcc tcggcctcga ctctaccagg accggccacc atcaccatca 2580
ccacggatcc taatgaaccc agctttcttg tacaaagtgg tctagtgggt accgcgaatt 2640
tccccgatcg ttcaaacatt tggcaataaa gtttcttaag attgaatcct gttgccggtc 2700
ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata attaacatgt 2760
aatgcatgac gttatttatg agatgggttt ttatgattag agtcccgcaa ttatacattt 2820
aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg cgcgcggtgt 2880
catctatgtt actagatcga agcggccgct ctagaactag t 2921
<210> 43
<211> 2249
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 43
gcggccgctc tagaactagt gtcctacaca atgtgaattt gaattagttt ggtcatacgg 60
tatatcatat gattataaat aaaaaaaatt agcaaaagaa tataatttat taaatatttt 120
acaccatacc aaacacaacc gcattatata taatcttaat tatcattatc accagcatca 180
acattataat gattccccta tgcgttggaa cgtcattata gttattctaa acaagaaaga 240
aatttgttct tgacatcaga catctagtat tataactcta gtggagctta ccttttcttt 300
tccttctttt ttttcttctt aaaaaaatta tcacttttta aatcttgtat attagttaag 360
cttatctaaa caaagtttta aattcatttc ttaaacgtcc attacaatgt aatataactt 420
agtcgtctca attaaaccat taatgtgaaa tataaatcaa aaaaagccaa agggcggtgg 480
gacggcgcca atcatttgtc ctagtccact caaataaggc ccatggtcgg caaaaccaaa 540
cacaaaatgt gttattttta attttttcct cttttattgt taaagttgca aaatgtgtta 600
tttttggtaa gaccctatgg atatataaag acaggttatg tgaaacttgg aaaaccatca 660
agttttaagc aaaaccctct taagaactta aattgagctt cttttggggc atttttctag 720
tgagaactaa aaacaagttt gtacaaaaaa gcaggctaaa aaaaaccatg gacgtgggcg 780
tgtccccggc caagtctatt ctcgccaagc cggtaatgtt cagctctgct atagtgtgtg 840
ccaccctgct tgtttaataa tgcgttctct tcgtttttat gatatcttat tcttccagct 900
caagctcctc accgaggagg acatctctca gctcacaaga gaggactgcc gcaagttcct 960
gaaggacaag gggatgagaa ggccttcctg gaacaagtcc caggccatcc agcaagtgct 1020
cagcctcaag gccctttacg agccaggcga cgactccggc gctggcattt tcagaaagat 1080
cctcgtgtcc cagccggtga acccaccaag ggtgaccacc acactcatcg agccgtccaa 1140
tgagcttgag gcttgcggca gagtgtccta cccagaggat aatggcgcct gccacaggat 1200
ggattctcca aggtctgctg agttctctgg cggctccggc catttcgtgt ctgagaagga 1260
tggccacaag accaccatct ccccaagatc cccagccgag acatctgagc ttgtgggcca 1320
gatgaccatc ttctactccg gcaaggtgaa cgtgtacgac ggcatcccac cagagaaggc 1380
ccgctccatt atgcacttcg ccgccaaccc aatcgacctc ccagagaatg gcatcttcgc 1440
ctccagccgc atgatctcca agctcatctc caaggagaag atgatggagc tgccgcagaa 1500
gggcctcgag aaggctaatt cctctcgcga ctccggcatg gagggccagg ctaatagaaa 1560
ggtgtccctc caacgctacc gcgagaagag gaaggaccgc aagttctcca aggccaagaa 1620
gtgcccaggc gttgcctctt ccagcctcga gatgttcctc aactgccagc cgagaatgaa 1680
ggccgcctac tcccaaaatc tcggctgcac aggctcccca ctccattctc agtccccaga 1740
gtctcagacc aagtccccga acctctccgt ggaccttaac tccgagggca tcggatccgg 1800
cggcggctct gctaagggcg agctgagggg ccacccgttc gagggcaagc caattccaaa 1860
tccactcctc ggcctcgact ctaccaggac cggccaccat caccatcacc acggatccta 1920
atgaacccag ctttcttgta caaagtggtc tagtgggtac cgcgaatttc cccgatcgtt 1980
caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta 2040
tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa tgcatgacgt 2100
tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag 2160
aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca tctatgttac 2220
tagatcgaag cggccgctct agaactagt 2249
<210> 44
<211> 2852
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 44
gcggccgctc tagaactagt tcacgtggaa cgcgccgcag taaacggagc ggtggatcaa 60
acttttcgtc cgtttgatca aacagaagag aactagtcaa tgctctttct tcatatcaca 120
atttaatagt ctcaagacga ttacgccaca taaccatttt ctcgtgattt cgacatcaaa 180
atttaataaa aggaactgat tgattggtca tcatgttaca agtgtcaaat gagctaatcc 240
gttttacagt ggcatagttt acgatcaatt tacaaatttt tggttttata acatacttgt 300
agttaaaact atttataagc tatttatagt gagttagctt ataaaaccct attcttttat 360
ctaaaattat gttttgactc gtttcatgat aaaattttat ccttttcatc ggaataaaaa 420
actttattat ttatttggca aaataattgg tgtaaaaatt atgtatatgt taataacaaa 480
aaatattaat ctgattcata atcttaaaaa agaaaaattt cttgaaataa actttagaca 540
ttgtaaataa aaaaacatta tttttatata atgggatgtt tatatgtaat tttttataaa 600
aaaataaaag ttgtttacta gtaatccgat tggctttaac tatcgtcgcc aaaagaataa 660
tgtagaactg actttgaggt aaaactaaaa gaaatttgta agataatagt cacattaaat 720
gctaaaatta atacatactg atatatcgta taaaatttat gaaaactaca ccttaacctg 780
aatcatacac tgtaataaaa aaaacaaatt atatataaac cctaaaaact aatcataaat 840
cccaaacggt gtactctcta ttagctttga aaggattgcc caattgtttg ttaaaaattt 900
ctaataatag tacaatgttt tgtttcattt ttccttttcg tcaacctgtt acccaatagc 960
aaatgaagtt tttatgtgtg tgtgtgtgtg tgaatttcca tgaaaatgaa acgggcttag 1020
aatcccggtg tattatgggt cgggtcgtaa ccgggcaatg acgcaggatc tgacgtaaaa 1080
ctcccaagaa tttttttaaa aagtctccgg aaaataaaat caaagttcat taacttaaaa 1140
agaaaaaaca aaatcggtcc acgtcccaaa ccctttttat aggagagtct tatgttctgg 1200
cagaagactt cacagactct ttcttaatct ctctctcttt caaccaaacc cctaaacaaa 1260
aaaaaaatac attttctgat ctctctaaaa atctttctcc ttcgttaatc tcgtgatctc 1320
tttctttttc tatatacaag tttgtacaaa aaagcaggct aaaaaaaacc atggacgtgg 1380
gcgtgtcccc ggccaagtct attctcgcca agccggtaat gttcagctct gctatagtgt 1440
gtgccaccct gcttgtttaa taatgcgttc tcttcgtttt tatgatatct tattcttcca 1500
gctcaagctc ctcaccgagg aggacatctc tcagctcaca agagaggact gccgcaagtt 1560
cctgaaggac aaggggatga gaaggccttc ctggaacaag tcccaggcca tccagcaagt 1620
gctcagcctc aaggcccttt acgagccagg cgacgactcc ggcgctggca ttttcagaaa 1680
gatcctcgtg tcccagccgg tgaacccacc aagggtgacc accacactca tcgagccgtc 1740
caatgagctt gaggcttgcg gcagagtgtc ctacccagag gataatggcg cctgccacag 1800
gatggattct ccaaggtctg ctgagttctc tggcggctcc ggccatttcg tgtctgagaa 1860
ggatggccac aagaccacca tctccccaag atccccagcc gagacatctg agcttgtggg 1920
ccagatgacc atcttctact ccggcaaggt gaacgtgtac gacggcatcc caccagagaa 1980
ggcccgctcc attatgcact tcgccgccaa cccaatcgac ctcccagaga atggcatctt 2040
cgcctccagc cgcatgatct ccaagctcat ctccaaggag aagatgatgg agctgccgca 2100
gaagggcctc gagaaggcta attcctctcg cgactccggc atggagggcc aggctaatag 2160
aaaggtgtcc ctccaacgct accgcgagaa gaggaaggac cgcaagttct ccaaggccaa 2220
gaagtgccca ggcgttgcct cttccagcct cgagatgttc ctcaactgcc agccgagaat 2280
gaaggccgcc tactcccaaa atctcggctg cacaggctcc ccactccatt ctcagtcccc 2340
agagtctcag accaagtccc cgaacctctc cgtggacctt aactccgagg gcatcggatc 2400
cggcggcggc tctgctaagg gcgagctgag gggccacccg ttcgagggca agccaattcc 2460
aaatccactc ctcggcctcg actctaccag gaccggccac catcaccatc accacggatc 2520
ctaatgaacc cagctttctt gtacaaagtg gtctagtggg taccgcgaat ttccccgatc 2580
gttcaaacat ttggcaataa agtttcttaa gattgaatcc tgttgccggt cttgcgatga 2640
ttatcatata atttctgttg aattacgtta agcatgtaat aattaacatg taatgcatga 2700
cgttatttat gagatgggtt tttatgatta gagtcccgca attatacatt taatacgcga 2760
tagaaaacaa aatatagcgc gcaaactagg ataaattatc gcgcgcggtg tcatctatgt 2820
tactagatcg aagcggccgc tctagaacta gt 2852
<210> 45
<211> 2330
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 45
ggtaatgagc cctatctgat gtcagtgggg attgtttaca gtaccgcagc aaacactgac 60
gtatgggtct ggacccatat gttagccacc gctactgcat cagcagtatt gcagagaatt 120
tgcatcagca gtactgcatc agcagtatta cagatggggg tgcacaaagc cgggtcagtt 180
tacccaacta ccttcctcct cttaactata acttatattc aatttatgtc tctcgaaaat 240
agatatgaac atactttttt aaaaaataat actacatatt gtgaatttgt gatccttacc 300
tttacatttg agttatgacg aacaacttta tcgattatat aaaagaaagg atgacttctt 360
atccaaacaa atcctatagt aatgtctttt taactttcag tgactaacat ataaaccatc 420
aaacgagtcc atattaaagg ataatactac gaagaattgt catcccacat ttttacactg 480
ccactatcag ttaaaactga aaaccagctc accccaagct caccaagaat cttcgagaaa 540
cttataaact ccgccgaaaa atctcggaca aacccgcggc tcacacgcct ccacgcaccc 600
aaaccccacc ctagaatatc ctctccttgg ccaccgcgcc gccacatcag cctccccaat 660
ctccccgccc cacgcgcgag cgccaatcgc gagccgcctt tagatttccc aagataagga 720
ctcgatcccc cctcacttcc cgcgctattt aaactcccgc gccatctcca actcccaact 780
cacactcgct cgctcatcgc catctctctc agctctcaca gctcactgca tcaacaagtt 840
tgtacaaaaa agcaggctaa aaaaaaccat ggacgtgggc gtgtccccgg ccaagtctat 900
tctcgccaag ccggtaatgt tcagctctgc tatagtgtgt gccaccctgc ttgtttaata 960
atgcgttctc ttcgttttta tgatatctta ttcttccagc tcaagctcct caccgaggag 1020
gacatctctc agctcacaag agaggactgc cgcaagttcc tgaaggacaa ggggatgaga 1080
aggccttcct ggaacaagtc ccaggccatc cagcaagtgc tcagcctcaa ggccctttac 1140
gagccaggcg acgactccgg cgctggcatt ttcagaaaga tcctcgtgtc ccagccggtg 1200
aacccaccaa gggtgaccac cacactcatc gagccgtcca atgagcttga ggcttgcggc 1260
agagtgtcct acccagagga taatggcgcc tgccacagga tggattctcc aaggtctgct 1320
gagttctctg gcggctccgg ccatttcgtg tctgagaagg atggccacaa gaccaccatc 1380
tccccaagat ccccagccga gacatctgag cttgtgggcc agatgaccat cttctactcc 1440
ggcaaggtga acgtgtacga cggcatccca ccagagaagg cccgctccat tatgcacttc 1500
gccgccaacc caatcgacct cccagagaat ggcatcttcg cctccagccg catgatctcc 1560
aagctcatct ccaaggagaa gatgatggag ctgccgcaga agggcctcga gaaggctaat 1620
tcctctcgcg actccggcat ggagggccag gctaatagaa aggtgtccct ccaacgctac 1680
cgcgagaaga ggaaggaccg caagttctcc aaggccaaga agtgcccagg cgttgcctct 1740
tccagcctcg agatgttcct caactgccag ccgagaatga aggccgccta ctcccaaaat 1800
ctcggctgca caggctcccc actccattct cagtccccag agtctcagac caagtccccg 1860
aacctctccg tggaccttaa ctccgagggc atcggatccg gcggcggctc tgctaagggc 1920
gagctgaggg gccacccgtt cgagggcaag ccaattccaa atccactcct cggcctcgac 1980
tctaccagga ccggccacca tcaccatcac cacggatcct aatgaaccca gctttcttgt 2040
acaaagtggt ctagtgggta ccgcgaattt ccccgatcgt tcaaacattt ggcaataaag 2100
tttcttaaga ttgaatcctg ttgccggtct tgcgatgatt atcatataat ttctgttgaa 2160
ttacgttaag catgtaataa ttaacatgta atgcatgacg ttatttatga gatgggtttt 2220
tatgattaga gtcccgcaat tatacattta atacgcgata gaaaacaaaa tatagcgcgc 2280
aaactaggat aaattatcgc gcgcggtgtc atctatgtta ctagatcgaa 2330
<210> 46
<211> 3088
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 46
aaatgcccaa ataggtgcaa atctcagata gaaatgtttc aaaagtaaaa aaggtcccta 60
tcataaacat aattgatatg taagtgagtt ggaaaaagat aagtacggtg tgagagagac 120
ggggatcaaa ttcctggtgt aataatgtat gtattcacgt ccaataaaaa attggtagca 180
gtagttgggg ctctgtatat tataccggta aggtagggta ggtagtagaa taattctttt 240
tttgttttta gttttttctg gtccaaaatt tcaaatttca aatttggatc ccttacttgt 300
accaactaat attaatgagt gttgagggta gtagaggtgc aactttacca taatccctct 360
gtttcaggtt ataagacgtt ttgactttaa atttgaccaa gtttatgcgc aaatatagta 420
atatttataa tactatatta gtttcattaa ataaataatt gaatatattt tcataataaa 480
tttgtgttga gttcaaaata ttattaattt tttctacaaa cttggtcaaa cttgaagcag 540
tttgactttg accaaagtca acgtcttata acttgaaacg gatggattaa cctttttttt 600
gtgggaacaa gtttacaaag tttaataaag cacaatccat cttaatgttt tcaagctgaa 660
tattgtaaaa ttcatggata aaccaggctt ataaatgttt aaccgggaaa atgcgaacgg 720
caaattaata tttttaagtg atggggagta ttaattaagg agtgacaact caactttcaa 780
tatcgtacta aactgtggga tttattttct aaaattttat accctgccaa ttcacgtgtt 840
gtagatcttt ttttttcact aaccgacacc aggtatatca attttattga atatagcagc 900
aaaaagaatg tgttgtactt gtaaacaaaa agcaaactgt acataaaaaa aaatgcactc 960
ctatataatt aagctcataa agatgctttg cttcgtgagg gcccaaggtt ttgatgacct 1020
tttgcttgat ctcgaaatta aaatttaagt actgttaagg gagttcacac caccatcaat 1080
tttcagcctg aagaaacagt taaacaaacg gaccccgatg accagtctac tgctctccac 1140
atactagctg cattattgat cacaaaacaa aacaaaacga aataaaaatc agcagcgaga 1200
gtgtgcagag agagacaaag gtgatctggg cgtggatatc tccccatcca tcctcacccg 1260
cgctgcccat cactcgccgc cgcatactcc atcatgtgga gagaggaaga cgaggaccac 1320
agccagagcc cgggtcgaga tgccaccacg gccacaaccc acgagcccgg cgcgacacca 1380
ccgcgcgcgt gagccagcca caaacgcccg cggataggcg cgccgcacgc ggccaatcct 1440
accacatccc cggcctccgc ggctcgagcg ccgctgccat ccgatccgct gagttttggc 1500
tatttatacg taccgcggga gcctgtgtgc agagcagtgc atctcaagaa gtactcgagc 1560
aaagaaggag agagcttggt gagctgcaga gacaagtttg tacaaaaaag caggctaaaa 1620
aaaaccatgg acgtgggcgt gtccccggcc aagtctattc tcgccaagcc ggtaatgttc 1680
agctctgcta tagtgtgtgc caccctgctt gtttaataat gcgttctctt cgtttttatg 1740
atatcttatt cttccagctc aagctcctca ccgaggagga catctctcag ctcacaagag 1800
aggactgccg caagttcctg aaggacaagg ggatgagaag gccttcctgg aacaagtccc 1860
aggccatcca gcaagtgctc agcctcaagg ccctttacga gccaggcgac gactccggcg 1920
ctggcatttt cagaaagatc ctcgtgtccc agccggtgaa cccaccaagg gtgaccacca 1980
cactcatcga gccgtccaat gagcttgagg cttgcggcag agtgtcctac ccagaggata 2040
atggcgcctg ccacaggatg gattctccaa ggtctgctga gttctctggc ggctccggcc 2100
atttcgtgtc tgagaaggat ggccacaaga ccaccatctc cccaagatcc ccagccgaga 2160
catctgagct tgtgggccag atgaccatct tctactccgg caaggtgaac gtgtacgacg 2220
gcatcccacc agagaaggcc cgctccatta tgcacttcgc cgccaaccca atcgacctcc 2280
cagagaatgg catcttcgcc tccagccgca tgatctccaa gctcatctcc aaggagaaga 2340
tgatggagct gccgcagaag ggcctcgaga aggctaattc ctctcgcgac tccggcatgg 2400
agggccaggc taatagaaag gtgtccctcc aacgctaccg cgagaagagg aaggaccgca 2460
agttctccaa ggccaagaag tgcccaggcg ttgcctcttc cagcctcgag atgttcctca 2520
actgccagcc gagaatgaag gccgcctact cccaaaatct cggctgcaca ggctccccac 2580
tccattctca gtccccagag tctcagacca agtccccgaa cctctccgtg gaccttaact 2640
ccgagggcat cggatccggc ggcggctctg ctaagggcga gctgaggggc cacccgttcg 2700
agggcaagcc aattccaaat ccactcctcg gcctcgactc taccaggacc ggccaccatc 2760
accatcacca cggatcctaa tgaacccagc tttcttgtac aaagtggtct agtgggtacc 2820
gcgaatttcc ccgatcgttc aaacatttgg caataaagtt tcttaagatt gaatcctgtt 2880
gccggtcttg cgatgattat catataattt ctgttgaatt acgttaagca tgtaataatt 2940
aacatgtaat gcatgacgtt atttatgaga tgggttttta tgattagagt cccgcaatta 3000
tacatttaat acgcgataga aaacaaaata tagcgcgcaa actaggataa attatcgcgc 3060
gcggtgtcat ctatgttact agatcgaa 3088
<210> 47
<211> 2651
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 47
tcgaggtcat tcatatgctt gagaagagag tcgggatagt ccaaaataaa acaaaggtaa 60
gattacctgg tcaaaagtga aaacatcagt taaaaggtgg tataagtaaa atatcggtaa 120
taaaaggtgg cccaaagtga aatttactct tttctactat tataaaaatt gaggatgttt 180
tgtcggtact ttgatacgtc atttttgtat gaattggttt ttaagtttat tcgcgatttg 240
gaaatgcata tctgtatttg agtcggtttt taagttcgtt gcttttgtaa atacagaggg 300
atttgtataa gaaatatctt taaaaaaccc atatgctaat ttgacataat ttttgagaaa 360
aatatatatt caggcgaatt ccacaatgaa caataataag attaaaatag cttgcccccg 420
ttgcagcgat gggtattttt tctagtaaaa taaaagataa acttagactc aaaacattta 480
caaaaacaac ccctaaagtc ctaaagccca aagtgctatg cacgatccat agcaagccca 540
gcccaaccca acccaaccca acccacccca gtgcagccaa ctggcaaata gtctccaccc 600
ccggcactat caccgtgagt tgtccgcacc accgcacgtc tcgcagccaa aaaaaaaaaa 660
agaaagaaaa aaaagaaaaa gaaaaacagc aggtgggtcc gggtcgtggg ggccggaaaa 720
gcgaggagga tcgcgagcag cgacgaggcc cggccctccc tccgcttcca aagaaacgcc 780
ccccatcgcc actatataca tacccccccc tctcctccca tccccccaac cctaccacca 840
ccaccaccac cacctcctcc cccctcgctg ccggacgacg agctcctccc ccctccccct 900
ccgccgccgc cggtaaccac cccgcccctc tcctctttct ttctccgttt tttttttcgt 960
ctcggtctcg atctttggcc ttggtagttt gggtgggcga gagcggcttc gtcgcccaga 1020
tcggtgcgcg ggaggggcgg gatctcgcgg ctggcgtctc cgggcgtgag tcggcccgga 1080
tcctcgcggg gaatggggct ctcggatgta gatcttcttt ctttcttctt tttgtggtag 1140
aatttgaatc cctcagcatt gttcatcggt agtttttctt ttcatgattt gtgacaaatg 1200
cagcctcgtg cggagctttt ttgtaggtag acaagcttga tatcacaagt ttgtacaaaa 1260
aagcaggctt caaaaaaaac catggacgtg ggcgtgtccc cggccaagtc tattctcgcc 1320
aagccggtaa tgttcagctc tgctatagtg tgtgccaccc tgcttgttta ataatgcgtt 1380
ctcttcgttt ttatgatatc ttattcttcc agctcaagct cctcaccgag gaggacatct 1440
ctcagctcac aagagaggac tgccgcaagt tcctgaagga caaggggatg agaaggcctt 1500
cctggaacaa gtcccaggcc atccagcaag tgctcagcct caaggccctt tacgagccag 1560
gcgacgactc cggcgctggc attttcagaa agatcctcgt gtcccagccg gtgaacccac 1620
caagggtgac caccacactc atcgagccgt ccaatgagct tgaggcttgc ggcagagtgt 1680
cctacccaga ggataatggc gcctgccaca ggatggattc tccaaggtct gctgagttct 1740
ctggcggctc cggccatttc gtgtctgaga aggatggcca caagaccacc atctccccaa 1800
gatccccagc cgagacatct gagcttgtgg gccagatgac catcttctac tccggcaagg 1860
tgaacgtgta cgacggcatc ccaccagaga aggcccgctc cattatgcac ttcgccgcca 1920
acccaatcga cctcccagag aatggcatct tcgcctccag ccgcatgatc tccaagctca 1980
tctccaagga gaagatgatg gagctgccgc agaagggcct cgagaaggct aattcctctc 2040
gcgactccgg catggagggc caggctaata gaaaggtgtc cctccaacgc taccgcgaga 2100
agaggaagga ccgcaagttc tccaaggcca agaagtgccc aggcgttgcc tcttccagcc 2160
tcgagatgtt cctcaactgc cagccgagaa tgaaggccgc ctactcccaa aatctcggct 2220
gcacaggctc cccactccat tctcagtccc cagagtctca gaccaagtcc ccgaacctct 2280
ccgtggacct taactccgag ggcatcggat cctaatgaag acccagcttt cttgtacaaa 2340
gtggtgatat cgaattcctg cagcccgggg gatccactag ttctaggtac cgagctcgga 2400
tcgttcaaac attggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg 2460
attatcatat aatttctgtt gattacgtta agcatgtaat aattaacatg taatgcatga 2520
cgttatttat gagatgggtt tttatgatta gagtcccgca attatacatt taatacgcga 2580
tagaaaacaa aatatagcgc gcaaactagg ataaattatc gcgcgcggtg tcatctatgt 2640
gactagatcg g 2651
<210> 48
<211> 2801
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 48
gcggccgctc tagaactagt ccccttattg tacttcaatt aattatcatt atatcagcat 60
aaacattata ataagtttct tgcgtgttgg aacgtcattt tagttattct aaagaggaaa 120
tagtttcttt tttgctcatg acatcagaca tctggactac tatactggag tttacctttt 180
cttctcctct ttttcttatt gttcctctaa aaaaaattat cactttttaa atgcattagt 240
taaacttatc tcaacaacgt ttaaaattca tttcttgaat gcccattaca atgtaatagt 300
ataacttaat tagtcgtctc catgaaccat taatacgtac ggagtaatat aaaacaccat 360
tggggagttc aatttgcaat aatttcttgc aaaaatgtaa agtacctttt tgttcttgca 420
aaattttaca aataaaaatt tgcagctctt ttttttctct ctctccaaat actagctcaa 480
aacccacaaa tatttttgaa tttatggcat acttttagaa tgcgtttgat gcaactattt 540
tcctttagga aatattcaca acaatctaag acaatcaaaa agtagaaaat agtttgtaaa 600
aagggatgtg gaggacatct taatcaaata ttttcagttt aaaacttgaa aatgaaaaaa 660
cacccgaaag gaaatgattc gttctttaat atgtcctaca caatgtgaat ttgaattagt 720
ttggtcatac ggtatatcat atgattataa ataaaaaaaa ttagcaaaag aatataattt 780
attaaatatt ttacaccata ccaaacacaa ccgcattata tataatctta attatcatta 840
tcaccagcat caacattata atgattcccc tatgcgttgg aacgtcatta tagttattct 900
aaacaagaaa gaaatttgtt cttgacatca gacatctagt attataactc tagtggagct 960
taccttttct tttccttctt ttttttcttc ttaaaaaaat tatcactttt taaatcttgt 1020
atattagtta agcttatcta aacaaagttt taaattcatt tcttaaacgt ccattacaat 1080
gtaatataac ttagtcgtct caattaaacc attaatgtga aatataaatc aaaaaaagcc 1140
aaagggcggt gggacggcgc caatcatttg tcctagtcca ctcaaataag gcccatggtc 1200
ggcaaaacca aacacaaaat gtgttatttt taattttttc ctcttttatt gttaaagttg 1260
caaaatgtgt tatttttggt aagaccctat ggatatataa agacaggtta tgtgaaactt 1320
ggaaaaccat caagttttaa gcaaaaccct cttaagaact taaattgagc ttcttttggg 1380
gcatttttct agtgagaact aaaaacaagt ttgtacaaaa aagcaggcta aaaaaaacca 1440
tggacgtggg cgtgtccccg gccaagtcta ttctcgccaa gccggtaatg ttcagctctg 1500
ctatagtgtg tgccaccctg cttgtttaat aatgcgttct cttcgttttt atgatatctt 1560
attcttccag ctcaagctcc tcaccgagga ggacatctct cagctcacaa gagaggactg 1620
ccgcaagttc ctgaaggaca aggggatgag aaggccttcc tggaacaagt cccaggccat 1680
ccagcaagtg ctcagcctca aggcccttta cgagccaggc gacgactccg gcgctggcat 1740
tttcagaaag atcctcgtgt cccagccggt gaacccacca agggtgacca ccacactcat 1800
cgagccgtcc aatgagcttg aggcttgcgg cagagtgtcc tacccagagg ataatggcgc 1860
ctgccacagg atggattctc caaggtctgc tgagttctct ggcggctccg gccatttcgt 1920
gtctgagaag gatggccaca agaccaccat ctccccaaga tccccagccg agacatctga 1980
gcttgtgggc cagatgacca tcttctactc cggcaaggtg aacgtgtacg acggcatccc 2040
accagagaag gcccgctcca ttatgcactt cgccgccaac ccaatcgacc tcccagagaa 2100
tggcatcttc gcctccagcc gcatgatctc caagctcatc tccaaggaga agatgatgga 2160
gctgccgcag aagggcctcg agaaggctaa ttcctctcgc gactccggca tggagggcca 2220
ggctaataga aaggtgtccc tccaacgcta ccgcgagaag aggaaggacc gcaagttctc 2280
caaggccaag aagtgcccag gcgttgcctc ttccagcctc gagatgttcc tcaactgcca 2340
gccgagaatg aaggccgcct actcccaaaa tctcggctgc acaggctccc cactccattc 2400
tcagtcccca gagtctcaga ccaagtcccc gaacctctcc gtggacctta actccgaggg 2460
catcggatcc taatgaaccc agctttcttg tacaaagtgg tctagtgggt accgcgaatt 2520
tccccgatcg ttcaaacatt tggcaataaa gtttcttaag attgaatcct gttgccggtc 2580
ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata attaacatgt 2640
aatgcatgac gttatttatg agatgggttt ttatgattag agtcccgcaa ttatacattt 2700
aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg cgcgcggtgt 2760
catctatgtt actagatcga agcggccgct ctagaactag t 2801
<210> 49
<211> 2129
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 49
gcggccgctc tagaactagt gtcctacaca atgtgaattt gaattagttt ggtcatacgg 60
tatatcatat gattataaat aaaaaaaatt agcaaaagaa tataatttat taaatatttt 120
acaccatacc aaacacaacc gcattatata taatcttaat tatcattatc accagcatca 180
acattataat gattccccta tgcgttggaa cgtcattata gttattctaa acaagaaaga 240
aatttgttct tgacatcaga catctagtat tataactcta gtggagctta ccttttcttt 300
tccttctttt ttttcttctt aaaaaaatta tcacttttta aatcttgtat attagttaag 360
cttatctaaa caaagtttta aattcatttc ttaaacgtcc attacaatgt aatataactt 420
agtcgtctca attaaaccat taatgtgaaa tataaatcaa aaaaagccaa agggcggtgg 480
gacggcgcca atcatttgtc ctagtccact caaataaggc ccatggtcgg caaaaccaaa 540
cacaaaatgt gttattttta attttttcct cttttattgt taaagttgca aaatgtgtta 600
tttttggtaa gaccctatgg atatataaag acaggttatg tgaaacttgg aaaaccatca 660
agttttaagc aaaaccctct taagaactta aattgagctt cttttggggc atttttctag 720
tgagaactaa aaacaagttt gtacaaaaaa gcaggctaaa aaaaaccatg gacgtgggcg 780
tgtccccggc caagtctatt ctcgccaagc cggtaatgtt cagctctgct atagtgtgtg 840
ccaccctgct tgtttaataa tgcgttctct tcgtttttat gatatcttat tcttccagct 900
caagctcctc accgaggagg acatctctca gctcacaaga gaggactgcc gcaagttcct 960
gaaggacaag gggatgagaa ggccttcctg gaacaagtcc caggccatcc agcaagtgct 1020
cagcctcaag gccctttacg agccaggcga cgactccggc gctggcattt tcagaaagat 1080
cctcgtgtcc cagccggtga acccaccaag ggtgaccacc acactcatcg agccgtccaa 1140
tgagcttgag gcttgcggca gagtgtccta cccagaggat aatggcgcct gccacaggat 1200
ggattctcca aggtctgctg agttctctgg cggctccggc catttcgtgt ctgagaagga 1260
tggccacaag accaccatct ccccaagatc cccagccgag acatctgagc ttgtgggcca 1320
gatgaccatc ttctactccg gcaaggtgaa cgtgtacgac ggcatcccac cagagaaggc 1380
ccgctccatt atgcacttcg ccgccaaccc aatcgacctc ccagagaatg gcatcttcgc 1440
ctccagccgc atgatctcca agctcatctc caaggagaag atgatggagc tgccgcagaa 1500
gggcctcgag aaggctaatt cctctcgcga ctccggcatg gagggccagg ctaatagaaa 1560
ggtgtccctc caacgctacc gcgagaagag gaaggaccgc aagttctcca aggccaagaa 1620
gtgcccaggc gttgcctctt ccagcctcga gatgttcctc aactgccagc cgagaatgaa 1680
ggccgcctac tcccaaaatc tcggctgcac aggctcccca ctccattctc agtccccaga 1740
gtctcagacc aagtccccga acctctccgt ggaccttaac tccgagggca tcggatccta 1800
atgaacccag ctttcttgta caaagtggtc tagtgggtac cgcgaatttc cccgatcgtt 1860
caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta 1920
tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa tgcatgacgt 1980
tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag 2040
aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca tctatgttac 2100
tagatcgaag cggccgctct agaactagt 2129
<210> 50
<211> 2732
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 50
gcggccgctc tagaactagt tcacgtggaa cgcgccgcag taaacggagc ggtggatcaa 60
acttttcgtc cgtttgatca aacagaagag aactagtcaa tgctctttct tcatatcaca 120
atttaatagt ctcaagacga ttacgccaca taaccatttt ctcgtgattt cgacatcaaa 180
atttaataaa aggaactgat tgattggtca tcatgttaca agtgtcaaat gagctaatcc 240
gttttacagt ggcatagttt acgatcaatt tacaaatttt tggttttata acatacttgt 300
agttaaaact atttataagc tatttatagt gagttagctt ataaaaccct attcttttat 360
ctaaaattat gttttgactc gtttcatgat aaaattttat ccttttcatc ggaataaaaa 420
actttattat ttatttggca aaataattgg tgtaaaaatt atgtatatgt taataacaaa 480
aaatattaat ctgattcata atcttaaaaa agaaaaattt cttgaaataa actttagaca 540
ttgtaaataa aaaaacatta tttttatata atgggatgtt tatatgtaat tttttataaa 600
aaaataaaag ttgtttacta gtaatccgat tggctttaac tatcgtcgcc aaaagaataa 660
tgtagaactg actttgaggt aaaactaaaa gaaatttgta agataatagt cacattaaat 720
gctaaaatta atacatactg atatatcgta taaaatttat gaaaactaca ccttaacctg 780
aatcatacac tgtaataaaa aaaacaaatt atatataaac cctaaaaact aatcataaat 840
cccaaacggt gtactctcta ttagctttga aaggattgcc caattgtttg ttaaaaattt 900
ctaataatag tacaatgttt tgtttcattt ttccttttcg tcaacctgtt acccaatagc 960
aaatgaagtt tttatgtgtg tgtgtgtgtg tgaatttcca tgaaaatgaa acgggcttag 1020
aatcccggtg tattatgggt cgggtcgtaa ccgggcaatg acgcaggatc tgacgtaaaa 1080
ctcccaagaa tttttttaaa aagtctccgg aaaataaaat caaagttcat taacttaaaa 1140
agaaaaaaca aaatcggtcc acgtcccaaa ccctttttat aggagagtct tatgttctgg 1200
cagaagactt cacagactct ttcttaatct ctctctcttt caaccaaacc cctaaacaaa 1260
aaaaaaatac attttctgat ctctctaaaa atctttctcc ttcgttaatc tcgtgatctc 1320
tttctttttc tatatacaag tttgtacaaa aaagcaggct aaaaaaaacc atggacgtgg 1380
gcgtgtcccc ggccaagtct attctcgcca agccggtaat gttcagctct gctatagtgt 1440
gtgccaccct gcttgtttaa taatgcgttc tcttcgtttt tatgatatct tattcttcca 1500
gctcaagctc ctcaccgagg aggacatctc tcagctcaca agagaggact gccgcaagtt 1560
cctgaaggac aaggggatga gaaggccttc ctggaacaag tcccaggcca tccagcaagt 1620
gctcagcctc aaggcccttt acgagccagg cgacgactcc ggcgctggca ttttcagaaa 1680
gatcctcgtg tcccagccgg tgaacccacc aagggtgacc accacactca tcgagccgtc 1740
caatgagctt gaggcttgcg gcagagtgtc ctacccagag gataatggcg cctgccacag 1800
gatggattct ccaaggtctg ctgagttctc tggcggctcc ggccatttcg tgtctgagaa 1860
ggatggccac aagaccacca tctccccaag atccccagcc gagacatctg agcttgtggg 1920
ccagatgacc atcttctact ccggcaaggt gaacgtgtac gacggcatcc caccagagaa 1980
ggcccgctcc attatgcact tcgccgccaa cccaatcgac ctcccagaga atggcatctt 2040
cgcctccagc cgcatgatct ccaagctcat ctccaaggag aagatgatgg agctgccgca 2100
gaagggcctc gagaaggcta attcctctcg cgactccggc atggagggcc aggctaatag 2160
aaaggtgtcc ctccaacgct accgcgagaa gaggaaggac cgcaagttct ccaaggccaa 2220
gaagtgccca ggcgttgcct cttccagcct cgagatgttc ctcaactgcc agccgagaat 2280
gaaggccgcc tactcccaaa atctcggctg cacaggctcc ccactccatt ctcagtcccc 2340
agagtctcag accaagtccc cgaacctctc cgtggacctt aactccgagg gcatcggatc 2400
ctaatgaacc cagctttctt gtacaaagtg gtctagtggg taccgcgaat ttccccgatc 2460
gttcaaacat ttggcaataa agtttcttaa gattgaatcc tgttgccggt cttgcgatga 2520
ttatcatata atttctgttg aattacgtta agcatgtaat aattaacatg taatgcatga 2580
cgttatttat gagatgggtt tttatgatta gagtcccgca attatacatt taatacgcga 2640
tagaaaacaa aatatagcgc gcaaactagg ataaattatc gcgcgcggtg tcatctatgt 2700
tactagatcg aagcggccgc tctagaacta gt 2732
<210> 51
<211> 2210
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 51
ggtaatgagc cctatctgat gtcagtgggg attgtttaca gtaccgcagc aaacactgac 60
gtatgggtct ggacccatat gttagccacc gctactgcat cagcagtatt gcagagaatt 120
tgcatcagca gtactgcatc agcagtatta cagatggggg tgcacaaagc cgggtcagtt 180
tacccaacta ccttcctcct cttaactata acttatattc aatttatgtc tctcgaaaat 240
agatatgaac atactttttt aaaaaataat actacatatt gtgaatttgt gatccttacc 300
tttacatttg agttatgacg aacaacttta tcgattatat aaaagaaagg atgacttctt 360
atccaaacaa atcctatagt aatgtctttt taactttcag tgactaacat ataaaccatc 420
aaacgagtcc atattaaagg ataatactac gaagaattgt catcccacat ttttacactg 480
ccactatcag ttaaaactga aaaccagctc accccaagct caccaagaat cttcgagaaa 540
cttataaact ccgccgaaaa atctcggaca aacccgcggc tcacacgcct ccacgcaccc 600
aaaccccacc ctagaatatc ctctccttgg ccaccgcgcc gccacatcag cctccccaat 660
ctccccgccc cacgcgcgag cgccaatcgc gagccgcctt tagatttccc aagataagga 720
ctcgatcccc cctcacttcc cgcgctattt aaactcccgc gccatctcca actcccaact 780
cacactcgct cgctcatcgc catctctctc agctctcaca gctcactgca tcaacaagtt 840
tgtacaaaaa agcaggctaa aaaaaaccat ggacgtgggc gtgtccccgg ccaagtctat 900
tctcgccaag ccggtaatgt tcagctctgc tatagtgtgt gccaccctgc ttgtttaata 960
atgcgttctc ttcgttttta tgatatctta ttcttccagc tcaagctcct caccgaggag 1020
gacatctctc agctcacaag agaggactgc cgcaagttcc tgaaggacaa ggggatgaga 1080
aggccttcct ggaacaagtc ccaggccatc cagcaagtgc tcagcctcaa ggccctttac 1140
gagccaggcg acgactccgg cgctggcatt ttcagaaaga tcctcgtgtc ccagccggtg 1200
aacccaccaa gggtgaccac cacactcatc gagccgtcca atgagcttga ggcttgcggc 1260
agagtgtcct acccagagga taatggcgcc tgccacagga tggattctcc aaggtctgct 1320
gagttctctg gcggctccgg ccatttcgtg tctgagaagg atggccacaa gaccaccatc 1380
tccccaagat ccccagccga gacatctgag cttgtgggcc agatgaccat cttctactcc 1440
ggcaaggtga acgtgtacga cggcatccca ccagagaagg cccgctccat tatgcacttc 1500
gccgccaacc caatcgacct cccagagaat ggcatcttcg cctccagccg catgatctcc 1560
aagctcatct ccaaggagaa gatgatggag ctgccgcaga agggcctcga gaaggctaat 1620
tcctctcgcg actccggcat ggagggccag gctaatagaa aggtgtccct ccaacgctac 1680
cgcgagaaga ggaaggaccg caagttctcc aaggccaaga agtgcccagg cgttgcctct 1740
tccagcctcg agatgttcct caactgccag ccgagaatga aggccgccta ctcccaaaat 1800
ctcggctgca caggctcccc actccattct cagtccccag agtctcagac caagtccccg 1860
aacctctccg tggaccttaa ctccgagggc atcggatcct aatgaaccca gctttcttgt 1920
acaaagtggt ctagtgggta ccgcgaattt ccccgatcgt tcaaacattt ggcaataaag 1980
tttcttaaga ttgaatcctg ttgccggtct tgcgatgatt atcatataat ttctgttgaa 2040
ttacgttaag catgtaataa ttaacatgta atgcatgacg ttatttatga gatgggtttt 2100
tatgattaga gtcccgcaat tatacattta atacgcgata gaaaacaaaa tatagcgcgc 2160
aaactaggat aaattatcgc gcgcggtgtc atctatgtta ctagatcgaa 2210
<210> 52
<211> 2968
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 52
aaatgcccaa ataggtgcaa atctcagata gaaatgtttc aaaagtaaaa aaggtcccta 60
tcataaacat aattgatatg taagtgagtt ggaaaaagat aagtacggtg tgagagagac 120
ggggatcaaa ttcctggtgt aataatgtat gtattcacgt ccaataaaaa attggtagca 180
gtagttgggg ctctgtatat tataccggta aggtagggta ggtagtagaa taattctttt 240
tttgttttta gttttttctg gtccaaaatt tcaaatttca aatttggatc ccttacttgt 300
accaactaat attaatgagt gttgagggta gtagaggtgc aactttacca taatccctct 360
gtttcaggtt ataagacgtt ttgactttaa atttgaccaa gtttatgcgc aaatatagta 420
atatttataa tactatatta gtttcattaa ataaataatt gaatatattt tcataataaa 480
tttgtgttga gttcaaaata ttattaattt tttctacaaa cttggtcaaa cttgaagcag 540
tttgactttg accaaagtca acgtcttata acttgaaacg gatggattaa cctttttttt 600
gtgggaacaa gtttacaaag tttaataaag cacaatccat cttaatgttt tcaagctgaa 660
tattgtaaaa ttcatggata aaccaggctt ataaatgttt aaccgggaaa atgcgaacgg 720
caaattaata tttttaagtg atggggagta ttaattaagg agtgacaact caactttcaa 780
tatcgtacta aactgtggga tttattttct aaaattttat accctgccaa ttcacgtgtt 840
gtagatcttt ttttttcact aaccgacacc aggtatatca attttattga atatagcagc 900
aaaaagaatg tgttgtactt gtaaacaaaa agcaaactgt acataaaaaa aaatgcactc 960
ctatataatt aagctcataa agatgctttg cttcgtgagg gcccaaggtt ttgatgacct 1020
tttgcttgat ctcgaaatta aaatttaagt actgttaagg gagttcacac caccatcaat 1080
tttcagcctg aagaaacagt taaacaaacg gaccccgatg accagtctac tgctctccac 1140
atactagctg cattattgat cacaaaacaa aacaaaacga aataaaaatc agcagcgaga 1200
gtgtgcagag agagacaaag gtgatctggg cgtggatatc tccccatcca tcctcacccg 1260
cgctgcccat cactcgccgc cgcatactcc atcatgtgga gagaggaaga cgaggaccac 1320
agccagagcc cgggtcgaga tgccaccacg gccacaaccc acgagcccgg cgcgacacca 1380
ccgcgcgcgt gagccagcca caaacgcccg cggataggcg cgccgcacgc ggccaatcct 1440
accacatccc cggcctccgc ggctcgagcg ccgctgccat ccgatccgct gagttttggc 1500
tatttatacg taccgcggga gcctgtgtgc agagcagtgc atctcaagaa gtactcgagc 1560
aaagaaggag agagcttggt gagctgcaga gacaagtttg tacaaaaaag caggctaaaa 1620
aaaaccatgg acgtgggcgt gtccccggcc aagtctattc tcgccaagcc ggtaatgttc 1680
agctctgcta tagtgtgtgc caccctgctt gtttaataat gcgttctctt cgtttttatg 1740
atatcttatt cttccagctc aagctcctca ccgaggagga catctctcag ctcacaagag 1800
aggactgccg caagttcctg aaggacaagg ggatgagaag gccttcctgg aacaagtccc 1860
aggccatcca gcaagtgctc agcctcaagg ccctttacga gccaggcgac gactccggcg 1920
ctggcatttt cagaaagatc ctcgtgtccc agccggtgaa cccaccaagg gtgaccacca 1980
cactcatcga gccgtccaat gagcttgagg cttgcggcag agtgtcctac ccagaggata 2040
atggcgcctg ccacaggatg gattctccaa ggtctgctga gttctctggc ggctccggcc 2100
atttcgtgtc tgagaaggat ggccacaaga ccaccatctc cccaagatcc ccagccgaga 2160
catctgagct tgtgggccag atgaccatct tctactccgg caaggtgaac gtgtacgacg 2220
gcatcccacc agagaaggcc cgctccatta tgcacttcgc cgccaaccca atcgacctcc 2280
cagagaatgg catcttcgcc tccagccgca tgatctccaa gctcatctcc aaggagaaga 2340
tgatggagct gccgcagaag ggcctcgaga aggctaattc ctctcgcgac tccggcatgg 2400
agggccaggc taatagaaag gtgtccctcc aacgctaccg cgagaagagg aaggaccgca 2460
agttctccaa ggccaagaag tgcccaggcg ttgcctcttc cagcctcgag atgttcctca 2520
actgccagcc gagaatgaag gccgcctact cccaaaatct cggctgcaca ggctccccac 2580
tccattctca gtccccagag tctcagacca agtccccgaa cctctccgtg gaccttaact 2640
ccgagggcat cggatcctaa tgaacccagc tttcttgtac aaagtggtct agtgggtacc 2700
gcgaatttcc ccgatcgttc aaacatttgg caataaagtt tcttaagatt gaatcctgtt 2760
gccggtcttg cgatgattat catataattt ctgttgaatt acgttaagca tgtaataatt 2820
aacatgtaat gcatgacgtt atttatgaga tgggttttta tgattagagt cccgcaatta 2880
tacatttaat acgcgataga aaacaaaata tagcgcgcaa actaggataa attatcgcgc 2940
gcggtgtcat ctatgttact agatcgaa 2968
<210> 53
<211> 161
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 53
Met Lys Leu Leu Ser Ser Ile Glu Glu Ala Cys Asn Ile Cys Arg Leu
1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asn Leu Asn Met Ile
65 70 75 80
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95
Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140
Thr Val Ser Ser Arg Ser Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly
145 150 155 160
Ser
<210> 54
<211> 139
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 54
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser
130 135
<210> 55
<211> 474
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 55
Met Lys Leu Leu Ser Ser Ile Glu Glu Ala Cys Asn Ile Cys Arg Leu
1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asn Leu Asn Met Ile
65 70 75 80
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95
Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140
Thr Val Ser Ser Arg Ser Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly
145 150 155 160
Ser Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro
165 170 175
Leu Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp
180 185 190
Cys Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
195 200 205
Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu
210 215 220
Pro Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser
225 230 235 240
Gln Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser
245 250 255
Asn Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly
260 265 270
Ala Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly
275 280 285
Ser Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser
290 295 300
Pro Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile
305 310 315 320
Phe Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys
325 330 335
Ala Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu
340 345 350
Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys
355 360 365
Glu Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser
370 375 380
Ser Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu
385 390 395 400
Gln Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys
405 410 415
Lys Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys
420 425 430
Gln Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly
435 440 445
Ser Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn
450 455 460
Leu Ser Val Asp Leu Asn Ser Glu Gly Ile
465 470
<210> 56
<211> 452
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 56
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Asp Val Gly Val
130 135 140
Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu Lys Leu Leu Thr Glu
145 150 155 160
Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys Arg Lys Phe Leu Lys
165 170 175
Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln
180 185 190
Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro Gly Asp Asp Ser Gly
195 200 205
Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln Pro Val Asn Pro Pro
210 215 220
Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn Glu Leu Glu Ala Cys
225 230 235 240
Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala Cys His Arg Met Asp
245 250 255
Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser Gly His Phe Val Ser
260 265 270
Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro Arg Ser Pro Ala Glu
275 280 285
Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe Tyr Ser Gly Lys Val
290 295 300
Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala Arg Ser Ile Met His
305 310 315 320
Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn Gly Ile Phe Ala Ser
325 330 335
Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu Lys Met Met Glu Leu
340 345 350
Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser Arg Asp Ser Gly Met
355 360 365
Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln Arg Tyr Arg Glu Lys
370 375 380
Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys Cys Pro Gly Val Ala
385 390 395 400
Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln Pro Arg Met Lys Ala
405 410 415
Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser Pro Leu His Ser Gln
420 425 430
Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu Ser Val Asp Leu Asn
435 440 445
Ser Glu Gly Ile
450
<210> 57
<211> 391
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 57
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Tyr Glu Pro Gly Asp
130 135 140
Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln Pro Val
145 150 155 160
Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn Glu Leu
165 170 175
Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala Cys His
180 185 190
Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser Gly His
195 200 205
Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro Arg Ser
210 215 220
Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe Tyr Ser
225 230 235 240
Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala Arg Ser
245 250 255
Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn Gly Ile
260 265 270
Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu Lys Met
275 280 285
Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser Arg Asp
290 295 300
Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln Arg Tyr
305 310 315 320
Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys Cys Pro
325 330 335
Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln Pro Arg
340 345 350
Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser Pro Leu
355 360 365
His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu Ser Val
370 375 380
Asp Leu Asn Ser Glu Gly Ile
385 390
<210> 58
<211> 427
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 58
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Asp Val Gly Val
130 135 140
Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu Lys Leu Leu Thr Glu
145 150 155 160
Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys Arg Lys Phe Leu Lys
165 170 175
Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln
180 185 190
Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro Gly Asp Asp Ser Gly
195 200 205
Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln Pro Val Asn Pro Pro
210 215 220
Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn Glu Leu Glu Ala Cys
225 230 235 240
Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala Cys His Arg Met Asp
245 250 255
Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser Gly His Phe Val Ser
260 265 270
Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro Arg Ser Pro Ala Glu
275 280 285
Thr Ser Glu Leu Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro
290 295 300
Glu Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser
305 310 315 320
Lys Glu Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn
325 330 335
Ser Ser Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser
340 345 350
Leu Gln Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala
355 360 365
Lys Lys Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn
370 375 380
Cys Gln Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr
385 390 395 400
Gly Ser Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro
405 410 415
Asn Leu Ser Val Asp Leu Asn Ser Glu Gly Ile
420 425
<210> 59
<211> 427
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 59
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Asp Val Gly Val
130 135 140
Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu Lys Leu Leu Thr Glu
145 150 155 160
Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys Arg Lys Phe Leu Lys
165 170 175
Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys Ser Gln Ala Ile Gln
180 185 190
Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro Gly Asp Asp Ser Gly
195 200 205
Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln Pro Val Asn Pro Pro
210 215 220
Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn Glu Leu Glu Ala Cys
225 230 235 240
Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala Cys His Arg Met Asp
245 250 255
Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser Gly His Phe Val Ser
260 265 270
Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro Arg Ser Pro Ala Glu
275 280 285
Thr Ser Glu Leu Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro
290 295 300
Glu Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser
305 310 315 320
Lys Glu Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn
325 330 335
Ser Ser Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser
340 345 350
Leu Gln Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala
355 360 365
Lys Lys Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn
370 375 380
Cys Gln Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr
385 390 395 400
Gly Ser Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro
405 410 415
Asn Leu Ser Val Asp Leu Asn Ser Glu Gly Ile
420 425
<210> 60
<211> 1131
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 60
Met Ser Ser Leu Ser Arg Glu Leu Val Phe Leu Ile Leu Gln Phe Leu
1 5 10 15
Asp Glu Glu Lys Phe Lys Glu Thr Val His Lys Leu Glu Gln Glu Ser
20 25 30
Gly Phe Phe Phe Asn Met Lys Tyr Phe Glu Asp Glu Val His Asn Gly
35 40 45
Asn Trp Asp Glu Val Glu Lys Tyr Leu Ser Gly Phe Thr Lys Val Asp
50 55 60
Asp Asn Arg Tyr Ser Met Lys Ile Phe Phe Glu Ile Arg Lys Gln Lys
65 70 75 80
Tyr Leu Glu Ala Leu Asp Lys His Asp Arg Pro Lys Ala Val Asp Ile
85 90 95
Leu Val Lys Asp Leu Lys Val Phe Ser Thr Phe Asn Glu Glu Leu Phe
100 105 110
Lys Glu Ile Thr Gln Leu Leu Thr Leu Glu Asn Phe Arg Glu Asn Glu
115 120 125
Gln Leu Ser Lys Tyr Gly Asp Thr Lys Ser Ala Arg Ala Ile Met Leu
130 135 140
Val Glu Leu Lys Lys Leu Ile Glu Ala Asn Pro Leu Phe Arg Asp Lys
145 150 155 160
Leu Gln Phe Pro Thr Leu Arg Asn Ser Arg Leu Arg Thr Leu Ile Asn
165 170 175
Gln Ser Leu Asn Trp Gln His Gln Leu Cys Lys Asn Pro Arg Pro Asn
180 185 190
Pro Asp Ile Lys Thr Leu Phe Val Asp His Ser Cys Gly Pro Pro Asn
195 200 205
Gly Ala Arg Ala Pro Ser Pro Val Asn Asn Pro Leu Leu Gly Gly Ile
210 215 220
Pro Lys Ala Gly Gly Phe Pro Pro Leu Gly Ala His Gly Pro Phe Gln
225 230 235 240
Pro Thr Ala Ser Pro Val Pro Thr Pro Leu Ala Gly Trp Met Ser Ser
245 250 255
Pro Ser Ser Val Pro His Pro Ala Val Ser Ala Gly Ala Ile Ala Leu
260 265 270
Gly Gly Pro Ser Ile Pro Ala Ala Leu Lys His Pro Arg Thr Pro Pro
275 280 285
Thr Asn Ala Ser Leu Asp Tyr Pro Ser Ala Asp Ser Glu His Val Ser
290 295 300
Lys Arg Thr Arg Pro Met Gly Ile Ser Asp Glu Val Asn Leu Gly Val
305 310 315 320
Asn Met Leu Pro Met Ser Phe Ser Gly Gln Ala His Gly His Ser Pro
325 330 335
Ala Phe Lys Ala Pro Asp Asp Leu Pro Lys Thr Val Ala Arg Thr Leu
340 345 350
Ser Gln Gly Ser Ser Pro Met Ser Met Asp Phe His Pro Ile Lys Gln
355 360 365
Thr Leu Leu Leu Val Gly Thr Asn Val Gly Asp Ile Gly Leu Trp Glu
370 375 380
Val Gly Ser Arg Glu Arg Leu Val Gln Lys Thr Phe Lys Val Trp Asp
385 390 395 400
Leu Ser Lys Cys Ser Met Pro Leu Gln Ala Ala Leu Val Lys Glu Pro
405 410 415
Val Val Ser Val Asn Arg Val Ile Trp Ser Pro Asp Gly Ser Leu Phe
420 425 430
Gly Val Ala Tyr Ser Arg His Ile Val Gln Leu Tyr Ser Tyr His Gly
435 440 445
Gly Glu Asp Met Arg Gln His Leu Glu Ile Asp Ala His Val Gly Gly
450 455 460
Val Asn Asp Ile Ser Phe Ser Thr Pro Asn Lys Gln Leu Cys Val Ile
465 470 475 480
Thr Cys Gly Asp Asp Lys Thr Ile Lys Val Trp Asp Ala Ala Thr Gly
485 490 495
Val Lys Arg His Thr Phe Glu Gly His Glu Ala Pro Val Tyr Ser Val
500 505 510
Cys Pro His Tyr Lys Glu Asn Ile Gln Phe Ile Phe Ser Thr Ala Leu
515 520 525
Asp Gly Lys Ile Lys Ala Trp Leu Tyr Asp Asn Met Gly Ser Arg Val
530 535 540
Asp Tyr Asp Ala Pro Gly Arg Trp Cys Thr Thr Met Ala Tyr Ser Ala
545 550 555 560
Asp Gly Thr Arg Leu Phe Ser Cys Gly Thr Ser Lys Asp Gly Glu Ser
565 570 575
Phe Ile Val Glu Trp Asn Glu Ser Glu Gly Ala Val Lys Arg Thr Tyr
580 585 590
Gln Gly Phe His Lys Arg Ser Leu Gly Val Val Gln Phe Asp Thr Thr
595 600 605
Lys Asn Arg Tyr Leu Ala Ala Gly Asp Asp Phe Ser Ile Lys Phe Trp
610 615 620
Asp Met Asp Ala Val Gln Leu Leu Thr Ala Ile Asp Gly Asp Gly Gly
625 630 635 640
Leu Gln Ala Ser Pro Arg Ile Arg Phe Asn Lys Glu Gly Ser Leu Leu
645 650 655
Ala Val Ser Gly Asn Glu Asn Val Ile Lys Ile Met Ala Asn Ser Asp
660 665 670
Gly Leu Arg Leu Leu His Thr Phe Glu Asn Ile Ser Ser Glu Ser Ser
675 680 685
Lys Pro Ala Ile Asn Ser Ile Ala Ala Ala Ala Ala Ala Ala Ala Thr
690 695 700
Ser Ala Gly His Ala Asp Arg Ser Ala Asn Val Val Ser Ile Gln Gly
705 710 715 720
Met Asn Gly Asp Ser Arg Asn Met Val Asp Val Lys Pro Val Ile Thr
725 730 735
Glu Glu Ser Asn Asp Lys Ser Lys Ile Trp Lys Leu Thr Glu Val Ser
740 745 750
Glu Pro Ser Gln Cys Arg Ser Leu Arg Leu Pro Glu Asn Leu Arg Val
755 760 765
Ala Lys Ile Ser Arg Leu Ile Phe Thr Asn Ser Gly Asn Ala Ile Leu
770 775 780
Ala Leu Ala Ser Asn Ala Ile His Leu Leu Trp Lys Trp Gln Arg Asn
785 790 795 800
Glu Arg Asn Ala Thr Gly Lys Ala Thr Ala Ser Leu Pro Pro Gln Gln
805 810 815
Trp Gln Pro Ala Ser Gly Ile Leu Met Thr Asn Asp Val Ala Glu Thr
820 825 830
Asn Pro Glu Glu Ala Val Pro Cys Phe Ala Leu Ser Lys Asn Asp Ser
835 840 845
Tyr Val Met Ser Ala Ser Gly Gly Lys Ile Ser Leu Phe Asn Met Met
850 855 860
Thr Phe Lys Thr Met Ala Thr Phe Met Pro Pro Pro Pro Ala Ala Thr
865 870 875 880
Phe Leu Ala Phe His Pro Gln Asp Asn Asn Ile Ile Ala Ile Gly Met
885 890 895
Asp Asp Ser Thr Ile Gln Ile Tyr Asn Val Arg Val Asp Glu Val Lys
900 905 910
Ser Lys Leu Lys Gly His Ser Lys Arg Ile Thr Gly Leu Ala Phe Ser
915 920 925
Asn Val Leu Asn Val Leu Val Ser Ser Gly Ala Asp Ala Gln Leu Cys
930 935 940
Val Trp Asn Thr Asp Gly Trp Glu Lys Gln Arg Ser Lys Val Leu Pro
945 950 955 960
Leu Pro Gln Gly Arg Pro Asn Ser Ala Pro Ser Asp Thr Arg Val Gln
965 970 975
Phe His Gln Asp Gln Ala His Phe Leu Val Val His Glu Thr Gln Leu
980 985 990
Ala Ile Tyr Glu Thr Thr Lys Leu Glu Cys Met Lys Gln Trp Ala Val
995 1000 1005
Arg Glu Ser Leu Ala Pro Ile Thr His Ala Thr Phe Ser Cys Asp
1010 1015 1020
Ser Gln Leu Val Tyr Ala Ser Phe Met Asp Ala Thr Val Cys Val
1025 1030 1035
Phe Ser Ser Ala Asn Leu Arg Leu Arg Cys Arg Val Asn Pro Ser
1040 1045 1050
Ala Tyr Leu Pro Ala Ser Leu Ser Asn Ser Asn Val His Pro Leu
1055 1060 1065
Val Ile Ala Ala His Pro Gln Glu Pro Asn Met Phe Ala Val Gly
1070 1075 1080
Leu Ser Asp Gly Gly Val His Ile Phe Glu Pro Leu Glu Ser Glu
1085 1090 1095
Gly Lys Trp Gly Val Ala Pro Pro Ala Glu Asn Gly Ser Ala Ser
1100 1105 1110
Gly Ala Pro Thr Ala Pro Ser Val Gly Ala Ser Ala Ser Asp Gln
1115 1120 1125
Pro Gln Arg
1130
<210> 61
<211> 1292
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 61
Met Lys Leu Leu Ser Ser Ile Glu Glu Ala Cys Asn Ile Cys Arg Leu
1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asn Leu Asn Met Ile
65 70 75 80
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95
Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140
Thr Val Ser Ser Arg Ser Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly
145 150 155 160
Ser Met Ser Ser Leu Ser Arg Glu Leu Val Phe Leu Ile Leu Gln Phe
165 170 175
Leu Asp Glu Glu Lys Phe Lys Glu Thr Val His Lys Leu Glu Gln Glu
180 185 190
Ser Gly Phe Phe Phe Asn Met Lys Tyr Phe Glu Asp Glu Val His Asn
195 200 205
Gly Asn Trp Asp Glu Val Glu Lys Tyr Leu Ser Gly Phe Thr Lys Val
210 215 220
Asp Asp Asn Arg Tyr Ser Met Lys Ile Phe Phe Glu Ile Arg Lys Gln
225 230 235 240
Lys Tyr Leu Glu Ala Leu Asp Lys His Asp Arg Pro Lys Ala Val Asp
245 250 255
Ile Leu Val Lys Asp Leu Lys Val Phe Ser Thr Phe Asn Glu Glu Leu
260 265 270
Phe Lys Glu Ile Thr Gln Leu Leu Thr Leu Glu Asn Phe Arg Glu Asn
275 280 285
Glu Gln Leu Ser Lys Tyr Gly Asp Thr Lys Ser Ala Arg Ala Ile Met
290 295 300
Leu Val Glu Leu Lys Lys Leu Ile Glu Ala Asn Pro Leu Phe Arg Asp
305 310 315 320
Lys Leu Gln Phe Pro Thr Leu Arg Asn Ser Arg Leu Arg Thr Leu Ile
325 330 335
Asn Gln Ser Leu Asn Trp Gln His Gln Leu Cys Lys Asn Pro Arg Pro
340 345 350
Asn Pro Asp Ile Lys Thr Leu Phe Val Asp His Ser Cys Gly Pro Pro
355 360 365
Asn Gly Ala Arg Ala Pro Ser Pro Val Asn Asn Pro Leu Leu Gly Gly
370 375 380
Ile Pro Lys Ala Gly Gly Phe Pro Pro Leu Gly Ala His Gly Pro Phe
385 390 395 400
Gln Pro Thr Ala Ser Pro Val Pro Thr Pro Leu Ala Gly Trp Met Ser
405 410 415
Ser Pro Ser Ser Val Pro His Pro Ala Val Ser Ala Gly Ala Ile Ala
420 425 430
Leu Gly Gly Pro Ser Ile Pro Ala Ala Leu Lys His Pro Arg Thr Pro
435 440 445
Pro Thr Asn Ala Ser Leu Asp Tyr Pro Ser Ala Asp Ser Glu His Val
450 455 460
Ser Lys Arg Thr Arg Pro Met Gly Ile Ser Asp Glu Val Asn Leu Gly
465 470 475 480
Val Asn Met Leu Pro Met Ser Phe Ser Gly Gln Ala His Gly His Ser
485 490 495
Pro Ala Phe Lys Ala Pro Asp Asp Leu Pro Lys Thr Val Ala Arg Thr
500 505 510
Leu Ser Gln Gly Ser Ser Pro Met Ser Met Asp Phe His Pro Ile Lys
515 520 525
Gln Thr Leu Leu Leu Val Gly Thr Asn Val Gly Asp Ile Gly Leu Trp
530 535 540
Glu Val Gly Ser Arg Glu Arg Leu Val Gln Lys Thr Phe Lys Val Trp
545 550 555 560
Asp Leu Ser Lys Cys Ser Met Pro Leu Gln Ala Ala Leu Val Lys Glu
565 570 575
Pro Val Val Ser Val Asn Arg Val Ile Trp Ser Pro Asp Gly Ser Leu
580 585 590
Phe Gly Val Ala Tyr Ser Arg His Ile Val Gln Leu Tyr Ser Tyr His
595 600 605
Gly Gly Glu Asp Met Arg Gln His Leu Glu Ile Asp Ala His Val Gly
610 615 620
Gly Val Asn Asp Ile Ser Phe Ser Thr Pro Asn Lys Gln Leu Cys Val
625 630 635 640
Ile Thr Cys Gly Asp Asp Lys Thr Ile Lys Val Trp Asp Ala Ala Thr
645 650 655
Gly Val Lys Arg His Thr Phe Glu Gly His Glu Ala Pro Val Tyr Ser
660 665 670
Val Cys Pro His Tyr Lys Glu Asn Ile Gln Phe Ile Phe Ser Thr Ala
675 680 685
Leu Asp Gly Lys Ile Lys Ala Trp Leu Tyr Asp Asn Met Gly Ser Arg
690 695 700
Val Asp Tyr Asp Ala Pro Gly Arg Trp Cys Thr Thr Met Ala Tyr Ser
705 710 715 720
Ala Asp Gly Thr Arg Leu Phe Ser Cys Gly Thr Ser Lys Asp Gly Glu
725 730 735
Ser Phe Ile Val Glu Trp Asn Glu Ser Glu Gly Ala Val Lys Arg Thr
740 745 750
Tyr Gln Gly Phe His Lys Arg Ser Leu Gly Val Val Gln Phe Asp Thr
755 760 765
Thr Lys Asn Arg Tyr Leu Ala Ala Gly Asp Asp Phe Ser Ile Lys Phe
770 775 780
Trp Asp Met Asp Ala Val Gln Leu Leu Thr Ala Ile Asp Gly Asp Gly
785 790 795 800
Gly Leu Gln Ala Ser Pro Arg Ile Arg Phe Asn Lys Glu Gly Ser Leu
805 810 815
Leu Ala Val Ser Gly Asn Glu Asn Val Ile Lys Ile Met Ala Asn Ser
820 825 830
Asp Gly Leu Arg Leu Leu His Thr Phe Glu Asn Ile Ser Ser Glu Ser
835 840 845
Ser Lys Pro Ala Ile Asn Ser Ile Ala Ala Ala Ala Ala Ala Ala Ala
850 855 860
Thr Ser Ala Gly His Ala Asp Arg Ser Ala Asn Val Val Ser Ile Gln
865 870 875 880
Gly Met Asn Gly Asp Ser Arg Asn Met Val Asp Val Lys Pro Val Ile
885 890 895
Thr Glu Glu Ser Asn Asp Lys Ser Lys Ile Trp Lys Leu Thr Glu Val
900 905 910
Ser Glu Pro Ser Gln Cys Arg Ser Leu Arg Leu Pro Glu Asn Leu Arg
915 920 925
Val Ala Lys Ile Ser Arg Leu Ile Phe Thr Asn Ser Gly Asn Ala Ile
930 935 940
Leu Ala Leu Ala Ser Asn Ala Ile His Leu Leu Trp Lys Trp Gln Arg
945 950 955 960
Asn Glu Arg Asn Ala Thr Gly Lys Ala Thr Ala Ser Leu Pro Pro Gln
965 970 975
Gln Trp Gln Pro Ala Ser Gly Ile Leu Met Thr Asn Asp Val Ala Glu
980 985 990
Thr Asn Pro Glu Glu Ala Val Pro Cys Phe Ala Leu Ser Lys Asn Asp
995 1000 1005
Ser Tyr Val Met Ser Ala Ser Gly Gly Lys Ile Ser Leu Phe Asn
1010 1015 1020
Met Met Thr Phe Lys Thr Met Ala Thr Phe Met Pro Pro Pro Pro
1025 1030 1035
Ala Ala Thr Phe Leu Ala Phe His Pro Gln Asp Asn Asn Ile Ile
1040 1045 1050
Ala Ile Gly Met Asp Asp Ser Thr Ile Gln Ile Tyr Asn Val Arg
1055 1060 1065
Val Asp Glu Val Lys Ser Lys Leu Lys Gly His Ser Lys Arg Ile
1070 1075 1080
Thr Gly Leu Ala Phe Ser Asn Val Leu Asn Val Leu Val Ser Ser
1085 1090 1095
Gly Ala Asp Ala Gln Leu Cys Val Trp Asn Thr Asp Gly Trp Glu
1100 1105 1110
Lys Gln Arg Ser Lys Val Leu Pro Leu Pro Gln Gly Arg Pro Asn
1115 1120 1125
Ser Ala Pro Ser Asp Thr Arg Val Gln Phe His Gln Asp Gln Ala
1130 1135 1140
His Phe Leu Val Val His Glu Thr Gln Leu Ala Ile Tyr Glu Thr
1145 1150 1155
Thr Lys Leu Glu Cys Met Lys Gln Trp Ala Val Arg Glu Ser Leu
1160 1165 1170
Ala Pro Ile Thr His Ala Thr Phe Ser Cys Asp Ser Gln Leu Val
1175 1180 1185
Tyr Ala Ser Phe Met Asp Ala Thr Val Cys Val Phe Ser Ser Ala
1190 1195 1200
Asn Leu Arg Leu Arg Cys Arg Val Asn Pro Ser Ala Tyr Leu Pro
1205 1210 1215
Ala Ser Leu Ser Asn Ser Asn Val His Pro Leu Val Ile Ala Ala
1220 1225 1230
His Pro Gln Glu Pro Asn Met Phe Ala Val Gly Leu Ser Asp Gly
1235 1240 1245
Gly Val His Ile Phe Glu Pro Leu Glu Ser Glu Gly Lys Trp Gly
1250 1255 1260
Val Ala Pro Pro Ala Glu Asn Gly Ser Ala Ser Gly Ala Pro Thr
1265 1270 1275
Ala Pro Ser Val Gly Ala Ser Ala Ser Asp Gln Pro Gln Arg
1280 1285 1290
<210> 62
<211> 425
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 62
Met Asp Asp Asp Asn Gly Leu Glu Leu Ser Leu Gly Leu Ser Cys Gly
1 5 10 15
Gly Ser Thr Gly Lys Ala Lys Gly Asn Asn Asn Asn Asn Ala Gly Ser
20 25 30
Ser Ser Glu Asn Tyr Arg Ala Glu Gly Gly Asp Arg Ser Ala Lys Val
35 40 45
Ile Asp Asp Phe Lys Asn Phe Leu His Pro Thr Ser Gln Arg Pro Ala
50 55 60
Glu Pro Ser Ser Gly Ser Gln Arg Ser Asp Ser Gly Gln Gln Pro Pro
65 70 75 80
Gln Asn Phe Phe Asn Asp Leu Ser Lys Ala Pro Thr Thr Glu Ala Glu
85 90 95
Ala Ser Thr Lys Pro Leu Trp Val Glu Asp Glu Ser Arg Lys Glu Ala
100 105 110
Gly Asn Lys Arg Lys Phe Gly Phe Pro Gly Met Asn Asp Asp Lys Lys
115 120 125
Lys Glu Lys Asp Ser Ser His Val Asp Met His Glu Lys Lys Thr Lys
130 135 140
Ala Ser His Val Ser Thr Ala Thr Asp Glu Gly Ser Thr Ala Glu Asn
145 150 155 160
Glu Asp Val Ala Glu Ser Glu Val Gly Gly Gly Ser Ser Ser Asn His
165 170 175
Ala Lys Glu Val Val Arg Pro Pro Thr Asp Thr Asn Ile Val Asp Asn
180 185 190
Leu Thr Gly Gln Arg Arg Ser Asn His Gly Gly Ser Gly Thr Glu Glu
195 200 205
Phe Thr Met Arg Asn Met Ser Tyr Thr Val Pro Phe Thr Val His Pro
210 215 220
Gln Asn Val Val Thr Ser Met Pro Tyr Ser Leu Pro Thr Lys Glu Ser
225 230 235 240
Gly Gln His Ala Ala Ala Thr Ser Leu Leu Gln Pro Asn Ala Asn Ala
245 250 255
Gly Asn Leu Pro Ile Met Phe Gly Tyr Ser Pro Val Gln Leu Pro Met
260 265 270
Leu Asp Lys Asp Gly Ser Gly Gly Ile Val Ala Leu Ser Gln Ser Pro
275 280 285
Phe Ala Gly Arg Val Pro Ser Asn Ser Ala Thr Ala Lys Gly Glu Gly
290 295 300
Lys Gln Pro Val Ala Glu Glu Gly Ser Ser Glu Asp Ala Ser Glu Arg
305 310 315 320
Pro Thr Gly Asp Asn Ser Asn Leu Asn Thr Ala Phe Ser Phe Asp Phe
325 330 335
Ser Ala Ile Lys Pro Gly Met Ala Ala Asp Val Lys Phe Gly Gly Ser
340 345 350
Gly Ala Arg Pro Asn Leu Pro Trp Val Ser Thr Thr Gly Ser Gly Pro
355 360 365
His Gly Arg Thr Ile Ser Gly Val Thr Tyr Arg Tyr Asn Ala Asn Gln
370 375 380
Ile Lys Ile Val Cys Ala Cys His Gly Ser His Met Ser Pro Glu Glu
385 390 395 400
Phe Val Arg His Ala Ser Glu Glu Tyr Val Ser Pro Glu Ser Ser Met
405 410 415
Gly Met Thr Ala Ala Ser Ala His Thr
420 425
<210> 63
<211> 564
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 63
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Asp Asp Asp Asn
130 135 140
Gly Leu Glu Leu Ser Leu Gly Leu Ser Cys Gly Gly Ser Thr Gly Lys
145 150 155 160
Ala Lys Gly Asn Asn Asn Asn Asn Ala Gly Ser Ser Ser Glu Asn Tyr
165 170 175
Arg Ala Glu Gly Gly Asp Arg Ser Ala Lys Val Ile Asp Asp Phe Lys
180 185 190
Asn Phe Leu His Pro Thr Ser Gln Arg Pro Ala Glu Pro Ser Ser Gly
195 200 205
Ser Gln Arg Ser Asp Ser Gly Gln Gln Pro Pro Gln Asn Phe Phe Asn
210 215 220
Asp Leu Ser Lys Ala Pro Thr Thr Glu Ala Glu Ala Ser Thr Lys Pro
225 230 235 240
Leu Trp Val Glu Asp Glu Ser Arg Lys Glu Ala Gly Asn Lys Arg Lys
245 250 255
Phe Gly Phe Pro Gly Met Asn Asp Asp Lys Lys Lys Glu Lys Asp Ser
260 265 270
Ser His Val Asp Met His Glu Lys Lys Thr Lys Ala Ser His Val Ser
275 280 285
Thr Ala Thr Asp Glu Gly Ser Thr Ala Glu Asn Glu Asp Val Ala Glu
290 295 300
Ser Glu Val Gly Gly Gly Ser Ser Ser Asn His Ala Lys Glu Val Val
305 310 315 320
Arg Pro Pro Thr Asp Thr Asn Ile Val Asp Asn Leu Thr Gly Gln Arg
325 330 335
Arg Ser Asn His Gly Gly Ser Gly Thr Glu Glu Phe Thr Met Arg Asn
340 345 350
Met Ser Tyr Thr Val Pro Phe Thr Val His Pro Gln Asn Val Val Thr
355 360 365
Ser Met Pro Tyr Ser Leu Pro Thr Lys Glu Ser Gly Gln His Ala Ala
370 375 380
Ala Thr Ser Leu Leu Gln Pro Asn Ala Asn Ala Gly Asn Leu Pro Ile
385 390 395 400
Met Phe Gly Tyr Ser Pro Val Gln Leu Pro Met Leu Asp Lys Asp Gly
405 410 415
Ser Gly Gly Ile Val Ala Leu Ser Gln Ser Pro Phe Ala Gly Arg Val
420 425 430
Pro Ser Asn Ser Ala Thr Ala Lys Gly Glu Gly Lys Gln Pro Val Ala
435 440 445
Glu Glu Gly Ser Ser Glu Asp Ala Ser Glu Arg Pro Thr Gly Asp Asn
450 455 460
Ser Asn Leu Asn Thr Ala Phe Ser Phe Asp Phe Ser Ala Ile Lys Pro
465 470 475 480
Gly Met Ala Ala Asp Val Lys Phe Gly Gly Ser Gly Ala Arg Pro Asn
485 490 495
Leu Pro Trp Val Ser Thr Thr Gly Ser Gly Pro His Gly Arg Thr Ile
500 505 510
Ser Gly Val Thr Tyr Arg Tyr Asn Ala Asn Gln Ile Lys Ile Val Cys
515 520 525
Ala Cys His Gly Ser His Met Ser Pro Glu Glu Phe Val Arg His Ala
530 535 540
Ser Glu Glu Tyr Val Ser Pro Glu Ser Ser Met Gly Met Thr Ala Ala
545 550 555 560
Ser Ala His Thr
<210> 64
<211> 475
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 64
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Thr Ser Asp Gly
130 135 140
Ala Thr Ser Thr Ser Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala
145 150 155 160
Arg Arg Lys Pro Ser Trp Arg Glu Arg Glu Asn Asn Arg Arg Arg Glu
165 170 175
Arg Arg Arg Arg Ala Val Ala Ala Lys Ile Tyr Thr Gly Leu Arg Ala
180 185 190
Gln Gly Asp Tyr Asn Leu Pro Lys His Cys Asp Asn Asn Glu Val Leu
195 200 205
Lys Ala Leu Cys Val Glu Ala Gly Trp Val Val Glu Glu Asp Gly Thr
210 215 220
Thr Tyr Arg Lys Gly Cys Lys Pro Leu Pro Gly Glu Ile Ala Gly Thr
225 230 235 240
Ser Ser Arg Val Thr Pro Tyr Ser Ser Gln Asn Gln Ser Pro Leu Ser
245 250 255
Ser Ala Phe Gln Ser Pro Ile Pro Ser Tyr Gln Val Ser Pro Ser Ser
260 265 270
Ser Ser Phe Pro Ser Pro Ser Arg Gly Glu Pro Asn Asn Asn Met Ser
275 280 285
Ser Thr Phe Phe Pro Phe Leu Arg Asn Gly Gly Ile Pro Ser Ser Leu
290 295 300
Pro Ser Leu Arg Ile Ser Asn Ser Cys Pro Val Thr Pro Pro Val Ser
305 310 315 320
Ser Pro Thr Ser Lys Asn Pro Lys Pro Leu Pro Asn Trp Glu Ser Ile
325 330 335
Ala Lys Gln Ser Met Ala Ile Ala Lys Gln Ser Met Ala Ser Phe Asn
340 345 350
Tyr Pro Phe Tyr Ala Val Ser Ala Pro Ala Ser Pro Thr His Arg His
355 360 365
Gln Phe His Thr Pro Ala Thr Ile Pro Glu Cys Asp Glu Ser Asp Ser
370 375 380
Ser Thr Val Asp Ser Gly His Trp Ile Ser Phe Gln Lys Phe Ala Gln
385 390 395 400
Gln Gln Pro Phe Ser Ala Ser Met Val Pro Thr Ser Pro Thr Phe Asn
405 410 415
Leu Val Lys Pro Ala Pro Gln Gln Met Ser Pro Asn Thr Ala Ala Phe
420 425 430
Gln Glu Ile Gly Gln Ser Ser Glu Phe Lys Phe Glu Asn Ser Gln Val
435 440 445
Lys Pro Trp Glu Gly Glu Arg Ile His Asp Val Gly Met Glu Asp Leu
450 455 460
Glu Leu Thr Leu Gly Asn Gly Lys Ala Arg Gly
465 470 475
<210> 65
<211> 475
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 65
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Thr Ser Asp Gly
130 135 140
Ala Thr Ser Thr Ser Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala
145 150 155 160
Arg Arg Lys Pro Ser Trp Arg Glu Arg Glu Asn Asn Arg Arg Arg Glu
165 170 175
Arg Arg Arg Arg Ala Val Ala Ala Lys Ile Tyr Thr Gly Leu Arg Ala
180 185 190
Gln Gly Asp Tyr Asn Leu Pro Lys His Cys Asp Asn Asn Glu Val Leu
195 200 205
Lys Ala Leu Cys Val Glu Ala Gly Trp Val Val Glu Glu Asp Gly Thr
210 215 220
Thr Tyr Arg Lys Gly Cys Lys Pro Leu Pro Gly Glu Ile Ala Gly Thr
225 230 235 240
Ser Ser Arg Val Thr Pro Tyr Ser Ser Gln Asn Gln Ser Pro Leu Ser
245 250 255
Ser Ala Phe Gln Ser Pro Ile Pro Ser Tyr Gln Val Ser Pro Ser Ser
260 265 270
Ser Ser Phe Pro Ser Pro Ser Arg Gly Glu Pro Asn Asn Asn Met Ser
275 280 285
Ser Thr Phe Phe Pro Phe Leu Arg Asn Gly Gly Ile Pro Ser Ser Leu
290 295 300
Pro Ser Leu Arg Ile Ser Asn Ser Cys Pro Val Thr Pro Pro Val Ser
305 310 315 320
Ser Pro Thr Ser Lys Asn Pro Lys Pro Leu Pro Asn Trp Glu Ser Ile
325 330 335
Ala Lys Gln Ser Met Ala Ile Ala Lys Gln Ser Met Ala Ser Phe Asn
340 345 350
Tyr Pro Phe Tyr Ala Val Ser Ala Pro Ala Ser Pro Thr His Arg His
355 360 365
Gln Phe His Thr Pro Ala Thr Ile Pro Glu Cys Asp Glu Ser Asp Ser
370 375 380
Ser Thr Val Asp Ser Gly His Trp Ile Ser Phe Gln Lys Phe Ala Gln
385 390 395 400
Gln Gln Pro Phe Ser Ala Ser Met Val Pro Thr Ser Pro Thr Phe Asn
405 410 415
Leu Val Lys Pro Ala Pro Gln Gln Met Ser Pro Asn Thr Ala Ala Phe
420 425 430
Gln Glu Ile Gly Gln Ser Ser Glu Phe Lys Phe Glu Asn Ser Gln Val
435 440 445
Lys Pro Trp Glu Gly Glu Arg Ile His Asp Val Gly Met Glu Asp Leu
450 455 460
Glu Leu Thr Leu Gly Asn Gly Lys Ala Arg Gly
465 470 475
<210> 66
<211> 726
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 66
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Gly Ala Asn Phe Asn Gln
1 5 10 15
Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr Phe Thr Asn Ser
20 25 30
Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn Ser Gln Ala Leu
35 40 45
Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn Phe Met Asn Asn
50 55 60
Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn Ser Lys Pro Leu
65 70 75 80
Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala Phe Gly Ile Thr
85 90 95
Thr Gly Met Phe Asn Thr Thr Thr Met Asp Asp Val Tyr Asn Tyr Leu
100 105 110
Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys Glu Gly Gly Ser
115 120 125
Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly Ser Met Lys Arg Asp His
130 135 140
His Gln Phe Gln Gly Arg Leu Ser Asn His Gly Thr Ser Ser Ser Ser
145 150 155 160
Ser Ser Ile Ser Lys Asp Lys Met Met Met Val Lys Lys Glu Glu Asp
165 170 175
Gly Gly Gly Asn Met Asp Asp Glu Leu Leu Ala Val Leu Gly Tyr Lys
180 185 190
Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu Lys Leu Glu Gln Leu
195 200 205
Glu Thr Met Met Ser Asn Val Gln Glu Asp Gly Leu Ser His Leu Ala
210 215 220
Thr Asp Thr Val His Tyr Asn Pro Ser Glu Leu Tyr Ser Trp Leu Asp
225 230 235 240
Asn Met Leu Ser Glu Leu Asn Pro Pro Pro Leu Pro Ala Ser Ser Asn
245 250 255
Gly Leu Asp Pro Val Leu Pro Ser Pro Glu Ile Cys Gly Phe Pro Ala
260 265 270
Ser Asp Tyr Asp Leu Lys Val Ile Pro Gly Asn Ala Ile Tyr Gln Phe
275 280 285
Pro Ala Ile Asp Ser Ser Ser Ser Ser Asn Asn Gln Asn Lys Arg Leu
290 295 300
Lys Ser Cys Ser Ser Pro Asp Ser Met Val Thr Ser Thr Ser Thr Gly
305 310 315 320
Thr Gln Ile Gly Gly Val Ile Gly Thr Thr Val Thr Thr Thr Thr Thr
325 330 335
Thr Thr Thr Ala Ala Gly Glu Ser Thr Arg Ser Val Ile Leu Val Asp
340 345 350
Ser Gln Glu Asn Gly Val Arg Leu Val His Ala Leu Met Ala Cys Ala
355 360 365
Glu Ala Ile Gln Gln Asn Asn Leu Thr Leu Ala Glu Ala Leu Val Lys
370 375 380
Gln Ile Gly Cys Leu Ala Val Ser Gln Ala Gly Ala Met Arg Lys Val
385 390 395 400
Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg Ile Tyr Arg Leu Ser
405 410 415
Pro Pro Gln Asn Gln Ile Asp His Cys Leu Ser Asp Thr Leu Gln Met
420 425 430
His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe Ala His Phe Thr Ala
435 440 445
Asn Gln Ala Ile Leu Glu Ala Phe Glu Gly Lys Lys Arg Val His Val
450 455 460
Ile Asp Phe Ser Met Asn Gln Gly Leu Gln Trp Pro Ala Leu Met Gln
465 470 475 480
Ala Leu Ala Leu Arg Glu Gly Gly Pro Pro Thr Phe Arg Leu Thr Gly
485 490 495
Ile Gly Pro Pro Ala Pro Asp Asn Ser Asp His Leu His Glu Val Gly
500 505 510
Cys Lys Leu Ala Gln Leu Ala Glu Ala Ile His Val Glu Phe Glu Tyr
515 520 525
Arg Gly Phe Val Ala Asn Ser Leu Ala Asp Leu Asp Ala Ser Met Leu
530 535 540
Glu Leu Arg Pro Ser Asp Thr Glu Ala Val Ala Val Asn Ser Val Phe
545 550 555 560
Glu Leu His Lys Leu Leu Gly Arg Pro Gly Gly Ile Glu Lys Val Leu
565 570 575
Gly Val Val Lys Gln Ile Lys Pro Val Ile Phe Thr Val Val Glu Gln
580 585 590
Glu Ser Asn His Asn Gly Pro Val Phe Leu Asp Arg Phe Thr Glu Ser
595 600 605
Leu His Tyr Tyr Ser Thr Leu Phe Asp Ser Leu Glu Gly Val Pro Asn
610 615 620
Ser Gln Asp Lys Val Met Ser Glu Val Tyr Leu Gly Lys Gln Ile Cys
625 630 635 640
Asn Leu Val Ala Cys Glu Gly Pro Asp Arg Val Glu Arg His Glu Thr
645 650 655
Leu Ser Gln Trp Gly Asn Arg Phe Gly Ser Ser Gly Leu Ala Pro Ala
660 665 670
His Leu Gly Ser Asn Ala Phe Lys Gln Ala Ser Met Leu Leu Ser Val
675 680 685
Phe Asn Ser Gly Gln Gly Tyr Arg Val Glu Glu Ser Asn Gly Cys Leu
690 695 700
Met Leu Gly Trp His Thr Arg Pro Leu Ile Thr Thr Ser Ala Trp Lys
705 710 715 720
Leu Ser Thr Ala Ala Tyr
725
<210> 67
<211> 413
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 67
Met Lys Leu Leu Ser Ser Ile Glu Glu Ala Cys Asn Ile Cys Arg Leu
1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asn Leu Asn Met Ile
65 70 75 80
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95
Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140
Thr Val Ser Ser Arg Ser Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly
145 150 155 160
Ser Tyr Glu Pro Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile
165 170 175
Leu Val Ser Gln Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile
180 185 190
Glu Pro Ser Asn Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu
195 200 205
Asp Asn Gly Ala Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe
210 215 220
Ser Gly Gly Ser Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr
225 230 235 240
Thr Ile Ser Pro Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln
245 250 255
Met Thr Ile Phe Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro
260 265 270
Pro Glu Lys Ala Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp
275 280 285
Leu Pro Glu Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu
290 295 300
Ile Ser Lys Glu Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys
305 310 315 320
Ala Asn Ser Ser Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys
325 330 335
Val Ser Leu Gln Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser
340 345 350
Lys Ala Lys Lys Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe
355 360 365
Leu Asn Cys Gln Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly
370 375 380
Cys Thr Gly Ser Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys
385 390 395 400
Ser Pro Asn Leu Ser Val Asp Leu Asn Ser Glu Gly Ile
405 410
<210> 68
<211> 449
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 68
Met Lys Leu Leu Ser Ser Ile Glu Glu Ala Cys Asn Ile Cys Arg Leu
1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asn Leu Asn Met Ile
65 70 75 80
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95
Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140
Thr Val Ser Ser Arg Ser Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly
145 150 155 160
Ser Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro
165 170 175
Leu Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp
180 185 190
Cys Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
195 200 205
Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu
210 215 220
Pro Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser
225 230 235 240
Gln Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser
245 250 255
Asn Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly
260 265 270
Ala Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly
275 280 285
Ser Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser
290 295 300
Pro Arg Ser Pro Ala Glu Thr Ser Glu Leu Ile Met His Phe Ala Ala
305 310 315 320
Asn Pro Ile Asp Leu Pro Glu Asn Gly Ile Phe Ala Ser Ser Arg Met
325 330 335
Ile Ser Lys Leu Ile Ser Lys Glu Lys Met Met Glu Leu Pro Gln Lys
340 345 350
Gly Leu Glu Lys Ala Asn Ser Ser Arg Asp Ser Gly Met Glu Gly Gln
355 360 365
Ala Asn Arg Lys Val Ser Leu Gln Arg Tyr Arg Glu Lys Arg Lys Asp
370 375 380
Arg Lys Phe Ser Lys Ala Lys Lys Cys Pro Gly Val Ala Ser Ser Ser
385 390 395 400
Leu Glu Met Phe Leu Asn Cys Gln Pro Arg Met Lys Ala Ala Tyr Ser
405 410 415
Gln Asn Leu Gly Cys Thr Gly Ser Pro Leu His Ser Gln Ser Pro Glu
420 425 430
Ser Gln Thr Lys Ser Pro Asn Leu Ser Val Asp Leu Asn Ser Glu Gly
435 440 445
Ile
<210> 69
<211> 390
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 69
Met Lys Leu Leu Ser Ser Ile Glu Glu Ala Cys Asn Ile Cys Arg Leu
1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60
Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asn Leu Asn Met Ile
65 70 75 80
Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95
Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140
Thr Val Ser Ser Arg Ser Asn Gln Thr Ser Leu Tyr Lys Lys Ala Gly
145 150 155 160
Ser Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro
165 170 175
Leu Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp
180 185 190
Cys Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
195 200 205
Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu
210 215 220
Pro Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser
225 230 235 240
Gln Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser
245 250 255
Asn Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly
260 265 270
Ala Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly
275 280 285
Ser Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser
290 295 300
Pro Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile
305 310 315 320
Phe Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys
325 330 335
Ala Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu
340 345 350
Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys
355 360 365
Glu Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser
370 375 380
Ser Arg Asp Ser Gly Met
385 390
<210> 70
<211> 142
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 70
Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
1 5 10 15
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
20 25 30
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Asp Asp Gly Asn
35 40 45
Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn
50 55 60
Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu
65 70 75 80
Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr
85 90 95
Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
100 105 110
Asn Ile Glu Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gly Pro Arg
115 120 125
Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly
130 135 140
<210> 71
<211> 111
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 71
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly
100 105 110
<210> 72
<211> 568
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 72
Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
1 5 10 15
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
20 25 30
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Asp Asp Gly Asn
35 40 45
Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn
50 55 60
Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu
65 70 75 80
Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr
85 90 95
Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
100 105 110
Asn Ile Glu Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gly Pro Arg
115 120 125
Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser Met
130 135 140
Asp Asp Asp Asn Gly Leu Glu Leu Ser Leu Gly Leu Ser Cys Gly Gly
145 150 155 160
Ser Thr Gly Lys Ala Lys Gly Asn Asn Asn Asn Asn Ala Gly Ser Ser
165 170 175
Ser Glu Asn Tyr Arg Ala Glu Gly Gly Asp Arg Ser Ala Lys Val Ile
180 185 190
Asp Asp Phe Lys Asn Phe Leu His Pro Thr Ser Gln Arg Pro Ala Glu
195 200 205
Pro Ser Ser Gly Ser Gln Arg Ser Asp Ser Gly Gln Gln Pro Pro Gln
210 215 220
Asn Phe Phe Asn Asp Leu Ser Lys Ala Pro Thr Thr Glu Ala Glu Ala
225 230 235 240
Ser Thr Lys Pro Leu Trp Val Glu Asp Glu Ser Arg Lys Glu Ala Gly
245 250 255
Asn Lys Arg Lys Phe Gly Phe Pro Gly Met Asn Asp Asp Lys Lys Lys
260 265 270
Glu Lys Asp Ser Ser His Val Asp Met His Glu Lys Lys Thr Lys Ala
275 280 285
Ser His Val Ser Thr Ala Thr Asp Glu Gly Ser Thr Ala Glu Asn Glu
290 295 300
Asp Val Ala Glu Ser Glu Val Gly Gly Gly Ser Ser Ser Asn His Ala
305 310 315 320
Lys Glu Val Val Arg Pro Pro Thr Asp Thr Asn Ile Val Asp Asn Leu
325 330 335
Thr Gly Gln Arg Arg Ser Asn His Gly Gly Ser Gly Thr Glu Glu Phe
340 345 350
Thr Met Arg Asn Met Ser Tyr Thr Val Pro Phe Thr Val His Pro Gln
355 360 365
Asn Val Val Thr Ser Met Pro Tyr Ser Leu Pro Thr Lys Glu Ser Gly
370 375 380
Gln His Ala Ala Ala Thr Ser Leu Leu Gln Pro Asn Ala Asn Ala Gly
385 390 395 400
Asn Leu Pro Ile Met Phe Gly Tyr Ser Pro Val Gln Leu Pro Met Leu
405 410 415
Asp Lys Asp Gly Ser Gly Gly Ile Val Ala Leu Ser Gln Ser Pro Phe
420 425 430
Ala Gly Arg Val Pro Ser Asn Ser Ala Thr Ala Lys Gly Glu Gly Lys
435 440 445
Gln Pro Val Ala Glu Glu Gly Ser Ser Glu Asp Ala Ser Glu Arg Pro
450 455 460
Thr Gly Asp Asn Ser Asn Leu Asn Thr Ala Phe Ser Phe Asp Phe Ser
465 470 475 480
Ala Ile Lys Pro Gly Met Ala Ala Asp Val Lys Phe Gly Gly Ser Gly
485 490 495
Ala Arg Pro Asn Leu Pro Trp Val Ser Thr Thr Gly Ser Gly Pro His
500 505 510
Gly Arg Thr Ile Ser Gly Val Thr Tyr Arg Tyr Asn Ala Asn Gln Ile
515 520 525
Lys Ile Val Cys Ala Cys His Gly Ser His Met Ser Pro Glu Glu Phe
530 535 540
Val Arg His Ala Ser Glu Glu Tyr Val Ser Pro Glu Ser Ser Met Gly
545 550 555 560
Met Thr Ala Ala Ser Ala His Thr
565
<210> 73
<211> 479
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 73
Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
1 5 10 15
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
20 25 30
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Asp Asp Gly Asn
35 40 45
Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn
50 55 60
Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu
65 70 75 80
Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr
85 90 95
Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
100 105 110
Asn Ile Glu Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Gly Pro Arg
115 120 125
Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser Met
130 135 140
Thr Ser Asp Gly Ala Thr Ser Thr Ser Ala Ala Ala Ala Ala Ala Ala
145 150 155 160
Ala Ala Ala Ala Arg Arg Lys Pro Ser Trp Arg Glu Arg Glu Asn Asn
165 170 175
Arg Arg Arg Glu Arg Arg Arg Arg Ala Val Ala Ala Lys Ile Tyr Thr
180 185 190
Gly Leu Arg Ala Gln Gly Asp Tyr Asn Leu Pro Lys His Cys Asp Asn
195 200 205
Asn Glu Val Leu Lys Ala Leu Cys Val Glu Ala Gly Trp Val Val Glu
210 215 220
Glu Asp Gly Thr Thr Tyr Arg Lys Gly Cys Lys Pro Leu Pro Gly Glu
225 230 235 240
Ile Ala Gly Thr Ser Ser Arg Val Thr Pro Tyr Ser Ser Gln Asn Gln
245 250 255
Ser Pro Leu Ser Ser Ala Phe Gln Ser Pro Ile Pro Ser Tyr Gln Val
260 265 270
Ser Pro Ser Ser Ser Ser Phe Pro Ser Pro Ser Arg Gly Glu Pro Asn
275 280 285
Asn Asn Met Ser Ser Thr Phe Phe Pro Phe Leu Arg Asn Gly Gly Ile
290 295 300
Pro Ser Ser Leu Pro Ser Leu Arg Ile Ser Asn Ser Cys Pro Val Thr
305 310 315 320
Pro Pro Val Ser Ser Pro Thr Ser Lys Asn Pro Lys Pro Leu Pro Asn
325 330 335
Trp Glu Ser Ile Ala Lys Gln Ser Met Ala Ile Ala Lys Gln Ser Met
340 345 350
Ala Ser Phe Asn Tyr Pro Phe Tyr Ala Val Ser Ala Pro Ala Ser Pro
355 360 365
Thr His Arg His Gln Phe His Thr Pro Ala Thr Ile Pro Glu Cys Asp
370 375 380
Glu Ser Asp Ser Ser Thr Val Asp Ser Gly His Trp Ile Ser Phe Gln
385 390 395 400
Lys Phe Ala Gln Gln Gln Pro Phe Ser Ala Ser Met Val Pro Thr Ser
405 410 415
Pro Thr Phe Asn Leu Val Lys Pro Ala Pro Gln Gln Met Ser Pro Asn
420 425 430
Thr Ala Ala Phe Gln Glu Ile Gly Gln Ser Ser Glu Phe Lys Phe Glu
435 440 445
Asn Ser Gln Val Lys Pro Trp Glu Gly Glu Arg Ile His Asp Val Gly
450 455 460
Met Glu Asp Leu Glu Leu Thr Leu Gly Asn Gly Lys Ala Arg Gly
465 470 475
<210> 74
<211> 425
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 74
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser
100 105 110
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
115 120 125
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
130 135 140
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
145 150 155 160
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
165 170 175
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
180 185 190
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
195 200 205
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
210 215 220
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
225 230 235 240
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
245 250 255
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
260 265 270
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
275 280 285
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
290 295 300
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
305 310 315 320
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
325 330 335
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
340 345 350
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
355 360 365
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
370 375 380
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
385 390 395 400
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
405 410 415
Ser Val Asp Leu Asn Ser Glu Gly Ile
420 425
<210> 75
<211> 425
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 75
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser
100 105 110
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
115 120 125
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
130 135 140
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
145 150 155 160
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
165 170 175
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
180 185 190
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
195 200 205
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
210 215 220
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
225 230 235 240
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
245 250 255
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
260 265 270
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
275 280 285
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
290 295 300
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
305 310 315 320
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
325 330 335
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
340 345 350
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
355 360 365
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
370 375 380
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
385 390 395 400
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
405 410 415
Ser Val Asp Leu Asn Ser Glu Gly Ile
420 425
<210> 76
<211> 448
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 76
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser
100 105 110
Met Thr Ser Asp Gly Ala Thr Ser Thr Ser Ala Ala Ala Ala Ala Ala
115 120 125
Ala Ala Ala Ala Ala Arg Arg Lys Pro Ser Trp Arg Glu Arg Glu Asn
130 135 140
Asn Arg Arg Arg Glu Arg Arg Arg Arg Ala Val Ala Ala Lys Ile Tyr
145 150 155 160
Thr Gly Leu Arg Ala Gln Gly Asp Tyr Asn Leu Pro Lys His Cys Asp
165 170 175
Asn Asn Glu Val Leu Lys Ala Leu Cys Val Glu Ala Gly Trp Val Val
180 185 190
Glu Glu Asp Gly Thr Thr Tyr Arg Lys Gly Cys Lys Pro Leu Pro Gly
195 200 205
Glu Ile Ala Gly Thr Ser Ser Arg Val Thr Pro Tyr Ser Ser Gln Asn
210 215 220
Gln Ser Pro Leu Ser Ser Ala Phe Gln Ser Pro Ile Pro Ser Tyr Gln
225 230 235 240
Val Ser Pro Ser Ser Ser Ser Phe Pro Ser Pro Ser Arg Gly Glu Pro
245 250 255
Asn Asn Asn Met Ser Ser Thr Phe Phe Pro Phe Leu Arg Asn Gly Gly
260 265 270
Ile Pro Ser Ser Leu Pro Ser Leu Arg Ile Ser Asn Ser Cys Pro Val
275 280 285
Thr Pro Pro Val Ser Ser Pro Thr Ser Lys Asn Pro Lys Pro Leu Pro
290 295 300
Asn Trp Glu Ser Ile Ala Lys Gln Ser Met Ala Ile Ala Lys Gln Ser
305 310 315 320
Met Ala Ser Phe Asn Tyr Pro Phe Tyr Ala Val Ser Ala Pro Ala Ser
325 330 335
Pro Thr His Arg His Gln Phe His Thr Pro Ala Thr Ile Pro Glu Cys
340 345 350
Asp Glu Ser Asp Ser Ser Thr Val Asp Ser Gly His Trp Ile Ser Phe
355 360 365
Gln Lys Phe Ala Gln Gln Gln Pro Phe Ser Ala Ser Met Val Pro Thr
370 375 380
Ser Pro Thr Phe Asn Leu Val Lys Pro Ala Pro Gln Gln Met Ser Pro
385 390 395 400
Asn Thr Ala Ala Phe Gln Glu Ile Gly Gln Ser Ser Glu Phe Lys Phe
405 410 415
Glu Asn Ser Gln Val Lys Pro Trp Glu Gly Glu Arg Ile His Asp Val
420 425 430
Gly Met Glu Asp Leu Glu Leu Thr Leu Gly Asn Gly Lys Ala Arg Gly
435 440 445
<210> 77
<211> 364
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 77
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser
100 105 110
Tyr Glu Pro Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu
115 120 125
Val Ser Gln Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu
130 135 140
Pro Ser Asn Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp
145 150 155 160
Asn Gly Ala Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser
165 170 175
Gly Gly Ser Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr
180 185 190
Ile Ser Pro Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met
195 200 205
Thr Ile Phe Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro
210 215 220
Glu Lys Ala Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu
225 230 235 240
Pro Glu Asn Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile
245 250 255
Ser Lys Glu Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala
260 265 270
Asn Ser Ser Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val
275 280 285
Ser Leu Gln Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys
290 295 300
Ala Lys Lys Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu
305 310 315 320
Asn Cys Gln Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys
325 330 335
Thr Gly Ser Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser
340 345 350
Pro Asn Leu Ser Val Asp Leu Asn Ser Glu Gly Ile
355 360
<210> 78
<211> 400
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 78
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser
100 105 110
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
115 120 125
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
130 135 140
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
145 150 155 160
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
165 170 175
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
180 185 190
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
195 200 205
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
210 215 220
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
225 230 235 240
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
245 250 255
Arg Ser Pro Ala Glu Thr Ser Glu Leu Ile Met His Phe Ala Ala Asn
260 265 270
Pro Ile Asp Leu Pro Glu Asn Gly Ile Phe Ala Ser Ser Arg Met Ile
275 280 285
Ser Lys Leu Ile Ser Lys Glu Lys Met Met Glu Leu Pro Gln Lys Gly
290 295 300
Leu Glu Lys Ala Asn Ser Ser Arg Asp Ser Gly Met Glu Gly Gln Ala
305 310 315 320
Asn Arg Lys Val Ser Leu Gln Arg Tyr Arg Glu Lys Arg Lys Asp Arg
325 330 335
Lys Phe Ser Lys Ala Lys Lys Cys Pro Gly Val Ala Ser Ser Ser Leu
340 345 350
Glu Met Phe Leu Asn Cys Gln Pro Arg Met Lys Ala Ala Tyr Ser Gln
355 360 365
Asn Leu Gly Cys Thr Gly Ser Pro Leu His Ser Gln Ser Pro Glu Ser
370 375 380
Gln Thr Lys Ser Pro Asn Leu Ser Val Asp Leu Asn Ser Glu Gly Ile
385 390 395 400
<210> 79
<211> 341
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 79
Met Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His
1 5 10 15
Asn Ile Glu Asp Gly Gly Val Gln Leu Ala Asp His Tyr Gln Gln Asn
20 25 30
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
35 40 45
Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
50 55 60
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
65 70 75 80
Asp Glu Leu Tyr Lys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Pro
85 90 95
Arg Pro Thr Ser Gly Ser Val Asp Leu Glu Gly Thr Ala Pro Gly Ser
100 105 110
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
115 120 125
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
130 135 140
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
145 150 155 160
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
165 170 175
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
180 185 190
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
195 200 205
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
210 215 220
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
225 230 235 240
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
245 250 255
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
260 265 270
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
275 280 285
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
290 295 300
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
305 310 315 320
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
325 330 335
Arg Asp Ser Gly Met
340
<210> 80
<211> 942
<212> DNA
<213> Arabidopsis thaliana
<400> 80
atggatgtcg gagtttcacc ggcgaagtct atacttgcga aacctctgaa gctactcact 60
gaagaggaca tttctcagct cactcgcgaa gactgccgca aattcctcaa agacaaagga 120
atgcgaagac cgtcgtggaa caaatctcag gcgatccagc aagttttatc tcttaaagct 180
ctctatgagc ctggagacga ttccggcgcc ggtatcttcc gcaagatcct cgtttctcag 240
ccagtaaatc cgcctcgcgt cacaacaacg ttgattgagc caagcaacga gctggaagct 300
tgtggccggg tttcttatcc ggaagataac ggcgcgtgcc atagaatgga ttctccaaga 360
tcagctgagt tttccggtgg gtctggtcac tttgtatccg agaaagatgg ccacaagacg 420
actatttctc ccagaagccc agctgaaaca agtgagctcg ttgggcaaat gacgatattc 480
tatagtggaa aagtgaatgt gtatgatgga ataccacctg aaaaggcccg gtcaatcatg 540
cactttgcag ccaatccaat tgatttgcct gaaaacggta tttttgcttc cagtagaatg 600
atttcaaagc tcataagtaa agagaagatg atggaacttc cccaaaaagg ccttgagaag 660
gcgaattctt ctcgtgattc tggtatggag ggccaggcga acagaaaggt atctttgcaa 720
agatatcgtg aaaagcggaa agacagaaaa ttctcaaagg ccaaaaagtg tccaggagtt 780
gcgtcctcta gcttggagat gtttctgaat tgtcagccac ggatgaaagc tgcatattcg 840
caaaacctag gctgcaccgg atctccactg catagccagt cacctgaaag ccagacaaaa 900
agtcccaatc tttcagttga tctaaacagt gaaggcattt aa 942
<210> 81
<211> 950
<212> DNA
<213> Arabidopsis thaliana
<400> 81
agggatatgg atgtaggagt tactacggcg aagtctatac ttgagaagcc tctgaagctt 60
ctcactgaag aagacatttc tcagcttact cgcgaagatt gccgcaaatt cctcaaagag 120
aaaggaatgc gcaggccttc gtggaataaa tctcaggcga tccagcaagt tttatctctt 180
aaagctctct atgaacctgg agatgattcc ggcgccggaa tcctccgcaa gatccttgtt 240
tctcagccgc caaatccgcc tcgcgttaca acaacgttga ttgagccaag gaacgagctc 300
gaagcttgtg gaaggattcc tttacaggaa gatgatggtg cgtgccatag aagggattct 360
ccaagatcag ctgagttttc tggtagttct ggtcagtttg ttgcggataa agatagccac 420
aagactgttt ctgtttcccc cagaagccca gctgaaacaa atgcggtggt tgggcaaatg 480
acgatatttt atagtggcaa agtgaatgta tatgatggag taccacctga aaaggcccgg 540
tctatcatgc attttgcagc caatccaatt gatttgcctg aaaatggtat ttttgcttct 600
agtagaatga tttcgaaacc catgagtaaa gagaagatgg tggagcttcc ccaatatgga 660
cttgaaaagg cacctgcttc tcgtgattct gatgttgagg gtcaggcgaa cagaaaagta 720
tcgttgcaaa gatatcttga aaagcggaaa gacagaagat tttctaagac caagaaggct 780
ccaggagttg cgtcctctag cttggagatg tttctgaatc gtcagccacg gatgaacgct 840
gcatattcac aaaaccttag tggcacaggg cattgcgagt cacctgaaaa tcaaacaaaa 900
agtcccaata tctcagttga tctaaacagt gatctaaaca gcgaagataa 950
<210> 82
<211> 1128
<212> DNA
<213> Populus trichocarpa
<400> 82
atgcagccgg gagagacagt tttccggtca gctctggaca aacccctaca ccagctaaca 60
gaagatgata tttctcaggt cactcgcgaa gattgccgcc gttacctcaa agaaaaaggt 120
atgagaaggc cgtcgtggaa caaatcgcag gcaatacagc aagtgatttc actcaaaaca 180
ctcctggaag cgacgccgga gactgaatct ccaaggcgac gactctacat tccccgccct 240
cctcctcatc ctcctgataa tactcctcgt gtgcgtttct ctgccgtccc tccaaattcc 300
tctgtttcag agaggggagc aagtgctgaa acgccgatct cggtgccagc cgaggagcca 360
gttccgtgcc ggcaacacga tcctccaaat cccgatgatc ctgccgatcc tctgcctcct 420
gtccatgccg ccgtcaccga gaatgcttcg gtttcaccaa gaactacagg catggcagaa 480
gaatcagcag gacagatgac aattttttac tgtgggaagg taaacgtcta tgatgatgta 540
ccgggagaca aggcgcaagc aataatgcat cttgctgcaa gcccatttgc tccacctcag 600
gatgcttctt cagatgtaat tcctacatta aggcctttac aatgccagtt agacactcca 660
ggtgtcaaag ctgctccaaa ttcaattgtg gcgaactttc caaccctgcc aacagtgaaa 720
ggggcagata gtggtcagct tctctgggaa gaaagcaaca tagctcgtga agacaaccta 780
gaaggctcta caagcagaaa agcatcctta caaagatatt ttgagaagaa gaaagacagg 840
ttcaagaaca agagaaaggt ggcagtgcct tctgctagct tggacgtctt cttaagccat 900
ctggttggag atcaaatctc aaatgatcat tggaacctaa atgatgcctg ctctccttcc 960
caacccaggc ctccccaaac gcctaaccgg tgcaactctg ttgacaatgt agcaaaaaat 1020
ggcatcctca aagctgacct taacaacaaa ggtgatgcag atttatcttg ttgtcttgac 1080
tttagttcca agcagattaa tgcgtggtgc ttatgcttgg gatgttga 1128
<210> 83
<211> 2114
<212> DNA
<213> Picea abies
<400> 83
atgcgaggag gaggaggcgc ggacagactc cccgctagag ctaacctcga gaaacccttg 60
gaagatctca gccatgaaga cattatgcag ctcaccaggg aagactgccg gcgatacttg 120
atagaaaaag gtagcttcca aaatcttttg ctttctcctc aaataacgct ttgctctgag 180
taaatatatg aatataaatg aatgtaatct agtaatcgag ccctaagcgc gacatttaaa 240
gtatttgtaa aggtctgcgg ctgttttggc tttgtctacg gagacaaaaa tcttttttcc 300
gttgggttga gctcagaatc aatggcggtt cttctcgtgg atttgatttt gtttcgtttg 360
gcttgacttt tgccagtatt tacgccctgc cttgtcctaa aatgctttta cagaaaaaat 420
taaatcctct aaattttctt taaacctttc cagtgttaac ctctgaacat tgccaataaa 480
agcgtatagg aaaattttca attaaagctt tatataccgt aaggccatgt agaatctttt 540
aatttttgcc gtttcagaaa acggtttaaa gggataaatt tcttagaagc tcttaaaata 600
gaaaatagag cttgaaatac cactgatcca atgccagaat tgtatataat ttgacttcag 660
accttaaata ctgcttattc ggacggacat ttgctcagaa atcgttttaa tatttatgca 720
taacagattt taaatttctt tgtaggcatg cgacggcctt cgtggaacaa gtctcaggcg 780
attcagcagg tactctcgtt gaagaaattg tttgaatccg ggccgaacga tgaaaagagg 840
tcggcggcaa caaatcggcc gaatccggat gaaaacttaa atgaaaagag gtcggcggca 900
acaaatcggc cgaatccgga tgaaaactta aaggaagctg cgtccgtttc tttgctttac 960
ggttcacagc ctgaaagtcc ttcggtaggc tttttctttt aaacaatgtc gtctaatcga 1020
gcttaaacct gcagaaacgc tggcattgtc tttaatttgg ctaggtattt caaagttgaa 1080
catttctgtc tccattgtaa tgtttgttca ggttgtcttc gccagtaaag actcagacac 1140
ttttaatttg gagtggttgg cgaagacaga gttgccagta ttagcaagcc aaccccgaca 1200
catagcacag cagaatgttt tcttaagctc tttatctgct cagcaatccg gagctcagct 1260
caccattttt tactcgggaa atgttaatgt ctacgacgat gtgcctgcag aaaaggtatc 1320
tacagattta cagttcgatt ctcgtaaaga tgtgcttaaa atttccaatg atataggctt 1380
aaaattctca agatctatat ttgcaggcac aagaaataat gctgttggcc gggagcggaa 1440
attatcctcc gtcgtcgacg tgtcagtcca cacgaaatac acaacaaaac gcagtacgtg 1500
cggcgtatcc atcaaatcct acgaatacgc cgttcattca cggagtaggg ccgcctcttg 1560
caactgtggc gagctcttcc gtcatgagca gtccaataca taaaggtatc gtccattgta 1620
tcccaatgcg gaatgaaacg aaactaaaaa attgacccaa atttatcaaa atttgggcgt 1680
ccgaacataa tttggttgtt tccgatgcag agagtccgat tacaagaaaa gcatcgctgc 1740
aaagatttct ggagaaaaga aaggacaggt acagatagaa aaggttttac tccattatca 1800
tgagattcgt ggttaaaaat gcaatgaatg caattaaata tttttgattg caggagtcgt 1860
ggcaagttgg gggctcccac tatatcgaaa aagcctctgc tgatgggtat gtttatgcat 1920
ccctccattg ttcatcgtca gtattggact gatacggcca agaggaaatc cggaaaaccg 1980
gacatacctg cttctatttc tccgacccgg cctcctcaca cgccgcgtcg gacttcgtcg 2040
gacgaacaac ttagtgcacg ccatgctcgt ggtgatataa gtgcgcaggg ggggtcgcta 2100
cataattcca acta 2114
<210> 84
<211> 1098
<212> DNA
<213> Gossypium raimondii
<400> 84
atggaggctg gggtaacgac gacggcgact acaacagcgt cgttcagttc gatacttgat 60
aaacccctca gccaactaac cgaagaagac atttctcaac tcactcgcga agactgtcgc 120
aaattcctca aagaaaaagg aatgcgtagg ccgtcatgga acaaatcgca ggcgatccag 180
caagtgattt cgttcaaggc gttgttggaa agcaacgaag attccggcgc cggagctcgc 240
cggaaaatcc ttgtttgtcc accaccgtca cattttcctc cgcaaaatgc ggtagcttca 300
aattctggtg agtcagtaaa agaagcagtc tttggagaag aagaaagcct gtacggccaa 360
aaagatcttt ctttgaaagc tgctccggtg gtgcagatga attgtcaggg cggtgacacg 420
gatgacaaga ctctttcgcc tagtttaggc tctccacggg agtattcaaa attgcctggc 480
agaagtcaat gtgaaacaaa tgagttgggt gggcaaatga caatttttta ctgtggaaag 540
atcaatgtgt acgatggtgt accacttgct aaggcacgag caatcatgca cctggcagct 600
tctcctattg attttcctca gggcaatcta tgtaatcaaa atggtgcctt taggtccttt 660
ctgggtcatg tacaagaagc cgaagacaaa aacgacctta cttcatctat tgctttgaac 720
ttgaattctc ataccatgca cactgagaag atgacagaat atcagcagca gtttagggga 780
aaagcaaaca tcagtcgtga ttctgatgta gatggacagg tgagcagaaa agaatcattg 840
cagcgatatc ttgaaaagcg aaaagacagg ggaagattct ttaaaggcag gaaaaatgca 900
ggacaagctt tgtctagctc ggagatgtac ctgaaccatc agataagagc tcactactta 960
aatggacaaa caaaccagag cagaacaagt tctccaccac agtctggagt gccacatgca 1020
ttttatagct cagctgacaa ccaagagctt gtgaattttt ctgtagatct caatgatgaa 1080
ggtggtcaag aacactga 1098
<210> 85
<211> 1074
<212> DNA
<213> Aquilegia coerulea
<400> 85
atgaaacctg acgagacagt ttcccggtca ccacttgata aacctttgtt tcaacttact 60
gatgaagata tttcacagct cactcgtgaa gattgccgga aatttctcag agacaaaggt 120
atgagacgtc cttcatggaa caaatctcag gcgattgaac aagtgatctc acttaaaacg 180
ttgctagaac caagaacgga atctgataca aatgccaccg gaatccggca gaaattactt 240
gtttctcggc tagaaaattc tacccaagta cctttaaatg acaagacaaa tgcctcaaat 300
ttaaagacat ctgttcaggc aataaactcc gggaaagccg atattcatgg tgacaggccg 360
tgtcgggtcc ctgttccagt ccctgacgat aacacaatca ctgttccagt ccctgacaat 420
aacacaatca ctgttccagt ccctgacaat aacatcactt catccagaaa cctgaactcc 480
accaatggac tggttggtca gatgacaatt ttctactgcg gcaaggtgat cgtctacgat 540
gatatgcctg ctgagaaggc acatgcaatc atgaaatttg caggaagcca tatcaatgtg 600
cctgaggatt cttcaccagc tggagctgca gtaattcaat cctttgcatg ccaattacag 660
gcagcatcca tcagacatgg acttgctttc ccgtcagcgg tctctccacc cttgcacaat 720
gtggtagccg atacttctca gcattgcagg gaggaagtga cagtttctcg tgaagttgaa 780
cccgagggtc cagtgagtag aaaagcatct gtacaaagat atttggagaa gcgaaaagac 840
agggggcggt ttaagaacaa gcgaaagata gagtcatctt ctagcttaga gatatacttg 900
aaccatcaac tgggggatca gtaccttaat gagaaatcaa gtcagagcag ggcatgttcc 960
ccaccccaac ctagagcacc acacactccc actcgttgca gttcagttga gaaccaggtc 1020
acaaatgtcg tgttctccat tgatctcaat gataacgatg ttcgggaagg ctga 1074
<210> 86
<211> 1044
<212> DNA
<213> Aquilegia coerulea
<400> 86
atgaaacctg acgagacagt ttcccggtca ccacttgata aacctttgtt tcaacttact 60
gatgaagata tttcacagct cactcgtgaa gattgccgga aatttctcag agacaaaggt 120
atgagacgtc cttcatggaa caaatctcag gcgattgaac aagtgatctc acttaaaacg 180
ttgctagaac caagaacgga atctgacaca aatgccaccg gaatccggca gaaattactt 240
gtttctcggc tagaaaattc tacccaagta cctttaaatg acaagacaaa tgcctcaaat 300
ttaaagacat ctgttcaggc aataaactcc ggggaagccg atattcatgg tgacaggccg 360
tgtcgggtcc ctgttccagt ccctgacgat aacacaatca ctgttccagt ccctgacaat 420
aacatcactt catccagaaa cctgaactcc accaatggac tggttggtca gatgacaatt 480
ttctactgcg gcaaggtgat cgtctacgat ggtatgcctg ctgagaaggc acatgcaatc 540
atgaaatttg caggaagcca tatcaatgtg cctgaggatt cttcaccagc tggagctgca 600
gtaattcaat cctttgcatg ccaattacag gcagcatcca tcagacatgg acttgctttc 660
ccgtcagcgg tctctccacc cttgcacaat gtggtagccg atacttctca gcattgcagg 720
gaggaagtga cagtttctcg tgaagttgaa cccgagggtc cagtgagtag aaaagcatct 780
gtacaaagat atttggagaa gcgaaaagac agggggcggt ttaagaacaa gcgaaagata 840
gagtcatctt ctagcttaga gatatacttg aaccatcaac tgggggatca gtaccttaat 900
gagaaatcaa gtcagagcag ggcatgttcc ccaccccaac ctagagcacc acacactccc 960
actcgttgca gttcagttga gaaccaggtc acaaatgtcg tgttctccat tgatctcaat 1020
gataacgatg ttcgggaagg ctga 1044
<210> 87
<211> 987
<212> DNA
<213> Medicago truncatula
<400> 87
atgaacggcg gaagcaccgt ttccttccga tccatcctcg acagacctct taaccaactc 60
actgaagatg acatttctca actcactcgc gaagactgtc gcagattcct caaagataaa 120
gggatgcgca ggccttcctg gaacaaatca caggcgatcc agcaggtgat ttctctcaaa 180
gcgcttctag aacctaccga cgatgatatc ccggctaccg tcggcgttgg tgtctcctcc 240
gccattcacc accatcacca ccaccaccct cctcaacctc cgccgaaggc tttggatccc 300
gaagatactg ctttggaact acagaaatcc acttcacctg ttgctgagag acccacggaa 360
accaatgatg ccaatgttgt taacaatccc ggagggtgcg cacctagtgg gtcatttggg 420
caaatgacaa ttttctactg tggtaaggtg aatgtctatg atggagtctc gccggataag 480
gcacgatcaa tcatgcagct tgctgctgca tgtccgtcct cctttcctca ggataatcct 540
tcaaataaaa atgcagcagt ttgggcttct ccttgcaact tacctattga taaggaagtc 600
ctcttcccta ctgacacagc aatccttcaa gttgctcaaa cagataagat ggtggaatac 660
cctctgcaat acagggagaa aggaagcaca gctcgtgatg ctgagggtca ggcaagcaga 720
aaagtgtcac tgcagcgata tcttgaaaag cgaaaggaca ggggaagatc gaagggcaag 780
aaactgactg gcataacttc atctaacttt gagatgtatt tgaaccttcc agtgaagctc 840
catgcctcaa atgggaattc aagtcgtagt agcactgact ctccaccaca gcctagactg 900
cctttagttt ccagtggctc agctgaaaac cagccaaaag ttacccttcc cattgatttg 960
aatgataaag atgttcaaga atgctaa 987
<210> 88
<211> 1020
<212> DNA
<213> Solanum lycopersicum
<400> 88
atgtcgctgg aacaaactgt ttacaagtct cctctggaca aaccgcttta cctacttacc 60
gatgacgaca tttctcagct cactcgcgaa gattgccgac gttttcttaa agctaaagga 120
atgagaaagc cgtcatggaa taaatcacag gcgattcagc aggtgatttc actgaaggcg 180
ttgtttgaga cgacgccgga atccgacacc ggtcagcgga aaaagcgtca cattcctcgc 240
ccggacacta gtttacagcg agtccagaaa gaaacgagta tcgatgcaga atttgctgaa 300
tcggctgaag aaacggtgcc gtacggtaga aaacctccca ataaacctga tctttccggc 360
gacaaagctg caagtgctgt tgccgttgtc aataacttag ctccttctag aaccacagat 420
tcaggaaatg catcatcagg tcaattgaca atcttctatt gtggcaaggt gaatgtgtat 480
gatgatgtac ctgctgaaaa ggcagaagca atcatgcatc ttgctgcaag cccactcttt 540
gtcccttcag aaactccatt ggatgctaac agagcagctc aacattccga atgccatttg 600
caagctgcaa atgttaaact gggtcaagat tctcctatgg tgttcatgcc aaccatgcaa 660
acagggaaaa taactgaagt tactcgcctg catttggagg aaagcaacac ttcctatgaa 720
gacaatcctg aagcagtgaa ccacgtaagc aggaaagcat tactggaaag atatcgtgag 780
aagcggaaag acaggttcaa gagaaagatg ggaatgcctt catctgctag cttggacatc 840
tatttgaacc atcgaaccat aaatcatacc caaagcgagc tctcaagtag gagcaacact 900
tgttccccgc ccgcaattag attatctgct gcgcctgctc caagtggttc aatggataac 960
attctccaaa tggatgccaa tgcttctggt tttctcgacg acaaagatgg taaagagtga 1020
<210> 89
<211> 1018
<212> DNA
<213> Trifolium repens
<400> 89
atgaacggcg gaagcaccgt ttccttccga tccatcctcg acaaacccct taaccagctc 60
accgaagatg acatttctca actcactcgt gaagactgtc gcagattcct caaagataaa 120
gggatgcgca ggccttcctg gaacaaatct caggcgatcc agcaagtcat ttctctcaaa 180
gcacttctag aacctaccga cgatgatctc cctgctcccg tcggtgtctc ctccgccatt 240
caccaccatc atcaccacca ccctcaacct cctcagagga atttgaatga agctccggtg 300
aagggctccg atctcgatga taccggtttt catactgcgg aggatcttaa caaatctact 360
tcaactgctg tggaaattcc tactgaaacg aatgatgcca atgttgttaa atcctctggg 420
gggtgcgtag ctagtgggtc gtttgggcaa atgacaattt tctactgtgg taaggtgaat 480
gtctatgatg gagtctcacc ggataaggca cgatcaatca tgcagcttgc tgcatgtcca 540
tcctcgtttc ctcaggataa tcttttaaat aaaaatgcag cagtgtgggc ttctccttgc 600
aacataccaa ttgataagga tgtcctcttt cccaatgaca cagcaatcct tcaggttgct 660
caaacagata agatggtgga atatcctctg caatacaggg agaaagggag catagctcgt 720
gatgctgatg tagagggtca ggcaagcaga aatgcgtcgc tgcagcgata tcgtgaaaag 780
cgaaaggaca ggggaagatc gaaaggcaac aaactgactg gcataacttc atctaacttt 840
gagatgtatt tgaaccttcc agtgaagctc catgcctcaa atggtaattc aagtcgtagt 900
agcactgact ctccaccaca gcctagactg cctctagttt ccggtggctc agctgaaaac 960
cagccaaaag ttacccttcc cattgatttg aatgataaag atgttcaaga atgctaat 1018
<210> 90
<211> 936
<212> DNA
<213> Amborella trichopoda
<400> 90
atgacggccg gtgatggctc catacgatca atattggaca agcccttgga agagctcacg 60
gaggaggaca tctcgcagct cactcgtgaa gactgtcgca ggtacctcaa agaaaaaggg 120
atgcgaaggc cttcgtggaa caagtatcag gcaattcagc aggttctctc tctaaaaggc 180
ctcttagagg ggaagccttg cgatgacaac agcgatgttt tcagtcaccg atcaccgatc 240
acggtcattc ccaatgttgg gagcatgaga gagaaagaaa aggccgtaaa tattgcggat 300
ccggagatat cggggtctca tcagccgaat tttcgccgag aaattcacga aaccacccgg 360
gaaagagctt taccggcttc cgactggcca ccttctcagg agccggtatc tcagatgacc 420
attttctatg ctggagccgt taacgtatac aacgacattc ctgaagataa ggtgcaagcc 480
atcatttatc ttgctgggaa gtcagactcc ttacagcaaa ctaatgttat cagaacggga 540
ccggaccaat gcatagcatc tgctgcaagc ccctcattga acgatctcca cagtagacga 600
atccacccaa cttcaaacat caccacttct cagtctcttc gtgttgcaac ttcccttcct 660
gttgggcctc attcagaggt tcctaagacg aggaaaacct cggtgcagcg attcttggag 720
aagcggaagg acagggggcg cttgaaggga acattggcga gtggtgggag ctctaagagg 780
ggttcctcat gcctagaatt gtatgcaact tcaagattaa agagtgaggg ggtggccacg 840
actacaactc aatccaatat gaacaatgtg gtcgtatcac cttctaaccc aagaatgcct 900
ctaaatcccg ggagttgcag ctgggttgag aactaa 936
<210> 91
<211> 1251
<212> DNA
<213> Selaginella moellendorffii
<400> 91
atggcggcct cgattctagg ttgcggttct agcaatggcg tcgcggtcac cggtaatcct 60
gctccagccg cggcggccga ggtgcccgcg cctctcaggc cgctggagga gctcacggag 120
ctggatatca ggcagctcac gcgggaggac tgtagacgct atctcaagga acggggaatg 180
cgcaggccgt cttggaacaa ggcacaggcg atccagcaag tgctgtcttt gaggagtttg 240
ctttgtcctt ccaatccggt aggcccttcc tccaagaacc cgggaagtgc cgcgaacgcc 300
cctccggctg aagcagctgc tgctggtcac accaaacaat tactggacaa ggtctctcag 360
caaagcatgc cagattcttg tccatctaac aacgcctctg atcctaggcc gctcgccgga 420
tgctttggat ctcttgcccc gacgttatca gttctcaatc ccgatgcgaa acgtaacccg 480
ctgagttcta aacccgcgtc aacgacaaag cctcacagtg cccagctgac cattttctac 540
tccggtattg tgaacgtgta cgacgatgtc ccgcttgaca aggcacaagc tataatgctt 600
cttgccgcga gtaaaacgtt tcacgttccg acaagttcag tgcctggcca tccgccgttt 660
acgagtgcaa cccaacaaca acaacaacaa caacgagagc ttaaccaaca aaccgaagcc 720
acgcaaaagt acccgatgca gcaccaacaa gctcctcaaa tatatctaag ctcgggttca 780
gctctacccg acgaaagctg cacggaacct gggcttccac aggtcagaag tgcatcgcta 840
cagagattcc tggctaaacg acgagacagg ttgtcaggga atccttcctc gtctaggcgg 900
aacgacagat ccaaaaagcg gaggttctcc ccgccaccgt caccgttaac ttcggcttcg 960
ttccagtttc ctccaagtgc tagaacatcg caagttttaa gatactccac tacttctaca 1020
actacgatca ctactgccac tgctactgcc gctactacca ctactactac gggtaccacg 1080
aatggtggac actgttccaa ttccaatcaa gcaagcgaga atgcaggcag cgatacctcc 1140
ggtggaagtt ctggaacgcc ggacacaagc gacacaacaa gggacaacga caatggacga 1200
gtttccaacg aaaatggacg agtgtccacc acttgtctcg cagcaacgtg a 1251
<210> 92
<211> 705
<212> DNA
<213> Selaginella moellendorffii
<400> 92
atgtctagca tggtcgattt cctggggatc gaggagaagg tgtccaccag cgtcagcgcc 60
gagaggttga agaagctgga ggagctcacg gacgaggacg tgatgcagct cactcgggag 120
gattgccggc gctacctcaa ggagaaggga atgcgtcgtc cgtcttggaa caaggcccag 180
gccgtgcagc aacttctctc gctcaagagc ctgtgcgatc cttccccggc ttccagtgga 240
gccgccaaga ggagcccatc tccgccgctc gacgaggctc cagcgaagaa acccatggca 300
atgacaagca tcgatctcaa ggctgccgct gctgtggacg ccgccaatct tacgatgttt 360
tatgatggag cagtgtccgt gtttgacgac gtttcgccag acaaggcatc tcttttccct 420
ttggcttatg cgatcatgct cctggccggg aatgtgaagt cgtggccttc gatcaacgtt 480
gctgctaaca ccaacaaagt tgtgatctct tcttatgagt tgccacaggc gcgaaaggca 540
tcactccagc gttttcttca gagacgccgt gagaaaactg cgaaagaggc agcatccaaa 600
gggaactcta ataagtcgcc ttgtcatggc gagagctcgg ggaagcacgc atcggatgct 660
actgatccag ccacttctcc cttgctcacg gaggtctctt cctag 705
<210> 93
<211> 813
<212> DNA
<213> Nicotiana tabacum
<400> 93
atgccgccgg aagaaacagt ttccaaatca cctctggaca aaccgctcca cctacttacc 60
gatgacgaca tttctcagct tactcgcgaa gattgccgcc gttaccttaa agaaaaagga 120
atgagaaggc cgtcatggaa taaatcacag gcgattcagc aggtgatttc actgaaggcg 180
cttctcgaga cgacaccgga ttccgacacc ggccctcgga gaaaacttca cattcctcgc 240
ccagacacta gagtacaaca agtccagaaa ggaacggata ccgatgcaga attttcgaaa 300
tctgctgaag ggatggtgcc atacggaaga aaacattcga aaaaacctga tattcccggt 360
gatatagctg ccggttcagt tgccgttgcc gccggcaata acttagctcc ttctagaacc 420
acagatttgg gaaacacacc agcaagtcaa ttgacaatct tctattgtgg caaggtgaat 480
gtgtacgatg atgtgcccgc tgaaaaggca caagcaatca tgcatcttgc tgcaactcca 540
ctctttgtgc cttcagaaac tccattgggt gctaccttag cggctcgaca ttccgaatgc 600
catttgcaag ctgcaagtgt taaacagggt ccagattctg ctatggtgct catgccaacc 660
atgcaaacag ggaaaatgag tgaagtgact cgcctgcgtc tggaggaaag caataccttc 720
tatgaagaca actctgccaa ttatgcagaa gcagtggaag gccacccaag caggaaagca 780
tcagtacaaa gatatcttga gaagcggaaa gac 813
<210> 94
<211> 984
<212> DNA
<213> Solanum tuberosum
<400> 94
atgccgccgg aagaaacagt ttccaagtca cctctcgata aacctctcaa tcaactcact 60
gacgatgaca tttctcagct cacacgcgaa gactgccgtc gttacctcaa acaaaaagga 120
atgagaaagc cgtcatggaa taaatcacag gcgattcagc aagttatatc gttgaaggct 180
ctcctcgagc cggatactga cgccggaact cggaagaaac ttcacattcc tcgtgcagat 240
actcatgtcc agagcgggaa aaatacctat ggcgaacctt ctgaaccagt gcctgataga 300
agaaatcagc aggacagacc tgatctttcc agtcatatta ctgcccttcc ggtcgctgtt 360
gtggataatt cagctccttc tagaacaata ggttcagcag ataaaccagt aggacaaatg 420
acaatcttct atagaggcaa ggtgaatgtc tatgatgatg tgcctgccga caaggcacaa 480
aaaatcatgt gtcttgcttc aagccctctt tgtgtgcctt cagaaactcc atcgaatgcc 540
actgtagcag ctcgacattc agcatgctgc ttacaagctg caaatagtaa actacgccta 600
gatactaata ttgtaccgac tattcaaaca gtgaaaatga gtgaggtttc tcgagttcct 660
atagaagaaa gcaaccgctt atacaatgat aatcctgaag cagtggagag ccccgcaagc 720
aggaaagcat cagtacaaag atatcttgag aagcgaaaag aaaggttcaa gtggaagaga 780
aaggtagaaa caacttcatc agctagcttg gatatctatt taagtgatcg aattgggact 840
cgtacgccaa gtgactatgc aagtggggct gatctttgct tcacacccca cattacacct 900
acaggaagtg gtcctataca agacaatatt cagatgaatc ccactttttc tagtgatctc 960
aatgacagag atgttagaga gtga 984
<210> 95
<211> 1047
<212> DNA
<213> Glycine max
<400> 95
atgaacggcg gtgccaccac cgccaccttc cgatccatcc tcgacaagcc cctcaaccag 60
ctcaccgagg atgacatttc tcagctcact cgcgaagact gtcgcagatt cctcaaagaa 120
aaagggatgc gcaggccttc ctggaacaaa tcgcaggcga tccaacaggt catttccctg 180
aaagcgctgc tggaaccttc cgacgatgat actcctcctc ctaccgccat gcaccaccgt 240
agtcatgctc ctccccctcc acctcaacct caatctcaag tgaatttgac tgaacctcct 300
cctccgccca aggctccgcc acctgaagaa tcctcttttc atgctgctga agacattcag 360
aaacctgcgt cgtctgggga aaaaccttcg gaaactaatg acaccaacac caacgttgct 420
agccccaaag ggtgtgcaac tagtggatca tttgggcaaa tgacaatttt ctattgtggt 480
aaggtgaatg tctatgatgg agtctcgcct gataaggcac gagcaatcat gcagcttgcg 540
gtgagtcctg tccagtttac tcaagatgat ccttcaaatg gaaatgcagc tgtttggcct 600
tctccttgcc acttaccaat ggataaggat gtcctcattc ctgtagatac aacaatcctt 660
caggttgctc aatcagataa gatgatggaa tatcctctgc aatatagaga gaaaggtagc 720
atagctcgtg atgctgaggg tcaggcaagc agaaaagtgt cattgcagcg atatcttgaa 780
aagcgtaagg acagggggag attgaaaggc aagaaattga ctgggataac ttcatctaac 840
ttcgagatgt atttgaacct tccagtgaag gtccatgcct caaatgggaa ttcaagccgt 900
agcagtacta gctctccacc acagcctaga ctgcctctag tatctagtgg ttcagctgac 960
aaccagctaa aggttgccct tcccattgat ctcaatgaca aagtgtcatt gcagatgttc 1020
aagaatgcta aaactctaac tagatag 1047
<210> 96
<211> 1017
<212> DNA
<213> Citrus clementine
<400> 96
atggacgtgg acggtggcgt gacgtcgtgc cggtcaatac tcgagaaacc tctcagtcag 60
ctcactgaag aggacattac gcagctcaca cgcgaagatt gccgcaaatt tctcaaggag 120
aaaggaatgc gcagaccatc gtggaacaaa tcgcaggcga tccagcaggt gatctctctc 180
aaagctttgc tcgagtccag cggcgattcc ggctcaggtg ttttacgcag agtactcgtc 240
tcgcctccgg aaagtatgcc gccgcgcgtg aatgtgactt caaattcagc tgatttagta 300
aaggaaccga ccatctcagt ttctggagac caaaacagtg cgtataggcg gaagtaccct 360
cgcaactgtg ctgttgatgc agataacaag accatctcta acagaaatcc ctgtgaagca 420
aatgggtcca tagggcagat gacgattttc tattgtggca aggtgaacgt gtacgaagga 480
gtgccaactg ataaggcaca ggagattatg caccttgcag caactccaat tgatttttcc 540
cagaacggtt catttggtgg aattacggca tatagggcca ttccatgcca tttacaagtg 600
acaagcaaca gacatgtgtc tctccctctt cgtcctgctg ccatgatctc tcagttcatg 660
caaacaggga agatagcaga ttattctcag gagtataggg agaaagcgat tagtactcat 720
gactctgatg tggatggtca ggttaaccga aaagtctcgt tgcagaggta tcttgaaaag 780
cggaaagaca ggggaaggtt tttcaaggga aagaaaaata caggaccaac tcctagtttg 840
gagatgtacc tgaaccatcc ggggaagaca catgcctcca atggacaaca gagccagagc 900
aacacaagct ctccgaccca gcctgagttg tccaacacat tggggacctc cccagacaac 960
caggcgaaga ctgtcatgct tccggttgat ctcaacaatg aagatattca agactga 1017
<210> 97
<211> 1008
<212> DNA
<213> Ricinus communis
<400> 97
atggacgccg gagtgacgtc gttcaggtca atactagata aacccctaac tcagctaact 60
gaagaagaca tttctcaact cacacgcgaa gattgccgca aatacctcaa agaaaaagga 120
atgcgaagac cttcatggaa caaatcgcaa gcgatccagc aagtgatttc tctaaaagca 180
cttcttgaaa ctagtgaaga ttccggtgcc ggtgctctcc gtagaatctt agtttctaaa 240
cctccggtta cttcaaattc tgttgattca gctaaggaac caagtgatag caacaataat 300
aacttactag atgagacagc tcctcatgat tctcccaaat ctcctcctcc ggcgccatcg 360
ttggattgtc cactggaaga ggcagataat aaagtcattt cttcaagaag tcctggtgca 420
acagatgggt tggtcgggca aatgacgatt ttctattgtg gaaaggtgaa tgtttatgat 480
ggagtcccac ccgataaggc ccaggcgatc atgcatcttg cagcgactcc aattcactca 540
cctttagacg atccaattcg tagacctgta tttgcttttc cgtatcattt acagacccca 600
agtgacaaac atgtctttgt tccttctaat gctgcaattt ctccaaccac accaacagag 660
aaggtgacag aatattctca gcagtgtagg gagaaaggaa atgtaactta tgatcatgat 720
gtagagggtc aagcaaaccg aaaaatgtca ttgcagagat atctggagaa gaaaaaggat 780
aggggaagat tcaagggtag gaaaaattta gggcctaatt cgtctagctt ggatgcatat 840
ttgaaccatc aaatgaggac acatatctca aacgagcaat caaccaggag cagtacaagc 900
tctccaaccc agcctggagt gccacatact tcgagtaact cggccgaaga tcagctgaag 960
actgccagtt ttgctgttga tcttaatgaa gatgtccaag aaccttga 1008
<210> 98
<211> 1182
<212> DNA
<213> Vitis vinifera
<400> 98
atgaatcccg gcgtcaccac tctccgctct atactggaca aaccccttca cgaactcacc 60
gaagaagaca tttctcagct cactcgtgaa gattgtcgca aatacctcaa agaaaaagga 120
atgcgtcgtc cttcctggaa caaatcgcag gcgatccagc aggttatttc gcttaaatcg 180
ttgctcgaaa ccagtgaggg cagcggtgcc ggagttttga ggaagatcac cgattcaccg 240
ccggcggaaa atctacctcc ggttacctcc aattcagctg attcaggcaa ggagctgagt 300
gctgatatcc agatctcagt atcagctgat gaactggttc cccttccgcc aaaagatcat 360
catccagaat ccaccccttc tggcgaatta gccagccggc ctccagaggc agacaccaag 420
catacttgtc ccagaagtcc aggtgcaaca aattgtttgg ttgggcagat gacaattttc 480
tactgtggaa aggtgaatgt gtatgatgga gttccagatg ataaggcaca agcaatcatg 540
catcttgcag caagcccatt ccatttgcct tcagatgacc cctttagtgg tgctgctatg 600
ctttgctcct ctccatgcca tttgcatact gccaatgtta aacatggcca tattcctcct 660
cgagccatgg tttctcagac tatgcaaaca gagaaattta ctgaatattc tcaacagtac 720
agagaagaag tgaactttac ccgtggacat ggatcggaag cactttctgg gcttaggacg 780
gtaggaagcc caacggccag gcctaccgaa gatatggaac agaccacttg tctcactata 840
tggggtacct tccgctacaa ggttatgcca ttcgagatat atgagggcat catggatgtt 900
gaaggtcagg ttgacagaaa attatcattg caaagatatt tcgaaaagcg aaaagacaga 960
tttaagagca ggaaaaaaat aggactacct tctggtagct tggagatgta tgtgaaccat 1020
caagcaagga cacaaccctc gaatgggcaa tcaagccgga gtggcacaag ctctccaccc 1080
cagcatggat tgtcgcacac cctgtgcagc tcagctgaca accatacaaa gaatttcact 1140
ccttttgttg atctaaacag taaagatatc caagaaagtt ga 1182
<210> 99
<211> 1029
<212> DNA
<213> Morus notabilis
<400> 99
atgagcgccg gcacgacggc gtttcggtcc atactggaca agcccctgaa ccagctcacc 60
gaggatgaca tttctcagct cacccgtgaa gattgccgca aatacctcaa ggaaaaaggg 120
atgcgaaggc cgtcgtggaa caaatcgcag gcgatccagc aagtgatttc gctcaaggct 180
ttgttggagc cctgcgacga ttccggcgcc ggagccctaa ggaggatcgt cgcttcgacg 240
ccgccgccac cgccgacaca aaacgcgcca cgtgtctcca ctttcagtgt tacttcgaac 300
tcggcagatt cgggtaagga agcaagtgtt gatgtccagg tttcggcgga ggaatcggga 360
ccgtgtcaga ggaaggagca ggcgaaatct gctccggaga ctgaggaaag accggctgat 420
gcgggtgaga gggcaagtcc aagaagtcat tgtgcaactg atgcattggt cggacaaatg 480
acaattttct attgtggcaa agtgaatgtg tacgaagggg ttccacctga gaaggcacga 540
gcaatcatgc accttgctgc aagtccaatc cctttatctc gagaaaattc atttggggtc 600
cttgcagcac ctagatcttt tccatggcat ttacatgctg cgagtgacaa gggtggcctt 660
ctccctccta gtgccacaat atcacaaccc atgcagacag ataagctagc cgactacagc 720
caacagtgct gggagaaaga aaatgatggt caggcgagca gaaaactctc attgcagaaa 780
taccgtgaaa agaaaaaaga tagggggagg ttgaagacca agagaagcac gggatttaat 840
tcttctagca tggaggtcta ttttaaccac caggtaaaga cccacatgtc aaatggtaat 900
tcaagtcgaa gtagcacaag ctctccgacc cagcctggac taccacaaac attgtgtagc 960
acagtcgaca atcagccaaa gattccctgt cttcctgttg atctcaatga aaaactaact 1020
attgagatg 1029
<210> 100
<211> 1095
<212> DNA
<213> Phoenix dactylifera
<400> 100
atgtattggg ttggatcggc tcaagaacgc cgccgagacg ggggccggtc gccgctcgac 60
aagccactca gcctgctcac agaggaggat atcgcccagc tcacccgcga ggactgccgc 120
cgattcctca aagagaaagg catgcgacgg ccgtcctgga ataagtcgca ggcgatccaa 180
caggtcatct ccctcaaggc cctcctcgag ggacgaccgg agtccggcga actccccgtc 240
ggcgccggct accgccagaa gcctccccct cggcggccgg cctctcttcc ttcgctgcag 300
gaggcggccg gcgactcgac ggcggcggcg aaggagccgt cgccgtcgtc gtcgctgtct 360
ccgtaccgga gaagagatcc gatcccgccg atcatctccg ccggcgggcc gtcttgccgg 420
ttcccggtcg ccggcaggga ccaacaaccg ccagagaccc cctccccctc gctcagggtg 480
acggcggaag taccggcggg tcagatgacg atcttctacg acggcaaggt gaacgtctac 540
agcgacgtga cggtcgataa ggcgcgggcg atcctgctgc tcgcggggag acgagactgc 600
tacggcgctg cggctctacc gggtccggtt cactcgcccc agccggcttt tctcggaccg 660
ggtcagggcc cggtccccac cgctcccccg ctggccgctg ctttacccac ctcgccagct 720
gggaggttag cccaccgttt cgagggaccg agtggagtgc cgcgcgggaa atcgagcctg 780
gtaagagagc ggagcacgtc accggagggt ccaacaagta gaaaagcatc attgcagcgg 840
tacctggaga aaaggaagga caggttaaaa ggtagaaaaa ctcttggagg ggcatcttct 900
tcaagcatgg aaataatgtt cttgagccaa aaatttgggg gtcagatacc aaatgagcag 960
ttaagtagga gcaacactag ctcccctacc caacccagac cacctggcac accaactaga 1020
tgcagttcaa tagagaacca ggctcagaaa aatcatctct cagttgatct caatgatgat 1080
ggttgcggca actga 1095
<210> 101
<211> 1065
<212> DNA
<213> Theobroma cacao
<400> 101
atggaggcgg gggtagcgac gacgacgaca acgacggagt cgtttaggtc gatacttgat 60
aaacccctca gccaactaac agaagaagac atttctcagc tcactcggga agattgtcga 120
aaattcctca aggaaaaagg aatgcggagg ccgtcgtgga acaaatcgca ggcgatccag 180
caagtaattt cactcaaggc gttgttggag agcaacgaag attccggcgc cggagctatc 240
cggaagatcc tcgtttctcc accatcaccg tcagtgcctc cgcaaaatgc agcggcgcgt 300
gtggcttcca attcatgtga ttcagtaaaa gaagcggttg tcggagaaga aggaagcccg 360
tatcggcgaa aagatcctcc tttgaaacct tctccggtgg gggagataaa ttgccttggc 420
ggtgacacgg ataacaagaa tctctctcct agaagtccat gtgaatcaaa tgagttgggt 480
gggcaaatga caattttcta ctgtggaaag gtcaatgtgt atgatggagt accacttgat 540
aaggcacggg caatcatgca tctggcagcg actcctattg attttcctca ggacaatcaa 600
tgtagtggaa atgcagccct taggtccttt atgtgccatg tccaagcagt cggtgacaaa 660
aatggccttg ttgcttctac tgccttgaac tctcatacca tgcaaacaga gaagttgaca 720
gaatatcagc atcagtttag ggaaaaagga aatatcgctc gtgacgctga tgtagatggg 780
caggtgaaca gaaaagtatc attgcagaga tatcgtgaaa agcgaaaaga caggggaaga 840
ttttttaagg gcaggaagaa tacaggacaa gcttcctcta gcttggagat gtacctgaac 900
catcagataa gaactcacaa ctcaaatgga caatcaagcc ggagcagcac gggttctcca 960
ccacagtctg gattgccaca tgcattttgt agctcagctg acaaccaagc aaaacttgtg 1020
aatctttctg tagatctcaa tgacaaaagt gttcaagaac actga 1065
<210> 102
<211> 3789
<212> DNA
<213> Spirodela polyrrhiza
<400> 102
atggccggga gcgaggcggc ggcgccggag gaggccggaa gggcggggga ggaggaggtg 60
agagcggcgg cgggggctgc ggcggtgaag tcgccgctgg agaagccgct gtcggagctc 120
acggaggagg acatcgcgca ggtcacgcgc gaggactgcc gtcggttcct caaggaaaaa 180
ggtgctctag tccttttcct ttggttttcc tccttgtttc tcttcttttc ctttggaggt 240
cgcggtggag ctgatctcga tatccacgtg gccgcccgcg gtgacggcgg ctcccgtttt 300
ctctgtgcaa acgaatgcag gtatgcgccg cccttcgtgg aacaagtcgc aggccgtcca 360
gcaggtcatc tccctcaagg cgctcctgga gccctgccac gatgcagacg acgacgcacc 420
ttccgccggt gctgttccct ccatctcctc cttcttctcg aaaaggccgt ccgacgccct 480
gcttccggcc gccgcggcgc aggtgaggag gggtatcctg ttccaaactt ccgtcgcctt 540
ctcttctagc tcgagctggc aacattttgt gaaattgttc cttctcgatt tagttggaga 600
aacgcgtgtg gtttattgtg ttctgtttac ttctcagttt cccgtctctt ctccaatgag 660
gggtgaacct gccggcggcg cgccccaaat tgtctccgaa cgtccccacg gaagggaccc 720
gctggcgaac gtcttcacct gctccgacgc cctcggtcga ttcccggcaa cggggaacgg 780
tgctcttccg ccaaacagtg ccaccctccc gcccaggtgc gtcccttctc agcacaacgc 840
cccctctatt caactctttt atttccccgg attgtccctc agatgttaac gggcgcccat 900
ggtgttgtag aggggttgct tccgctgaga cgctggaggg acagctgaca atcttctacg 960
atggcaagat taatgtctat gatggtgtga cgccggagaa ggtgaggtcc ggtcagagta 1020
agttggcggt gaccccttcc tgtggtagat ctaggcactc atggcagtgt atttcccgtc 1080
tttgaaggcg cgggtgatcg tacaatttgc ggggagcccg agctgctacg atatgccgcc 1140
gatgccttcg ccgtctttct acccaaaccg accccctaaa tgccacgacc tggctctgcc 1200
agcgttatct caagcgacag gtggtggttc cttcaatccg ccaccgcctc cgccgccgtt 1260
gcagccaccg ccgtctcatc ctgcccagcc tatcggctat tcccaggttc cccagaacgc 1320
tggtacgttt ttttctccgt catgactttc ctgcgggttc gcctatgctt gatcacgttc 1380
acgataacgc cctgcggtgg ccctcctgct cacgttgagt tctattgccc tggcaggaag 1440
gttcccgcag caatttcggg aaggcatgga agagtggaga agctcgcgag aagttgaacc 1500
aggtgagaga ccttggaccc ttttcttcag tatcagtcgt tattctcgtt tctctctgct 1560
taactgacct atgcacccgg cctgaacagg cagggtatgc tgggtgattg aggagattac 1620
gcctatatgt cagtctatta ccatgctact gtttaagggt gtccttctgt ctaagttaac 1680
tagagtgacc ttaagctcct ggatttctta acctaccaca ccctgatggt acatggtaca 1740
ctcacagttg acctcaaagc ctttctcatt cctgcggggg aagagggtgg gggtgggcgt 1800
tgactgagaa aattttgaaa gcaaattgct aatttctgtt gttctttata atgacatttt 1860
aggcattgcg cgcaagatag ctcttttttc ctttttaaga actgtgcttc ttgattccat 1920
tagcccggga tttaggttcc gttcattgct tagttagcct ccccaattgg cgctgtttat 1980
gaacgattgg cctcgaccct cttcagcatc cttatcaggg atcttgagat tgagcttaat 2040
cttatcgcct cttctcaaat gattatggct gccgcgtttt tttccaattt ccagttgatt 2100
tacctatttt ttggggagag gatgactggt acagtatggc aacttatcca gttttgaatt 2160
gatgctgata ctgttcttct ttataaggcc tagaaattga tggtaattaa agtaacgtgt 2220
cagtgattcc atggatcaca ttaatgccct aaacttctgt gtcttatgct attccaaatc 2280
tgaaaacctt atgaatcaga ccaacaatag tatgaagaaa atttatttca tgctagggtc 2340
catggtgttc tattcaagaa ctaccctttt tttggatcat gcagatgatc tattaagaga 2400
acaaaatgca gtagaaataa gttaacgaaa gacaacaagg tcatgtcatt tgacgaatga 2460
agaatttcag aatcaaattg aagcacatta catcttctca tgagttaaaa aaaatgctca 2520
tgcactgctt ttaatgctcc tttataatac ctgtcatagg ctgaattatt tcaaagtttc 2580
cttgtatggg aagttctact gggtggttct tttgtatgaa tcttcgtaaa taatcaaagc 2640
ctgtttattg ttcttcatga cgtggaaata attattttta tgtatcactc acgaaatgga 2700
tacagcacct atggttacat gatatttaac ttacgtccgc tcaaataaat gagcaataat 2760
aagataacct accatttctc tccttcattc ccattttgca aagcgtctgt tggtcgtatg 2820
ggaaaccaca tttctacaag aggaatccat catcttctat cacatctccc ttgagtgggc 2880
gcattttatg tggatccaaa tatctcaatt aataataatg tttactggat cattatatag 2940
ttttttttat gcattcctct gatgatctta gtggctctcg gaaatttttt attcatgaat 3000
agaaattttg tcatccctga aagctgctgc tcctttgcgt tcatcatttc tattctatta 3060
ttctcccttc ttcctgtatg gcctcctgaa gagttcttct tcatgcgaga gaaaaactat 3120
ggtcttaccc gaatagggtg ggatatttgt atgatcttcc caaggttttg tgtgggcccc 3180
atatgggggc ggtggcgaag cgggctttcg ggccggcgag cctagagaga cccgggcccg 3240
gcggctgttg ctaccctcta tagaaaagtt ttcctcagtg ctaccgcgct actgattggt 3300
tgctcttctg gtgccaatgt cgtcttgccg cgagcagagg gccccaccag cagagccgca 3360
tcgctccagc ggtacctgga gaaacggaag gataggtaaa gatggtgggc gtggggggtt 3420
gaccgactgg ttgactgccg ccgccgctgg ctgacttcgc cctctttccc tgtcggaagg 3480
ttcaagtgca agaagcacgc cggcgggggc tcttccggcg tggagctcct cctgagccag 3540
cggatcaggg accagattcc ggccgcccac ctctcatgcg gagagatgta cgcggcggcg 3600
ccgccggccc cgcggccccc tcccccgccg gcccgctgta gcgccgccgg ccacctccgc 3660
ttctccatcg acctcaacga cggcggtgag cgctctctct atctctctca cctctttttc 3720
atcgcctctg cttttgaaga gagtacccat gccaccgccg cctgcgtttc agatgtccgg 3780
gaagcttga 3789
<210> 103
<211> 882
<212> DNA
<213> Musa acuminata
<400> 103
atgaaccccg gggagaccac gcccccgtcg ccgctcgaca agcccctcgc cgagctcacc 60
gaggaggaca tcgcccagct cacccgcgag gactgccgcc gcttcctcaa agcgaaaggc 120
atgcgacggc cgtcgtggaa caagtcgcag gcgatccagc aggtcatctc tctcaaggcc 180
cttctcgagg ggcggcccgg ctgtgacgac tgccctgctg gcggcggaat cctccaaaag 240
ctgctcactt cttctccttc ggagccgcta tcgccaccgc aggactcacc tcctcccgcg 300
ccgaaggagg gcggtagcgg atcacagccg ctggcgaagg agccgtcgcc gtatcgaagg 360
agggacccga tcccaccgcc ctattcagcc ggaaatccga cgtgccagac cccaattgcc 420
ggagctgacc ttccccaccc gccggagaag cgctgcccct cccccaggtt gacggcggaa 480
gtaccggtcg gccagatgac gatcttctac gacgggatgg tcaacgtata cgacggcgtc 540
tcggccgatc aggccaggtc gatcatggaa cttgcggcca gcccggtctg cttcgacgat 600
ccgaccggtg cattctctcc ggcccggccg ccggccttcc gcttccctcc gggtctcccc 660
cgaccggccc cggtccccac cgctccctcg ttcgtgggga ccttcccgat ctcgccggct 720
ggtaaacgtt gctactccta ctgttcgttc cggtcaagcg tcagcctttt aaccacaaca 780
gagggcccaa caagcagaaa agcatcattg cagagatact tggagaaaag gaaagacagg 840
tatggtcatt taccaacaga aagtatacta cttgttagct ga 882
<210> 104
<211> 498
<212> DNA
<213> Phalaenopsis aphrodite
<220>
<221> misc_feature
<222> (214)..(243)
<223> n is a, c, g, or t
<400> 104
atgaactccg atgcaataac catggggaaa tctctgcttg agaaacccct tagccttcta 60
accgaagacg atatcgcaca gattacaaga gaagaatgcc gtagattcct caaagataga 120
ggcatgcgtc gcccctcttg gaacaagtcg caggcgatcc agcaagtgat ttctctcaaa 180
gccctgttcg aaaaccgatc agatctagaa gatnnnnnnn nnnnnnnnnn nnnnnnnnnn 240
nnntttcccg aacacgcaga tctcagttcg atctcgccga ctgcggaggc caaggaacca 300
gagaaagctc agctcactat attctacggg gggaaggtgc ttgtgttcga caattttccg 360
gttaataagg cacaggattt gatgcagatt gcaggaaaag agcagaatca aaattacggg 420
acagcaaaca ctgtggctcc atctgcccct gcagcagacc tccatagttt acctctgccg 480
gctaagcctc cggcgtaa 498
<210> 105
<211> 355
<212> PRT
<213> Arabidopsis thaliana
<400> 105
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
1 5 10 15
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
50 55 60
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
65 70 75 80
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
85 90 95
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
100 105 110
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
115 120 125
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
130 135 140
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
145 150 155 160
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
165 170 175
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
180 185 190
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
195 200 205
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
210 215 220
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
225 230 235 240
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
245 250 255
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
260 265 270
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
275 280 285
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
290 295 300
Ser Val Asp Leu Asn Ser Glu Gly Ile Gly Ser Gly Gly Gly Ser Ala
305 310 315 320
Lys Gly Glu Leu Arg Gly His Pro Phe Glu Gly Lys Pro Ile Pro Asn
325 330 335
Pro Leu Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His His
340 345 350
His Gly Ser
355
<210> 106
<211> 380
<212> PRT
<213> Trifolium repens
<400> 106
Met Asn Gly Gly Ser Thr Val Ser Phe Arg Ser Ile Leu Asp Lys Pro
1 5 10 15
Leu Asn Gln Leu Thr Glu Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp
20 25 30
Cys Arg Arg Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
35 40 45
Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu
50 55 60
Pro Thr Asp Asp Asp Leu Pro Ala Pro Val Gly Val Ser Ser Ala Ile
65 70 75 80
His His His His His His His Pro Gln Pro Pro Gln Arg Asn Leu Asn
85 90 95
Glu Ala Pro Val Lys Gly Ser Asp Leu Asp Asp Thr Gly Phe His Thr
100 105 110
Ala Glu Asp Leu Asn Lys Ser Thr Ser Thr Ala Val Glu Ile Pro Thr
115 120 125
Glu Thr Asn Asp Ala Asn Val Val Lys Ser Ser Gly Gly Cys Val Ala
130 135 140
Ser Gly Ser Phe Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn
145 150 155 160
Val Tyr Asp Gly Val Ser Pro Asp Lys Ala Arg Ser Ile Met Gln Leu
165 170 175
Ala Ala Cys Pro Ser Ser Phe Pro Gln Asp Asn Leu Leu Asn Lys Asn
180 185 190
Ala Ala Val Trp Ala Ser Pro Cys Asn Ile Pro Ile Asp Lys Asp Val
195 200 205
Leu Phe Pro Asn Asp Thr Ala Ile Leu Gln Val Ala Gln Thr Asp Lys
210 215 220
Met Val Glu Tyr Pro Leu Gln Tyr Arg Glu Lys Gly Ser Ile Ala Arg
225 230 235 240
Asp Ala Asp Val Glu Gly Gln Ala Ser Arg Asn Ala Ser Leu Gln Arg
245 250 255
Tyr Arg Glu Lys Arg Lys Asp Arg Gly Arg Ser Lys Gly Asn Lys Leu
260 265 270
Thr Gly Ile Thr Ser Ser Asn Phe Glu Met Tyr Leu Asn Leu Pro Val
275 280 285
Lys Leu His Ala Ser Asn Gly Asn Ser Ser Arg Ser Ser Thr Asp Ser
290 295 300
Pro Pro Gln Pro Arg Leu Pro Leu Val Ser Gly Gly Ser Ala Glu Asn
305 310 315 320
Gln Pro Lys Val Thr Leu Pro Ile Asp Leu Asn Asp Lys Asp Val Gln
325 330 335
Glu Cys Gly Ser Gly Gly Gly Ser Ala Lys Gly Glu Leu Arg Gly His
340 345 350
Pro Phe Glu Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser
355 360 365
Thr Arg Thr Gly His His His His His His Gly Ser
370 375 380
<210> 107
<211> 353
<212> PRT
<213> Amborella trichopoda
<400> 107
Met Thr Ala Gly Asp Gly Ser Ile Arg Ser Ile Leu Asp Lys Pro Leu
1 5 10 15
Glu Glu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Tyr Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Gly Leu Leu Glu Gly
50 55 60
Lys Pro Cys Asp Asp Asn Ser Asp Val Phe Ser His Arg Ser Pro Ile
65 70 75 80
Thr Val Ile Pro Asn Val Gly Ser Met Arg Glu Lys Glu Lys Ala Val
85 90 95
Asn Ile Ala Asp Pro Glu Ile Ser Gly Ser His Gln Pro Asn Phe Arg
100 105 110
Arg Glu Ile His Glu Thr Thr Arg Glu Arg Ala Leu Pro Ala Ser Asp
115 120 125
Trp Pro Pro Ser Gln Glu Pro Val Ser Gln Met Thr Ile Phe Tyr Ala
130 135 140
Gly Ala Val Asn Val Tyr Asn Asp Ile Pro Glu Asp Lys Val Gln Ala
145 150 155 160
Ile Ile Tyr Leu Ala Gly Lys Ser Asp Ser Leu Gln Gln Thr Asn Val
165 170 175
Ile Arg Thr Gly Pro Asp Gln Cys Ile Ala Ser Ala Ala Ser Pro Ser
180 185 190
Leu Asn Asp Leu His Ser Arg Arg Ile His Pro Thr Ser Asn Ile Thr
195 200 205
Thr Ser Gln Ser Leu Arg Val Ala Thr Ser Leu Pro Val Gly Pro His
210 215 220
Ser Glu Val Pro Lys Thr Arg Lys Thr Ser Val Gln Arg Phe Leu Glu
225 230 235 240
Lys Arg Lys Asp Arg Gly Arg Leu Lys Gly Thr Leu Ala Ser Gly Gly
245 250 255
Ser Ser Lys Arg Gly Ser Ser Cys Leu Glu Leu Tyr Ala Thr Ser Arg
260 265 270
Leu Lys Ser Glu Gly Val Ala Thr Thr Thr Thr Gln Ser Asn Met Asn
275 280 285
Asn Val Val Val Ser Pro Ser Asn Pro Arg Met Pro Leu Asn Pro Gly
290 295 300
Ser Cys Ser Trp Val Glu Asn Gly Ser Gly Gly Gly Ser Ala Lys Gly
305 310 315 320
Glu Leu Arg Gly His Pro Phe Glu Gly Lys Pro Ile Pro Asn Pro Leu
325 330 335
Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His His His Gly
340 345 350
Ser
<210> 108
<211> 335
<212> PRT
<213> Musa acuminata
<400> 108
Met Asn Pro Gly Glu Thr Thr Pro Pro Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Ala Glu Leu Thr Glu Glu Asp Ile Ala Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Phe Leu Lys Ala Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Gly
50 55 60
Arg Pro Gly Cys Asp Asp Cys Pro Ala Gly Gly Gly Ile Leu Gln Lys
65 70 75 80
Leu Leu Thr Ser Ser Pro Ser Glu Pro Leu Ser Pro Pro Gln Asp Ser
85 90 95
Pro Pro Pro Ala Pro Lys Glu Gly Gly Ser Gly Ser Gln Pro Leu Ala
100 105 110
Lys Glu Pro Ser Pro Tyr Arg Arg Arg Asp Pro Ile Pro Pro Pro Tyr
115 120 125
Ser Ala Gly Asn Pro Thr Cys Gln Thr Pro Ile Ala Gly Ala Asp Leu
130 135 140
Pro His Pro Pro Glu Lys Arg Cys Pro Ser Pro Arg Leu Thr Ala Glu
145 150 155 160
Val Pro Val Gly Gln Met Thr Ile Phe Tyr Asp Gly Met Val Asn Val
165 170 175
Tyr Asp Gly Val Ser Ala Asp Gln Ala Arg Ser Ile Met Glu Leu Ala
180 185 190
Ala Ser Pro Val Cys Phe Asp Asp Pro Thr Gly Ala Phe Ser Pro Ala
195 200 205
Arg Pro Pro Ala Phe Arg Phe Pro Pro Gly Leu Pro Arg Pro Ala Pro
210 215 220
Val Pro Thr Ala Pro Ser Phe Val Gly Thr Phe Pro Ile Ser Pro Ala
225 230 235 240
Gly Lys Arg Cys Tyr Ser Tyr Cys Ser Phe Arg Ser Ser Val Ser Leu
245 250 255
Leu Thr Thr Thr Glu Gly Pro Thr Ser Arg Lys Ala Ser Leu Gln Arg
260 265 270
Tyr Leu Glu Lys Arg Lys Asp Arg Tyr Gly His Leu Pro Thr Glu Ser
275 280 285
Ile Leu Leu Val Ser Gly Ser Gly Gly Gly Ser Ala Lys Gly Glu Leu
290 295 300
Arg Gly His Pro Phe Glu Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly
305 310 315 320
Leu Asp Ser Thr Arg Thr Gly His His His His His His Gly Ser
325 330 335
<210> 109
<211> 264
<212> PRT
<213> Picea sitchensis
<400> 109
Met Arg Gly Gly Glu Arg Ala Pro Gly Ser Arg Pro Ser Leu Asp Lys
1 5 10 15
Pro Leu Glu Glu Leu Thr Glu Glu Asp Ile Phe Gln Leu Thr Arg Glu
20 25 30
Asp Cys Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp
35 40 45
Asn Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ser Leu Phe
50 55 60
Glu Ser Lys Pro Asn Gln Gln Ser Lys Lys Pro Ser Lys His Lys Pro
65 70 75 80
Ala Thr Leu Gln Phe Glu Thr Ala Arg Asp Ser Thr Phe Ala Gln Ser
85 90 95
Ser Val Ser Gln Glu Gln Ser Leu Gly Phe Ser Trp Ser Lys Glu Val
100 105 110
Leu Asp Lys Gly Thr Ala Glu Arg Gln Arg Leu Cys Ser Asp Ser Gln
115 120 125
Glu Ala His Glu Ile Pro Arg Leu Gly Ser Lys Pro Pro Gln Ser Asn
130 135 140
Thr Glu Gly Lys Arg Cys Ala His Asp Gly His Gly Arg Lys Ser Ala
145 150 155 160
Gln Pro Leu Val Arg Leu Pro Ala Asn Phe Lys Asn Asp Cys Ser Asn
165 170 175
Arg Gln Ser Ser His Thr Ser Glu Ser Gln Pro Asp Thr Leu Leu Arg
180 185 190
Ser Asp Ser Phe Gln Gln Pro Thr Ala Gln Leu Thr Ile Phe Tyr Ala
195 200 205
Gly Met Val Asn Val Tyr Asp Asp Val Pro Leu Asp Lys Ala Gly Ser
210 215 220
Gly Gly Gly Ser Ala Lys Gly Glu Leu Arg Gly His Pro Phe Glu Gly
225 230 235 240
Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Arg Thr Gly
245 250 255
His His His His His His Gly Ser
260
<210> 110
<211> 276
<212> PRT
<213> Selaginella moellendorffii
<400> 110
Met Ser Ser Met Val Asp Phe Leu Gly Ile Glu Glu Lys Val Ser Thr
1 5 10 15
Ser Val Ser Ala Glu Arg Leu Lys Lys Leu Glu Glu Leu Thr Asp Glu
20 25 30
Asp Val Met Gln Leu Thr Arg Glu Asp Cys Arg Arg Tyr Leu Lys Glu
35 40 45
Lys Gly Met Arg Arg Pro Ser Trp Asn Lys Ala Gln Ala Val Gln Gln
50 55 60
Leu Leu Ser Leu Lys Ser Leu Cys Asp Pro Ser Pro Ala Ser Ser Gly
65 70 75 80
Ala Ala Lys Arg Ser Pro Ser Pro Pro Leu Asp Glu Ala Pro Ala Lys
85 90 95
Lys Pro Met Ala Met Thr Ser Ile Asp Leu Lys Ala Ala Ala Ala Val
100 105 110
Asp Ala Ala Asn Leu Thr Met Phe Tyr Asp Gly Ala Val Ser Val Phe
115 120 125
Asp Asp Val Ser Pro Asp Lys Ala Ser Leu Phe Pro Leu Ala Tyr Ala
130 135 140
Ile Met Leu Leu Ala Gly Asn Val Lys Ser Trp Pro Ser Ile Asn Val
145 150 155 160
Ala Ala Asn Thr Asn Lys Val Val Ile Ser Ser Tyr Glu Leu Pro Gln
165 170 175
Ala Arg Lys Ala Ser Leu Gln Arg Phe Leu Gln Arg Arg Arg Glu Lys
180 185 190
Thr Ala Lys Glu Ala Ala Ser Lys Gly Asn Ser Asn Lys Ser Pro Cys
195 200 205
His Gly Glu Ser Ser Gly Lys His Ala Ser Asp Ala Thr Asp Pro Ala
210 215 220
Thr Ser Pro Leu Leu Thr Glu Val Ser Ser Gly Ser Gly Gly Gly Ser
225 230 235 240
Ala Lys Gly Glu Leu Arg Gly His Pro Phe Glu Gly Lys Pro Ile Pro
245 250 255
Asn Pro Leu Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His
260 265 270
His His Gly Ser
275
<210> 111
<211> 315
<212> PRT
<213> Arabidopsis thaliana
<400> 111
Met Asp Val Gly Val Ser Pro Ala Lys Ser Ile Leu Ala Lys Pro Leu
1 5 10 15
Lys Leu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Lys Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ala Leu Tyr Glu Pro
50 55 60
Gly Asp Asp Ser Gly Ala Gly Ile Phe Arg Lys Ile Leu Val Ser Gln
65 70 75 80
Pro Val Asn Pro Pro Arg Val Thr Thr Thr Leu Ile Glu Pro Ser Asn
85 90 95
Glu Leu Glu Ala Cys Gly Arg Val Ser Tyr Pro Glu Asp Asn Gly Ala
100 105 110
Cys His Arg Met Asp Ser Pro Arg Ser Ala Glu Phe Ser Gly Gly Ser
115 120 125
Gly His Phe Val Ser Glu Lys Asp Gly His Lys Thr Thr Ile Ser Pro
130 135 140
Arg Ser Pro Ala Glu Thr Ser Glu Leu Val Gly Gln Met Thr Ile Phe
145 150 155 160
Tyr Ser Gly Lys Val Asn Val Tyr Asp Gly Ile Pro Pro Glu Lys Ala
165 170 175
Arg Ser Ile Met His Phe Ala Ala Asn Pro Ile Asp Leu Pro Glu Asn
180 185 190
Gly Ile Phe Ala Ser Ser Arg Met Ile Ser Lys Leu Ile Ser Lys Glu
195 200 205
Lys Met Met Glu Leu Pro Gln Lys Gly Leu Glu Lys Ala Asn Ser Ser
210 215 220
Arg Asp Ser Gly Met Glu Gly Gln Ala Asn Arg Lys Val Ser Leu Gln
225 230 235 240
Arg Tyr Arg Glu Lys Arg Lys Asp Arg Lys Phe Ser Lys Ala Lys Lys
245 250 255
Cys Pro Gly Val Ala Ser Ser Ser Leu Glu Met Phe Leu Asn Cys Gln
260 265 270
Pro Arg Met Lys Ala Ala Tyr Ser Gln Asn Leu Gly Cys Thr Gly Ser
275 280 285
Pro Leu His Ser Gln Ser Pro Glu Ser Gln Thr Lys Ser Pro Asn Leu
290 295 300
Ser Val Asp Leu Asn Ser Glu Gly Ile Gly Ser
305 310 315
<210> 112
<211> 340
<212> PRT
<213> Trifolium repens
<400> 112
Met Asn Gly Gly Ser Thr Val Ser Phe Arg Ser Ile Leu Asp Lys Pro
1 5 10 15
Leu Asn Gln Leu Thr Glu Asp Asp Ile Ser Gln Leu Thr Arg Glu Asp
20 25 30
Cys Arg Arg Phe Leu Lys Asp Lys Gly Met Arg Arg Pro Ser Trp Asn
35 40 45
Lys Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu
50 55 60
Pro Thr Asp Asp Asp Leu Pro Ala Pro Val Gly Val Ser Ser Ala Ile
65 70 75 80
His His His His His His His Pro Gln Pro Pro Gln Arg Asn Leu Asn
85 90 95
Glu Ala Pro Val Lys Gly Ser Asp Leu Asp Asp Thr Gly Phe His Thr
100 105 110
Ala Glu Asp Leu Asn Lys Ser Thr Ser Thr Ala Val Glu Ile Pro Thr
115 120 125
Glu Thr Asn Asp Ala Asn Val Val Lys Ser Ser Gly Gly Cys Val Ala
130 135 140
Ser Gly Ser Phe Gly Gln Met Thr Ile Phe Tyr Cys Gly Lys Val Asn
145 150 155 160
Val Tyr Asp Gly Val Ser Pro Asp Lys Ala Arg Ser Ile Met Gln Leu
165 170 175
Ala Ala Cys Pro Ser Ser Phe Pro Gln Asp Asn Leu Leu Asn Lys Asn
180 185 190
Ala Ala Val Trp Ala Ser Pro Cys Asn Ile Pro Ile Asp Lys Asp Val
195 200 205
Leu Phe Pro Asn Asp Thr Ala Ile Leu Gln Val Ala Gln Thr Asp Lys
210 215 220
Met Val Glu Tyr Pro Leu Gln Tyr Arg Glu Lys Gly Ser Ile Ala Arg
225 230 235 240
Asp Ala Asp Val Glu Gly Gln Ala Ser Arg Asn Ala Ser Leu Gln Arg
245 250 255
Tyr Arg Glu Lys Arg Lys Asp Arg Gly Arg Ser Lys Gly Asn Lys Leu
260 265 270
Thr Gly Ile Thr Ser Ser Asn Phe Glu Met Tyr Leu Asn Leu Pro Val
275 280 285
Lys Leu His Ala Ser Asn Gly Asn Ser Ser Arg Ser Ser Thr Asp Ser
290 295 300
Pro Pro Gln Pro Arg Leu Pro Leu Val Ser Gly Gly Ser Ala Glu Asn
305 310 315 320
Gln Pro Lys Val Thr Leu Pro Ile Asp Leu Asn Asp Lys Asp Val Gln
325 330 335
Glu Cys Gly Ser
340
<210> 113
<211> 313
<212> PRT
<213> Amborella trichopoda
<400> 113
Met Thr Ala Gly Asp Gly Ser Ile Arg Ser Ile Leu Asp Lys Pro Leu
1 5 10 15
Glu Glu Leu Thr Glu Glu Asp Ile Ser Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Tyr Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Gly Leu Leu Glu Gly
50 55 60
Lys Pro Cys Asp Asp Asn Ser Asp Val Phe Ser His Arg Ser Pro Ile
65 70 75 80
Thr Val Ile Pro Asn Val Gly Ser Met Arg Glu Lys Glu Lys Ala Val
85 90 95
Asn Ile Ala Asp Pro Glu Ile Ser Gly Ser His Gln Pro Asn Phe Arg
100 105 110
Arg Glu Ile His Glu Thr Thr Arg Glu Arg Ala Leu Pro Ala Ser Asp
115 120 125
Trp Pro Pro Ser Gln Glu Pro Val Ser Gln Met Thr Ile Phe Tyr Ala
130 135 140
Gly Ala Val Asn Val Tyr Asn Asp Ile Pro Glu Asp Lys Val Gln Ala
145 150 155 160
Ile Ile Tyr Leu Ala Gly Lys Ser Asp Ser Leu Gln Gln Thr Asn Val
165 170 175
Ile Arg Thr Gly Pro Asp Gln Cys Ile Ala Ser Ala Ala Ser Pro Ser
180 185 190
Leu Asn Asp Leu His Ser Arg Arg Ile His Pro Thr Ser Asn Ile Thr
195 200 205
Thr Ser Gln Ser Leu Arg Val Ala Thr Ser Leu Pro Val Gly Pro His
210 215 220
Ser Glu Val Pro Lys Thr Arg Lys Thr Ser Val Gln Arg Phe Leu Glu
225 230 235 240
Lys Arg Lys Asp Arg Gly Arg Leu Lys Gly Thr Leu Ala Ser Gly Gly
245 250 255
Ser Ser Lys Arg Gly Ser Ser Cys Leu Glu Leu Tyr Ala Thr Ser Arg
260 265 270
Leu Lys Ser Glu Gly Val Ala Thr Thr Thr Thr Gln Ser Asn Met Asn
275 280 285
Asn Val Val Val Ser Pro Ser Asn Pro Arg Met Pro Leu Asn Pro Gly
290 295 300
Ser Cys Ser Trp Val Glu Asn Gly Ser
305 310
<210> 114
<211> 295
<212> PRT
<213> Musa acuminata
<400> 114
Met Asn Pro Gly Glu Thr Thr Pro Pro Ser Pro Leu Asp Lys Pro Leu
1 5 10 15
Ala Glu Leu Thr Glu Glu Asp Ile Ala Gln Leu Thr Arg Glu Asp Cys
20 25 30
Arg Arg Phe Leu Lys Ala Lys Gly Met Arg Arg Pro Ser Trp Asn Lys
35 40 45
Ser Gln Ala Ile Gln Gln Val Ile Ser Leu Lys Ala Leu Leu Glu Gly
50 55 60
Arg Pro Gly Cys Asp Asp Cys Pro Ala Gly Gly Gly Ile Leu Gln Lys
65 70 75 80
Leu Leu Thr Ser Ser Pro Ser Glu Pro Leu Ser Pro Pro Gln Asp Ser
85 90 95
Pro Pro Pro Ala Pro Lys Glu Gly Gly Ser Gly Ser Gln Pro Leu Ala
100 105 110
Lys Glu Pro Ser Pro Tyr Arg Arg Arg Asp Pro Ile Pro Pro Pro Tyr
115 120 125
Ser Ala Gly Asn Pro Thr Cys Gln Thr Pro Ile Ala Gly Ala Asp Leu
130 135 140
Pro His Pro Pro Glu Lys Arg Cys Pro Ser Pro Arg Leu Thr Ala Glu
145 150 155 160
Val Pro Val Gly Gln Met Thr Ile Phe Tyr Asp Gly Met Val Asn Val
165 170 175
Tyr Asp Gly Val Ser Ala Asp Gln Ala Arg Ser Ile Met Glu Leu Ala
180 185 190
Ala Ser Pro Val Cys Phe Asp Asp Pro Thr Gly Ala Phe Ser Pro Ala
195 200 205
Arg Pro Pro Ala Phe Arg Phe Pro Pro Gly Leu Pro Arg Pro Ala Pro
210 215 220
Val Pro Thr Ala Pro Ser Phe Val Gly Thr Phe Pro Ile Ser Pro Ala
225 230 235 240
Gly Lys Arg Cys Tyr Ser Tyr Cys Ser Phe Arg Ser Ser Val Ser Leu
245 250 255
Leu Thr Thr Thr Glu Gly Pro Thr Ser Arg Lys Ala Ser Leu Gln Arg
260 265 270
Tyr Leu Glu Lys Arg Lys Asp Arg Tyr Gly His Leu Pro Thr Glu Ser
275 280 285
Ile Leu Leu Val Ser Gly Ser
290 295
<210> 115
<211> 224
<212> PRT
<213> Picea abies
<400> 115
Met Arg Gly Gly Glu Arg Ala Pro Gly Ser Arg Pro Ser Leu Asp Lys
1 5 10 15
Pro Leu Glu Glu Leu Thr Glu Glu Asp Ile Phe Gln Leu Thr Arg Glu
20 25 30
Asp Cys Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp
35 40 45
Asn Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ser Leu Phe
50 55 60
Glu Ser Lys Pro Asn Gln Gln Ser Lys Lys Pro Ser Lys His Lys Pro
65 70 75 80
Ala Thr Leu Gln Phe Glu Thr Ala Arg Asp Ser Thr Phe Ala Gln Ser
85 90 95
Ser Val Ser Gln Glu Gln Ser Leu Gly Phe Ser Trp Ser Lys Glu Val
100 105 110
Leu Asp Lys Gly Thr Ala Glu Arg Gln Arg Leu Cys Ser Asp Ser Gln
115 120 125
Glu Ala His Glu Ile Pro Arg Leu Gly Ser Lys Pro Pro Gln Ser Asn
130 135 140
Thr Glu Gly Lys Arg Cys Ala His Asp Gly His Gly Arg Lys Ser Ala
145 150 155 160
Gln Pro Leu Val Arg Leu Pro Ala Asn Phe Lys Asn Asp Cys Ser Asn
165 170 175
Arg Gln Ser Ser His Thr Ser Glu Ser Gln Pro Asp Thr Leu Leu Arg
180 185 190
Ser Asp Ser Phe Gln Gln Pro Thr Ala Gln Leu Thr Ile Phe Tyr Ala
195 200 205
Gly Met Val Asn Val Tyr Asp Asp Val Pro Leu Asp Lys Ala Gly Ser
210 215 220
<210> 116
<211> 236
<212> PRT
<213> Selaginella moellendorffii
<400> 116
Met Ser Ser Met Val Asp Phe Leu Gly Ile Glu Glu Lys Val Ser Thr
1 5 10 15
Ser Val Ser Ala Glu Arg Leu Lys Lys Leu Glu Glu Leu Thr Asp Glu
20 25 30
Asp Val Met Gln Leu Thr Arg Glu Asp Cys Arg Arg Tyr Leu Lys Glu
35 40 45
Lys Gly Met Arg Arg Pro Ser Trp Asn Lys Ala Gln Ala Val Gln Gln
50 55 60
Leu Leu Ser Leu Lys Ser Leu Cys Asp Pro Ser Pro Ala Ser Ser Gly
65 70 75 80
Ala Ala Lys Arg Ser Pro Ser Pro Pro Leu Asp Glu Ala Pro Ala Lys
85 90 95
Lys Pro Met Ala Met Thr Ser Ile Asp Leu Lys Ala Ala Ala Ala Val
100 105 110
Asp Ala Ala Asn Leu Thr Met Phe Tyr Asp Gly Ala Val Ser Val Phe
115 120 125
Asp Asp Val Ser Pro Asp Lys Ala Ser Leu Phe Pro Leu Ala Tyr Ala
130 135 140
Ile Met Leu Leu Ala Gly Asn Val Lys Ser Trp Pro Ser Ile Asn Val
145 150 155 160
Ala Ala Asn Thr Asn Lys Val Val Ile Ser Ser Tyr Glu Leu Pro Gln
165 170 175
Ala Arg Lys Ala Ser Leu Gln Arg Phe Leu Gln Arg Arg Arg Glu Lys
180 185 190
Thr Ala Lys Glu Ala Ala Ser Lys Gly Asn Ser Asn Lys Ser Pro Cys
195 200 205
His Gly Glu Ser Ser Gly Lys His Ala Ser Asp Ala Thr Asp Pro Ala
210 215 220
Thr Ser Pro Leu Leu Thr Glu Val Ser Ser Gly Ser
225 230 235
<210> 117
<211> 1226
<212> DNA
<213> Arabidopsis thaliana
<400> 117
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatgg acgtgggcgt gtccccggcc 60
aagtctattc tcgccaagcc ggtaatgttc agctctgcta tagtgtgtgc caccctgctt 120
gtttaataat gcgttctctt cgtttttatg atatcttatt cttccagctc aagctcctca 180
ccgaggagga catctctcag ctcacaagag aggactgccg caagttcctc aaggacaagg 240
gcatgagaag gccgtcctgg aacaagtccc aggccatcca acaagtgctc agcctcaagg 300
ccctctacga gccaggcgac gactccggcg ctggcatttt cagaaagatc ctcgtgtccc 360
agccggtgaa cccaccaagg gtgaccacca cactcatcga gccgtccaat gagcttgagg 420
cctgcggcag agtttcctac ccagaggata atggcgcctg ccacaggatg gattctccaa 480
ggtctgctga gttctctggc ggctccggcc atttcgtgtc tgagaaggat ggccacaaga 540
ccaccatctc cccaagatcc ccagccgaga catctgagct tgtgggccag atgaccatct 600
tctactccgg caaggtgaac gtgtacgacg gcatcccacc agagaaggcc cgctccatta 660
tgcacttcgc cgccaaccca atcgacctcc cagagaatgg catcttcgcc tccagccgca 720
tgatctccaa gctcatctcc aaggagaaga tgatggagct gccgcagaag ggcctcgaga 780
aggctaattc ctctcgcgac tccggcatgg agggccaggc taatagaaag gtgtccctcc 840
aacgctaccg cgagaagagg aaggaccgca agttctccaa ggccaagaag tgcccaggcg 900
ttgcctcttc cagcctcgag atgttcctca actgccagcc gagaatgaag gccgcctact 960
cccaaaatct cggctgcaca ggctccccac tccattctca gtccccagag tctcagacca 1020
agtccccgaa cctctccgtg gaccttaact ccgagggcat cggatccggc ggcggctctg 1080
ctaagggcga gctgaggggc cacccgttcg agggcaagcc aattccaaat ccactcctcg 1140
gcctcgactc taccaggacc ggccaccatc accatcacca cggatcctaa tgaagaccca 1200
gctttcttgt acaaagtggt caggct 1226
<210> 118
<211> 1295
<212> DNA
<213> Trifolium repens
<400> 118
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga acggcggctc caccgtgtcc 60
ttcagatcca tcctcgataa gccggtaatg ttcagctctg ctatagtgtg tgccaccctg 120
cttgtttaat aatgcgttct cttcgttttt atgatatctt attcttccag ctcaaccagc 180
tcaccgagga cgacatctct cagctcacac gcgaggattg ccgccgcttc cttaaggaca 240
agggcatgag aaggccgtcc tggaacaagt cccaggccat ccagcaagtg atctccctca 300
aggctctcct cgagccgacc gacgatgatc tcccagcccc ggtgggcgtg tcatctgcca 360
tccaccatca ccaccaccac catcctcaac cgccacagag gaacctcaat gaggccccag 420
ttaagggctc cgacctcgac gataccggct tccatacagc cgaggacctc aacaagtcta 480
cctccaccgc cgtcgagatc ccgaccgaga caaacgatgc caacgtggtg aagtctagcg 540
gcggctgcgt ggcctccggc tccttcggcc agatgaccat tttctactgc ggcaaggtga 600
acgtgtacga cggcgtgtca ccagataagg cccgctccat tatgcaactc gccgcttgcc 660
catctagctt cccgcaggat aacctcctca acaagaacgc cgccgtttgg gcctccccat 720
gcaacatccc gatcgacaag gatgtcctct tcccgaacga caccgccatt ctccaggtgg 780
cccagaccga taagatggtc gagtacccac tccagtaccg cgagaagggc tctattgcca 840
gggatgccga tgttgagggc caggcctcca gaaatgcttc cctgcaacgc tatcgcgaga 900
agcgcaagga cagaggcaga tccaagggca acaagctgac cggcatcacc tcctccaact 960
tcgagatgta cctcaacctc ccggtgaagc tccatgcctc caacggcaac tcctctaggt 1020
cctccacaga ttccccaccg cagccaagac tcccactcgt gtccggcggc tctgccgaga 1080
accagccaaa ggtgaccctc ccgatcgacc tcaacgacaa ggacgtgcaa gagtgcggat 1140
ccggcggcgg ctctgctaag ggcgagctga ggggccaccc gttcgagggc aagccaattc 1200
caaatccact cctcggcctc gactctacca ggaccggcca ccatcaccat caccacggat 1260
cctaatgaag acccagcttt cttgtacaaa gtggt 1295
<210> 119
<211> 1214
<212> DNA
<213> Amborella trichopoda
<400> 119
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga cagccggcga cggctccatc 60
cgctctatcc ttgacaagcc ggtaatgttc agctctgcta tagtgtgtgc caccctgctt 120
gtttaataat gcgttctctt cgtttttatg atatcttatt cttccagctc gaggagctga 180
ccgaggagga catctctcaa ctcacccgcg aggattgccg ccgctacctc aaggagaagg 240
ggatgcgcag gccatcctgg aacaagtacc aggccatcca gcaggtcctc agcctcaagg 300
gcctcctcga gggcaagcca tgcgacgata actccgacgt gttctcccac aggtccccga 360
tcaccgtgat cccaaatgtt ggctccatgc gcgagaagga gaaggccgtc aatatcgccg 420
acccagagat ctccggctcc caccagccga actttaggcg cgagatccat gagacaacac 480
gcgagagagc cctcccagct tctgattggc cgccgtcaca agagccagtg tcccagatga 540
ccatcttcta cgctggcgcc gtgaacgtgt acaacgacat cccagaggac aaggtgcagg 600
ccatcatcta cctcgccggc aagtctgatt ccctccagca gaccaacgtg atcaggaccg 660
gcccagatca gtgcattgct tctgctgctt ccccgtccct caacgacctc cattctaggc 720
gcatccaccc gacctccaac atcaccacat ctcagtctct ccgcgtggcc acatctctcc 780
cagtgggccc gcactccgag gtgccaaaga ccagaaagac aagcgtgcag cgcttcctcg 840
agaagaggaa ggataggggc aggctcaagg gcacactcgc ctccggcggc tcctccaaga 900
ggggctcctc ctgcctcgag ctttacgcta catcccgcct taagtctgag ggcgtggcca 960
ccacaaccac ccagtccaac atgaacaacg tggtggtgtc cccgtccaac ccgaggatgc 1020
cgctcaaccc gggctcctgc tcctgggtcg agaacggatc cggcggcggc tctgctaagg 1080
gcgagctgag gggccacccg ttcgagggca agccaattcc aaatccactc ctcggcctcg 1140
actctaccag gaccggccac catcaccatc accacggatc ctaatgaaga cccagctttc 1200
ttgtacaaag tggt 1214
<210> 120
<211> 1160
<212> DNA
<213> Musa acuminata
<400> 120
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga acccgggcga gacaaccccg 60
ccatctccac ttgacaagcc ggtaatgttc agctctgcta tagtgtgtgc caccctgctt 120
gtttaataat gcgttctctt cgtttttatg atatcttatt cttccagctc gccgagctga 180
ccgaggagga tattgctcaa ctcacccgcg aggactgccg cagattcctt aaggctaagg 240
gcatgcgcag gccgtcctgg aacaagtctc aggccatcca gcaagtgatc tccctcaagg 300
ctctcctcga gggcaggcca ggttgcgatg actgcccggc cggcggcggc atcctccaga 360
agctcctcac ctccagcccg tctgagccgc tctccccgcc acaggactcc ccgccaccgg 420
ctccaaaaga gggcggctcc ggctcccagc ctctcgccaa ggagccgtcc ccgtacaggc 480
gcagggaccc gatcccgcca ccgtactccg ccggcaaccc gacctgccag accccgatcg 540
ctggcgccga cctcccgcac ccgccagaga agaggtgccc gtccccgagg ctcacagccg 600
aggtgccggt gggccagatg accattttct acgacggcat ggtgaacgtg tacgacggcg 660
tgtcagctga tcaggcccgc tccattatgg agcttgccgc ttctccggtg tgcttcgatg 720
atccaacagg cgcctttagc ccagccagac caccagcttt cagattccca ccaggcctcc 780
caaggccagc tccggtgccg accgccccgt ccttcgtggg caccttcccg atctccccag 840
ccggcaagag atgctactcc tactgctcct tccgctcctc cgtgtcactc ctcacaacaa 900
ccgagggccc aacatctagg aaggcctcac tccaacgcta cctcgagaag cgcaaggaca 960
ggtacggcca tctcccaacc gagtccattc tcctcgtgtc cggatccggc ggcggctctg 1020
ctaagggcga gctgaggggc cacccgttcg agggcaagcc aattccaaat ccactcctcg 1080
gcctcgactc taccaggacc ggccaccatc accatcacca cggatcctaa tgaagaccca 1140
gctttcttgt acaaagtggt 1160
<210> 121
<211> 947
<212> DNA
<213> Picea sitchensis
<400> 121
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga gaggcggcga gagagcccca 60
ggctccaggc cggtaatgtt cagctctgct atagtgtgtg ccaccctgct tgtttaataa 120
tgcgttctct tcgtttttat gatatcttat tcttccagtc cctcgacaag ccgctcgagg 180
agcttaccga ggaggacatc ttccagctca cccgcgagga ttgcaggcgc tacctcaagg 240
agaaggggat gagaaggccg tcctggaaca agtcccaggc catccaacaa gtgctcagcc 300
tcaagagcct cttcgagtcc aagccgaacc agcagtccaa gaagccgtcc aagcacaagc 360
cagccaccct ccaattcgag acagccaggg attctacctt cgcccagtcc tccgtgtccc 420
aagagcaatc tctcggcttc tcctggtcca aggaggtgct cgataagggc acagccgaga 480
gacaaaggct ctgctccgat tcccaagagg cccacgagat tccaaggctc ggctctaagc 540
caccgcagtc caacaccgag ggcaagagat gcgctcatga tggccatggg agaaagtccg 600
cccaaccact cgttaggctc ccggccaact tcaagaacga ctgctccaac aggcagtcct 660
cccacacatc tgagtcccag ccagataccc tcctccgctc cgattctttc cagcagccaa 720
cagcccagct caccatcttc tacgccggca tggtgaacgt gtacgacgac gtgccactcg 780
acaaggccgg atccggcggc ggctctgcta agggcgagct gaggggccac ccgttcgagg 840
gcaagccaat tccaaatcca ctcctcggcc tcgactctac caggaccggc caccatcacc 900
atcaccacgg atcctaatga agacccagct ttcttgtaca aagtggt 947
<210> 122
<211> 897
<212> DNA
<213> Selaginella moellendorffii
<400> 122
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatgt cctcgatggt ggacttcctc 60
ggcatcgagg agaaggtgtc cacctccgtg tccgccgaga ggctcaagaa gctcgaggag 120
ctgaccgacg aggacgtgat gcaactcaca cgcgaggatt gccgccgcta ccttaaggag 180
aaggggatga gaaggccgtc ctggaacaag gcccaagccg tgcaacaact cctcagcctc 240
aagtccctct gcgatccatc tccggcctcc agcggagctg ccaagaggtc cccgtccccg 300
ccactcgacg aggccccagc caagaagccg atggccatga cctccatcga tctcaaggcc 360
gctgccgccg ttgatgccgc caatctcacc atgttctacg acggcgccgt gtccgtgttc 420
gatgatgtgt ctccagacaa ggcctccctc ttcccactcg cctacgccat tatgctcctc 480
gccggcaatg tgaagtcctg gccgtctatc aacgtggccg ccaacaccaa caaggtggtg 540
atctccagct acgagctgcc gcaagctaga aaggcttccc tccagcgctt ccttcagaga 600
aggcgcgaga agacagccaa ggaggccgct tctaagggca actccaacaa gtccccatgc 660
cacggcgagt ctagcggcaa gcacgcctct gatgctaccg atccagctac ctctccactc 720
ctcacagagg tgtcatccgg atccggcggc ggctctgcta agggcgagct gaggggccac 780
ccgttcgagg gcaagccaat tccaaatcca ctcctcggcc tcgactctac caggaccggc 840
caccatcacc atcaccacgg atcctaatga agacccagct ttcttgtaca aagtggt 897
<210> 123
<211> 1134
<212> DNA
<213> Arabidopsis thaliana
<400> 123
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatgg atgtgggagt gtctccagct 60
aagtctatcc ttgctaagcc tctcaagctc ctcaccgaag aggatatctc tcagctcact 120
agagaggatt gcagaaagtt cctcaaggat aagggaatga gaaggccatc ttggaacaag 180
tctcaggcta tccagcaggt tctcagtctc aaggctcttt acgagcctgg tgatgattct 240
ggtgctggaa tcttcagaaa gatcctcgtg tctcagcctg tgaaccctcc tagagttact 300
actactctca tcgagccttc taacgagctt gaggcttgcg gaagagtttc ttaccctgag 360
gataacggtg cttgccacag gatggattct ccaagatctg ctgagttctc tggtggatct 420
ggacacttcg tgtctgagaa ggatggacac aagactacta tctctccaag aagtcctgct 480
gagacttctg agcttgtggg acagatgacc atcttctact ctggaaaggt gaacgtgtac 540
gatggaatcc ctcctgagaa ggctagatct atcatgcact tcgctgctaa ccctatcgat 600
ctccctgaga acggaatctt cgcttcttct aggatgatct ctaagctcat ctctaaagaa 660
aagatgatgg aactccctca gaagggactc gagaaggcta actcttctag ggattctgga 720
atggaaggac aggctaacag aaaggtgtca ctccagaggt acagagagaa gaggaaggat 780
aggaagttct ctaaggctaa gaaatgccct ggtgtggctt cttcatctct cgagatgttc 840
cttaactgcc agcctaggat gaaggctgct tactctcaga acctcggatg tactggatct 900
ccactccatt ctcagtctcc agagtctcag accaagtctc ctaacctctc tgtggatctc 960
aactctgagg gaatcggatc cggtggtgga tctgctaagg gtgagcttag aggtcatcct 1020
ttcgagggta agcctatccc taaccctctt ctcggtctcg attctactag aactggtcat 1080
catcatcacc atcacggatc ctaatgaaga cccagctttc ttgtacaaag tggt 1134
<210> 124
<211> 1209
<212> DNA
<213> Trifolium repens
<400> 124
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga acggtggatc taccgtgtct 60
ttcagatcta tcctcgataa gcctctcaac cagctcaccg aggatgatat ctctcagctc 120
actagagagg attgcagaag attcctcaag gataagggaa tgagaaggcc atcttggaac 180
aagtctcagg ctatccagca ggttatctct ctcaaggctc tcctcgagcc taccgatgat 240
gatcttcctg ctcctgtggg agtgtcatct gctatccatc atcatcacca tcaccaccct 300
caacctccac agagaaatct taacgaggct cctgtgaagg gatctgatct cgatgatact 360
ggattccaca ccgctgagga tctcaacaag tctacttcta ccgctgttga gatccctacc 420
gagactaacg atgctaacgt ggtgaagtca tctggtggat gtgtggcttc tggatctttc 480
ggacagatga ccatcttcta ctgcggaaag gtgaacgtgt acgatggtgt gtctcctgat 540
aaggctagat ctatcatgca gctcgctgct tgcccttcta gtttccctca ggataacctc 600
ctcaacaaga acgctgctgt ttgggcttct ccttgcaaca tccctattga taaggatgtt 660
ctcttcccta acgataccgc tatcctccaa gtggctcaga ccgataagat ggttgagtac 720
cctctccagt acagagagaa gggatctatc gctagggatg ctgatgttga gggacaggct 780
tctagaaacg cttcactcca gaggtacagg gaaaagagga aggatagggg aaggtctaag 840
ggaaacaagc tcaccggaat cacctcttct aacttcgaga tgtacctcaa cctccctgtg 900
aagctccatg cttctaacgg aaactcttct aggtctagta ccgattcacc tcctcagcct 960
agactccctc ttgtttctgg tggatctgct gagaaccagc ctaaggttac actccctatc 1020
gatctcaacg ataaggatgt gcaagagtgc ggatccggtg gtggatctgc taagggtgag 1080
cttagaggtc atcctttcga gggtaagcct atccctaacc ctcttctcgg tctcgattct 1140
actagaactg gtcatcatca tcaccatcac ggatcctaat gaagacccag ctttcttgta 1200
caaagtggt 1209
<210> 125
<211> 1128
<212> DNA
<213> Amborella trichopoda
<400> 125
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga ccgctggtga tggatctatc 60
agatctatcc tcgataagcc tctcgaggaa ctcaccgaag aggatatctc tcagctcacc 120
agagaggatt gcagaagata cctcaaagaa aagggtatga gaaggccatc ttggaacaag 180
taccaggcta tccagcaggt tctcagtctt aagggacttc tcgagggaaa gccttgtgat 240
gataactctg atgtgttctc tcacaggtca cctatcaccg tgatccctaa cgtgggatct 300
atgagagaga aagagaaggc tgttaacatt gctgatcctg agatctctgg ttctcaccag 360
cctaacttta gaagagagat ccacgagact accagagaga gagctttgcc tgcttctgat 420
tggcctccat ctcaagagcc tgtgtctcag atgaccatct tctacgctgg tgctgtgaac 480
gtgtacaacg atatccctga ggataaggtg caggctatca tctacctcgc tggaaagtct 540
gattctctcc agcagaccaa cgtgatcaga actggacctg atcagtgtat cgcttctgct 600
gcttctcctt ctctcaacga tctccactct agaagaatcc accctacctc taacatcacc 660
acctctcagt ctctcagagt ggctacttct cttcctgtgg gacctcattc tgaggtgcca 720
aagactagaa agacctctgt gcagagattc ctcgagaaga ggaaggatag aggtaggctc 780
aagggaactc ttgcttctgg tggatcttct aagaggggat cttcttgcct cgagctttac 840
gctacctcta ggcttaagtc tgagggtgtg gctactacta ccacccagtc taacatgaac 900
aacgtggtgg tgtctccatc taaccctagg atgcctctta accctggatc ttgctcttgg 960
gttgagaacg gatccggtgg tggatctgct aagggtgagc ttagaggtca tcctttcgag 1020
ggtaagccta tccctaaccc tcttctcggt ctcgattcta ctagaactgg tcatcatcat 1080
caccatcacg gatcctaatg aagacccagc tttcttgtac aaagtggt 1128
<210> 126
<211> 1074
<212> DNA
<213> Musa acuminata
<400> 126
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga accctggtga gactacccct 60
ccatctccac ttgataagcc tctcgctgag cttaccgaag aggatatcgc tcagctcact 120
agagaggatt gcagaagatt cctcaaggct aagggaatga gaaggccatc ttggaacaag 180
tctcaggcta tccagcaggt tatctctctc aaggctctcc ttgaaggtag gcctggatgt 240
gatgattgtc ctgctggtgg tggaatcctc cagaagctcc ttacttctag tccttctgag 300
cctctcagtc ctcctcaaga ttctccacct cctgctccta aagagggagg atctggatct 360
cagcctcttg ctaaagagcc ttctccatac agaagaagag atcctatccc tcctccttac 420
tctgctggaa accctacttg tcagactcct atcgctggtg ctgatcttcc tcatcctcct 480
gagaagagat gcccatctcc tagacttact gctgaggttc cagtgggaca gatgaccatc 540
ttctacgatg gaatggtgaa cgtgtacgat ggtgtgtctg ctgatcaggc tagatctatt 600
atggaactcg ctgcttctcc tgtgtgcttc gatgatccta ctggtgcttt cagtcctgct 660
agacctcctg cttttagatt ccctccagga cttcctagac ctgctcctgt tcctactgct 720
ccttctttcg ttggaacctt ccctatctct cctgctggaa agaggtgcta ctcttactgc 780
tctttcaggt ctagtgtgtc tctcttgact accactgagg gacctacctc tagaaaggct 840
tcactccaga gatacctcga gaagaggaag gatagatacg gacacctccc taccgagtct 900
atccttctcg tttctggatc cggtggtgga tctgctaagg gtgagcttag aggtcatcct 960
ttcgagggta agcctatccc taaccctctt ctcggtctcg attctactag aactggtcat 1020
catcatcacc atcacggatc ctaatgaaga cccagctttc ttgtacaaag tggt 1074
<210> 127
<211> 1233
<212> DNA
<213> Picea abies
<400> 127
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatga ggggtggtgg tggtgctgat 60
agacttcctg ctagagctaa ccttgagaag cctctcgagg atctctctca cgaggatatc 120
atgcagctca ccagagagga ttgcagaaga tacctcatcg agaagggaat gagaaggcca 180
tcttggaaca agtctcaggc tatccagcag gttctcagtc tcaagaagct tttcgagtct 240
ggacctaacg atgagaagag gtctgctgct accaacaggc ctaatcctga tgagaacctc 300
aaagaggctg cttctgtttc tctcttgtac ggatctcagc ctgagtctcc ttctgtggtg 360
ttcgcttcta aggattctga taccttcaac ctcgagtggc tcgctaagac tgagcttcct 420
gttcttgctt ctcagcctag gcatatcgct cagcagaacg tgttcctctc ttcactttct 480
gctcagcagt ctggtgctca gctcaccatt ttctactctg gaaacgtgaa cgtgtacgat 540
gatgtgcctg ctgagaaggc tcaagagatc atgcttcttg ctggatctgg aaactaccct 600
ccttcatcta cttgccagtc taccagaaac acccagcaga acgctgttag agctgcttac 660
ccttctaacc ctaccaacac ccctttcatc catggtgttg gaccacctct tgctaccgtg 720
gcttcttctt ctgtgatgtc atctcctatc cacaaagagt ctccaatcac cagaaaggct 780
tcactccaga gattcctcga gaagaggaag gataggtcta ggggtaagct tggtgctcct 840
actatctcta agaaacctct cctcatggga atgttcatgc acccttctat cgtgcacaga 900
cagtactgga ctgataccgc taagaggaag tctggaaagc ctgatatccc tgcttctatc 960
tctcctacca gacctcctca cactcctaga aggacatctt ctgatgagca gctctctgct 1020
agacacgcta ggggagatat ttctgctcaa ggtggaagtc tccacaactc taacggatcc 1080
ggtggtggat ctgctaaggg tgagcttaga ggtcatcctt tcgagggtaa gcctatccct 1140
aaccctcttc tcggtctcga ttctactaga actggtcatc atcatcacca tcacggatcc 1200
taatgaagac ccagctttct tgtacaaagt ggt 1233
<210> 128
<211> 897
<212> DNA
<213> Selaginella moellendorffii
<400> 128
acaagtttgt acaaaaaagc aggctcaaaa aaaaccatgt caagtatggt ggatttcctc 60
ggaatcgaag agaaggtttc aacctctgtg tctgctgaga ggcttaagaa gctcgaggaa 120
ctcactgatg aggatgtgat gcagctcacc agagaggatt gcagaagata cctcaaagaa 180
aagggtatga gaaggccatc ttggaacaag gctcaagctg ttcagcagct cctcagtctt 240
aagtctctct gcgatccttc accagcttca tctggtgctg ctaagagatc tccttcacct 300
cctttggatg aggctcctgc taagaaacct atggctatga cctctatcga tctcaaggct 360
gctgctgctg ttgatgctgc taacctcacc atgttctacg atggtgctgt gtctgtgttc 420
gatgatgtgt ctcctgataa ggcttctctc ttcccactcg cttacgctat catgcttctc 480
gctggaaacg tgaagtcttg gccttctatc aacgtggcag ctaacaccaa caaggtggtg 540
atctcttctt acgaactccc tcaggctagg aaggcttcac ttcagagatt cctccagaga 600
agaagggaaa agaccgctaa agaggctgct tctaagggaa actctaacaa gtctccttgc 660
cacggtgagt ctagtggaaa gcacgcttct gatgctactg atcctgctac ttctccactc 720
ctcactgagg tgtcatctgg atccggtggt ggatctgcta agggtgagct tagaggtcat 780
cctttcgagg gtaagcctat ccctaaccct cttctcggtc tcgattctac tagaactggt 840
catcatcatc accatcacgg atcctaatga agacccagct ttcttgtaca aagtggt 897
<210> 129
<211> 1345
<212> DNA
<213> Artificial Sequence
<220>
<223> Construct
<400> 129
tcgacgaatt aattccaatc ccacaaaaat ctgagcttaa cagcacagtt gctcctctca 60
gagcagaatc gggtattcaa caccctcata tcaactacta cgttgtgtat aacggtccac 120
atgccggtat atacgatgac tggggttgta caaaggcggc aacaaacggc gttcccggag 180
ttgcacacaa gaaatttgcc actattacag aggcaagagc agcagctgac gcgtacacaa 240
caagtcagca aacagacagg ttgaacttca tccccaaagg agaagctcaa ctcaagccca 300
agagctttgc taaggcccta acaagcccac caaagcaaaa agcccactgg ctcacgctag 360
gaaccaaaag gcccagcagt gatccagccc caaaagagat ctcctttgcc ccggagatta 420
caatggacga tttcctctat ctttacgatc taggaaggaa gttcgaaggt gaaggtgacg 480
acactatgtt caccactgat aatgagaagg ttagcctctt caatttcaga aagaatgctg 540
acccacagat ggttagagag gcctacgcag caggtctcat caagacgatc tacccgagta 600
acaatctcca ggagatcaaa taccttccca agaaggttaa agatgcagtc aaaagattca 660
ggactaattg catcaagaac acagagaaag acatatttct caagatcaga agtactattc 720
cagtatggac gattcaaggc ttgcttcata aaccaaggca agtaatagag attggagtct 780
ctaaaaaggt agttcctact gaatctaagg ccatgcatgg agtctaagat tcaaatcgag 840
gatctaacag aactcgccgt gaagactggc gaacagttca tacagagtct tttacgactc 900
aatgacaaga agaaaatctt cgtcaacatg gtggagcacg acactctggt ctactccaaa 960
aatgtcaaag atacagtctc agaagaccaa agggctattg agacttttca acaaaggata 1020
atttcgggaa acctcctcgg attccattgc ccagctatct gtcacttcat cgaaaggaca 1080
gtagaaaagg aaggtggctc ctacaaatgc catcattgcg ataaaggaaa ggctatcatt 1140
caagatctct ctgccgacag tggtcccaaa gatggacccc cacccacgag gagcatcgtg 1200
gaaaaagaag acgttccaac cacgtcttca aagcaagtgg attgatgtga catctccact 1260
gacgtaaggg atgacgcaca atcccactat ccttcgcaag acccttcctc tatataagga 1320
agttcatttc atttggagag gacac 1345
<210> 130
<211> 224
<212> PRT
<213> Picea sitchensis
<400> 130
Met Arg Gly Gly Glu Arg Ala Pro Gly Ser Arg Pro Ser Leu Asp Lys
1 5 10 15
Pro Leu Glu Glu Leu Thr Glu Glu Asp Ile Phe Gln Leu Thr Arg Glu
20 25 30
Asp Cys Arg Arg Tyr Leu Lys Glu Lys Gly Met Arg Arg Pro Ser Trp
35 40 45
Asn Lys Ser Gln Ala Ile Gln Gln Val Leu Ser Leu Lys Ser Leu Phe
50 55 60
Glu Ser Lys Pro Asn Gln Gln Ser Lys Lys Pro Ser Lys His Lys Pro
65 70 75 80
Ala Thr Leu Gln Phe Glu Thr Ala Arg Asp Ser Thr Phe Ala Gln Ser
85 90 95
Ser Val Ser Gln Glu Gln Ser Leu Gly Phe Ser Trp Ser Lys Glu Val
100 105 110
Leu Asp Lys Gly Thr Ala Glu Arg Gln Arg Leu Cys Ser Asp Ser Gln
115 120 125
Glu Ala His Glu Ile Pro Arg Leu Gly Ser Lys Pro Pro Gln Ser Asn
130 135 140
Thr Glu Gly Lys Arg Cys Ala His Asp Gly His Gly Arg Lys Ser Ala
145 150 155 160
Gln Pro Leu Val Arg Leu Pro Ala Asn Phe Lys Asn Asp Cys Ser Asn
165 170 175
Arg Gln Ser Ser His Thr Ser Glu Ser Gln Pro Asp Thr Leu Leu Arg
180 185 190
Ser Asp Ser Phe Gln Gln Pro Thr Ala Gln Leu Thr Ile Phe Tyr Ala
195 200 205
Gly Met Val Asn Val Tyr Asp Asp Val Pro Leu Asp Lys Ala Gly Ser
210 215 220
<210> 131
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 131
gctggggcgt cggtttccac tatccg 26
<210> 132
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 132
cgcataacag cggtcattga ctggagc 27
<210> 133
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 133
ctgttgccgg tcttgcgatg 20
<210> 134
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 134
gtcacataga tgacaccgcg 20
<210> 135
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 135
ctcgtgcttt cagcttcgat gtag 24
<210> 136
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 136
gctggggcgt cggtttccac tatcgg 26
<210> 137
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 137
cacaggatgg attctccaag g 21
<210> 138
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Consensus sequence
<400> 138
taaggtccac ggagaggttc 20
Claims (17)
1.一种用于增加禾本科植物中的根生物量和地上生物量中的至少一种的方法,该方法包括在所述禾本科植物中表达PEAPOD蛋白的步骤,其中,所述PEAPOD蛋白以PEAPOD蛋白共享的共有序列为特征,其中,所述共有序列选自由SEQ ID NO: 28、29、31、32、34和35所组成的组中。
2.根据权利要求1所述的方法,其中,所述PEAPOD蛋白被表达为用编码所述PEAPOD蛋白的多核苷酸转化植物、或其祖先植物或植物细胞的结果。
3.根据权利要求1或2所述的方法,其中,植物为用表达PEAPOD蛋白的多核苷酸进行转基因的。
4.一种用于产生具有增加的根生物量和增加的地上生物量中的至少一种的禾本科植物的方法,该方法包括在所述禾本科植物中表达PEAPOD蛋白的步骤;其中,所述PEAPOD蛋白以PEAPOD蛋白共享的共有序列为特征,其中,所述共有序列选自由SEQ ID NO: 28、29、31、32、34和35所组成的组中。
5.根据权利要求4所述的方法,其中,用编码PEAPOD蛋白的多核苷酸转化所述禾本科植物。
6.根据权利要求4或5所述的方法,该方法包括用编码PEAPOD蛋白的多核苷酸转化所述禾本科植物或转化再生为所述禾本科植物的禾本科植物细胞的步骤。
7.根据权利要求6所述的方法,该方法包括测试或评估植物的增加的根生物量和增加的地上生物量中的至少一种的额外步骤。
8.根据权利要求1、2、4、5和7中任意一项所述的方法,其中,所述共有序列为TIYF基序,所述TIYF基序选自由SEQ ID NO:34和35所组成的组中。
9.根据权利要求1、2、4、5和7中任意一项所述的方法,其中,所述PEAPOD蛋白的序列选自由SEQ ID NO:1-26所组成的组中。
10.根据权利要求1、2、4、5和7中任意一项所述的方法,其中,通过将编码所述PEAPOD蛋白的多核苷酸引入植物细胞或植物中以增加表达。
11.根据权利要求10所述的方法,其中,所述多核苷酸选自由SEQ ID NO:80-104所组成的组中。
12.根据权利要求10所述的方法,其中,所述多核苷酸作为表达构建体的一部分被引入植物中。
13.根据权利要求12所述的方法,其中,所述表达构建体包含与所述多核苷酸可操作地连接的启动子。
14.根据权利要求13所述的方法,其中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的所有组织中的组成型表达。
15.根据权利要求13所述的方法,其中,所述启动子是组织优选的启动子。
16.根据权利要求13所述的方法,其中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的地上部分中的表达。
17.根据权利要求13所述的方法,其中,所述启动子能够驱动或驱动可操作地连接的多核苷酸在植物的地下组织中的表达。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ70164114 | 2014-11-04 | ||
NZ701641 | 2014-11-04 | ||
PCT/IB2015/058477 WO2016071829A1 (en) | 2014-11-04 | 2015-11-03 | Methods for monocot plant improvement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107105627A CN107105627A (zh) | 2017-08-29 |
CN107105627B true CN107105627B (zh) | 2020-12-25 |
Family
ID=55908669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580072002.4A Active CN107105627B (zh) | 2014-11-04 | 2015-11-03 | 用于单子叶植物改良的方法 |
Country Status (12)
Country | Link |
---|---|
US (1) | US10487337B2 (zh) |
EP (1) | EP3214921A4 (zh) |
CN (1) | CN107105627B (zh) |
AR (1) | AR102512A1 (zh) |
AU (1) | AU2015344482B2 (zh) |
BR (1) | BR112017009167A2 (zh) |
CA (1) | CA2966100A1 (zh) |
MX (1) | MX2017005731A (zh) |
NZ (1) | NZ732040A (zh) |
RU (1) | RU2727428C2 (zh) |
UY (1) | UY36387A (zh) |
WO (1) | WO2016071829A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10337022B2 (en) * | 2014-11-04 | 2019-07-02 | Agresearch Limited | Methods of increasing root biomass in plants |
CN108676075B (zh) * | 2018-06-01 | 2022-04-01 | 山西省农业科学院果树研究所 | 一种引导蛋白分子进入植物细胞核的方法 |
CN110679229A (zh) * | 2019-09-29 | 2020-01-14 | 海南天道种业有限公司 | 一种增强水稻抗逆性耐旱的水稻浸种方法 |
CN110862441B (zh) * | 2019-12-16 | 2022-10-04 | 中国科学院遗传与发育生物学研究所 | 拟南芥ppd1和ppd2基因在调控种子大小中的应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007105967A8 (en) * | 2006-03-13 | 2009-07-23 | Agres Ltd | Novel plant genes and uses thereof |
CN102676573A (zh) * | 2011-03-15 | 2012-09-19 | 中国科学院植物研究所 | 光合作用相关的蛋白ppd1的应用 |
CN102260679B (zh) * | 2010-05-27 | 2013-06-05 | 中国科学院上海生命科学研究院 | 调控果实和种子发育的蛋白及其应用 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5753475A (en) | 1985-01-17 | 1998-05-19 | Calgene, Inc. | Methods and compositions for regulated transcription and expression of heterologous genes |
US4795855A (en) | 1985-11-14 | 1989-01-03 | Joanne Fillatti | Transformation and foreign gene expression with woody species |
US5750871A (en) | 1986-05-29 | 1998-05-12 | Calgene, Inc. | Transformation and foreign gene expression in Brassica species |
US5188958A (en) | 1986-05-29 | 1993-02-23 | Calgene, Inc. | Transformation and foreign gene expression in brassica species |
US5187073A (en) | 1986-06-30 | 1993-02-16 | The University Of Toledo | Process for transforming gramineae and the products thereof |
US5177010A (en) | 1986-06-30 | 1993-01-05 | University Of Toledo | Process for transforming corn and the products thereof |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US5639952A (en) | 1989-01-05 | 1997-06-17 | Mycogen Plant Science, Inc. | Dark and light regulated chlorophyll A/B binding protein promoter-regulatory system |
US5837848A (en) | 1990-03-16 | 1998-11-17 | Zeneca Limited | Root-specific promoter |
AU8914291A (en) | 1990-11-23 | 1992-06-25 | Plant Genetic Systems N.V. | Process for transforming monocotyledonous plants |
EP0604662B1 (en) | 1992-07-07 | 2008-06-18 | Japan Tobacco Inc. | Method of transforming monocotyledon |
AU670316B2 (en) | 1992-07-27 | 1996-07-11 | Pioneer Hi-Bred International, Inc. | An improved method of (agrobacterium)-mediated transformation of cultured soybean cells |
ES2164759T3 (es) | 1993-12-09 | 2002-03-01 | Texas A & M Univ Sys | Transformacion de especies musa utilizando agrobacterium tumefaciens. |
US5846797A (en) | 1995-10-04 | 1998-12-08 | Calgene, Inc. | Cotton transformation |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
US5952543A (en) | 1997-02-25 | 1999-09-14 | Dna Plant Technology Corporation | Genetically transformed pineapple plants and methods for their production |
US5968830A (en) | 1997-03-28 | 1999-10-19 | Mississippi State University | Soybean transformation and regeneration methods |
US6037522A (en) | 1998-06-23 | 2000-03-14 | Rhone-Poulenc Agro | Agrobacterium-mediated transformation of monocots |
AU3289601A (en) | 2000-01-21 | 2001-07-31 | Pioneer Hi-Bred International, Inc. | Novel root-preferred promoter elements and methods of use |
WO2002000894A2 (en) | 2000-06-30 | 2002-01-03 | Cropdesign N.V. | Gene silencing vector |
US20040067506A1 (en) | 2000-12-04 | 2004-04-08 | Ben Scheres | Novel root specific promoter driving the expression of a novel lrr receptor-like kinase |
US6921848B2 (en) | 2001-11-27 | 2005-07-26 | The Salk Institute For Biological Studies | Genes involved in brassinosteroid hormone action in plants |
US7569389B2 (en) * | 2004-09-30 | 2009-08-04 | Ceres, Inc. | Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics |
KR20130122989A (ko) * | 2005-01-27 | 2013-11-11 | 크롭디자인 엔.브이. | 증가된 수확량을 갖는 식물 및 이의 생산 방법 |
MX2008013354A (es) | 2006-04-19 | 2008-11-10 | Pioneer Hi Bred Int | Moleculas de polinucleotidos aislados que corresponden a alelos mutantes y tipo salvaje del gen de maiz d9, y metodos para usarlas. |
EP2389799A1 (en) * | 2010-05-25 | 2011-11-30 | BioMass Booster, S.L. | Method for increasing plant biomass |
-
2015
- 2015-11-03 AU AU2015344482A patent/AU2015344482B2/en active Active
- 2015-11-03 MX MX2017005731A patent/MX2017005731A/es active IP Right Grant
- 2015-11-03 BR BR112017009167A patent/BR112017009167A2/pt not_active Application Discontinuation
- 2015-11-03 CA CA2966100A patent/CA2966100A1/en active Pending
- 2015-11-03 WO PCT/IB2015/058477 patent/WO2016071829A1/en active Application Filing
- 2015-11-03 NZ NZ732040A patent/NZ732040A/en unknown
- 2015-11-03 US US15/524,033 patent/US10487337B2/en active Active
- 2015-11-03 CN CN201580072002.4A patent/CN107105627B/zh active Active
- 2015-11-03 UY UY0001036387A patent/UY36387A/es active IP Right Grant
- 2015-11-03 EP EP15857889.8A patent/EP3214921A4/en active Pending
- 2015-11-03 AR ARP150103553A patent/AR102512A1/es unknown
- 2015-11-03 RU RU2017119221A patent/RU2727428C2/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007105967A8 (en) * | 2006-03-13 | 2009-07-23 | Agres Ltd | Novel plant genes and uses thereof |
CN102260679B (zh) * | 2010-05-27 | 2013-06-05 | 中国科学院上海生命科学研究院 | 调控果实和种子发育的蛋白及其应用 |
CN102676573A (zh) * | 2011-03-15 | 2012-09-19 | 中国科学院植物研究所 | 光合作用相关的蛋白ppd1的应用 |
Non-Patent Citations (4)
Title |
---|
Genetically modified crops for biomass increase. Genes and strategies;Cristian Antonio Rojas等;《GM Crops》;20101231;第1卷(第3期);第137-142页 * |
PEAPOD limits and coordinates vascular procambium activity and stomatal density in Arabidopsis;Derek W.R. White;《Plant Biology》;20091231;摘要 * |
The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor;Amparo Cuellar Perez等;《PLOS ONE》;20140131;第9卷(第1期);第1-12页 * |
拟南芥YUAN1基因调控器官形状和大小;张海瑞等;《遗传》;20130930;第35卷(第9期);第1106-1116页 * |
Also Published As
Publication number | Publication date |
---|---|
EP3214921A1 (en) | 2017-09-13 |
US10487337B2 (en) | 2019-11-26 |
BR112017009167A2 (pt) | 2018-03-06 |
US20170314036A1 (en) | 2017-11-02 |
MX2017005731A (es) | 2017-07-28 |
RU2017119221A3 (zh) | 2019-06-06 |
AR102512A1 (es) | 2017-03-08 |
AU2015344482A1 (en) | 2017-06-08 |
RU2727428C2 (ru) | 2020-07-21 |
RU2017119221A (ru) | 2018-12-05 |
CN107105627A (zh) | 2017-08-29 |
WO2016071829A1 (en) | 2016-05-12 |
CA2966100A1 (en) | 2016-05-12 |
NZ732040A (en) | 2024-07-26 |
UY36387A (es) | 2016-04-29 |
EP3214921A4 (en) | 2018-08-08 |
AU2015344482B2 (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101495640B (zh) | 具有增强的产量相关性状的伸展蛋白受体样激酶受调节表达的植物和用于产生该植物的方法 | |
CN107205355B (zh) | 用于植物改良的方法 | |
EP2422615B1 (en) | Dominant negative mutant krp protein protection of active cyclin-cdk complex inhibition by wild-type krp | |
CN101365786B (zh) | 具有改良的生长特征的植物及其生产方法 | |
KR101255413B1 (ko) | 향상된 수확량 관련 형질을 갖는 식물 및 이의 제조 방법 | |
US20090265813A1 (en) | Stress tolerance in plants | |
US10597667B2 (en) | Stress tolerance in plants | |
US20120137382A1 (en) | Stress tolerance in plants | |
BRPI0718977A2 (pt) | Método para aumentar rendimento de sementes em plantas em relação às plantas de controle, construção, uso da mesma, planta, parte de planta ou célula de planta, método para a produção de uma planta transgênica tendo redimento aumentado de sementes em relação às plantas de controle, planta transgênica, partes colhíveis de uma planta, produtos, e, uso de um ácido nucleico | |
CN101883783A (zh) | 具有增强的产量相关性状的植物及其制备方法 | |
CN102027120A (zh) | 具有增强的产量相关性状的植物和用于制备该植物的方法 | |
CN101605902A (zh) | 具有增强的产量相关性状和/或提高的非生物胁迫抗性的植物和制备该植物的方法 | |
CN101969759A (zh) | 具有增强的产量相关性状的植物及其制备方法 | |
CN107105627B (zh) | 用于单子叶植物改良的方法 | |
US20130133110A1 (en) | Transcriptional activators involved in abiotic stress tolerance | |
KR101416506B1 (ko) | 비생물학적 스트레스 내성 및 생장 촉진 관련 유전자 및 그의 용도 | |
KR101416071B1 (ko) | 인공간섭 펩티드를 이용한 표적 전사인자 비활성화 방법 및 이의 용도 | |
WO2013095125A1 (en) | Method for producing a plant having enhanced disease resistance to nematodes | |
WO2013168181A1 (en) | Polynucleotide encoding catlp1 protein and uses thereof | |
BR112017009162B1 (pt) | Métodos para aumentar biomassa da raiz em uma planta e para produzir uma planta com biomassa da raiz aumentada | |
BRPI0619242A2 (pt) | proteìna, métodos para aumentar produção de semente e/ou aumentar taxa de crescimento de plantas e taxa de crescimento, célula vegetal, construção, e, métodos para produzir uma planta transgenica, para melhorar caracterìsticas de crescimento de plantas e caracterìsticas de crescimento em relação a correspondentes plantas do tipo selvagem, para aumentar produção vegetal, número de sementes em plantas e produção de semente em plantas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |