CN107099787B - 一种表面增强拉曼散射基底及其制备方法 - Google Patents

一种表面增强拉曼散射基底及其制备方法 Download PDF

Info

Publication number
CN107099787B
CN107099787B CN201710350613.1A CN201710350613A CN107099787B CN 107099787 B CN107099787 B CN 107099787B CN 201710350613 A CN201710350613 A CN 201710350613A CN 107099787 B CN107099787 B CN 107099787B
Authority
CN
China
Prior art keywords
substrate
raman scattering
enhanced raman
ctab
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710350613.1A
Other languages
English (en)
Other versions
CN107099787A (zh
Inventor
许富刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201710350613.1A priority Critical patent/CN107099787B/zh
Publication of CN107099787A publication Critical patent/CN107099787A/zh
Application granted granted Critical
Publication of CN107099787B publication Critical patent/CN107099787B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种表面增强拉曼散射基底及其制备方法,该表面增强拉曼散射基底使用十六烷基三甲基溴化铵(CTAB)作为形貌控制剂;以三维大孔泡沫镍为基质;利用氯金酸与镍的置换反应制备得到;具有丰富的高增强活性的金微纳米锥刺状结构并且其分布均匀。其制备方法为在十六烷基三甲基溴化铵(CTAB)作用下,氯金酸与镍在20‑30℃条件下反应一段时间。该表面增强拉曼散射基底具有独特的、均匀分布的金微纳米锥状阵列式结构及三维大孔结构,其对探针分子拉曼信号的增强性能高、增强信号重现性好;可用于对环境中结晶紫、孔雀石绿、亚甲基蓝等染料分子的高灵敏表面增强拉曼光谱检测。该制备方法简单易行,成本低,无需特殊仪器,可重复性高。

Description

一种表面增强拉曼散射基底及其制备方法
技术领域
本发明涉及化学分析检测领域,具体涉及一种表面增强拉曼散射基底及其制备方法。
背景技术
表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)是一种高灵敏的分析方法,它是指当分子吸附在金银等固体尤其是粗糙的固体(即基底)表面时,分子的拉曼散射强度会极大地增强(103-106倍甚至更高)的现象。要实现这一增强,一个好的增强基底是必不可少的。一个好的增强基底需要满足几个条件:增强能力高,增强信号重现性好,基底稳定性高。此外,成本低,易于制备,且能够大规模制备对于基底的实际应用也至关重要。从成分方面讲,增强效果最好的材料为金和银。迄今为止,增强基底的制备主要通过三种途径实现:一是将平滑的金银电极表面粗造化处理;二是制备不同形貌的金或者银纳米粒子然后诱导其聚集或者可控地自组装;三是利用化学气相沉积、微纳米刻蚀技术等制备纳米阵列式结构。第一种增强基底增强效果相对较低,增强信号重现性差,该方法也不适宜大批量制备增强基底。第三种基底的制备信号重现性很高,增强效果也较高,但是制备过程用到化学气相沉积技术,光刻蚀技术,电子(离子)束刻蚀技术等,这使得整个的基底制备过程复杂,而且造价昂贵,这些限制了其实际应用。
相比较而言,第二种基底制备较为简单,其种类也最为多样,各种不同形貌的金银纳米粒子及其聚集体或者组装体也是目前应用最多的一类增强基底。尽管如此,这类基底也还有一些不足之处:(1)球状金银纳米粒子增强基底最容易制备,应用也最广,但是其对分子的拉曼散射信号的增强效果较低;(2)具有尖刺状结构的增强基底(如金纳米海胆,金纳米星等)增强效果好,但是制备过程复杂,对反应条件要求高,制备方法的可重复性较低;(3)金银纳米粒子聚集体的增强效果好,但是增强信号重现性差;(4)金银纳米粒子组装体的增强效果较好,成本较低,但自组装过程涉及微弱作用力的精确控制,需要较高的技术水平,也难以大规模制备。此外多数组装结构是球状粒子的组装结构。(5)与在溶液中制备金银纳米粒子不同,直接在固体基质上制备不同形貌、结构(特别是具有尖刺结构)的金银纳米材料的报道相对较少,对产物形貌的控制较为困难。
表面增强拉曼散射已经被广泛的应用于生化分析,环境检测及疾病诊断等领域。而要实现其高灵敏度的分析性能,制备一个具有高效增强能力,高信号重现性的,稳定的基底是必不可少的。因而设计一种简单,低成本,可重复的方法制备具有高增强效果和高信号重现性的SERS基底对于SERS技术的推广应用具有重要意义。
发明内容
本发明的目的在于提供一种表面增强拉曼散射基底,以降低表面增强拉曼散射基底的成本,提高增强效果和信号重现性。
本发明的另一目的在于提供一种表面增强拉曼散射基底的制备方法,以简单地、可高度重复地制备表面增强拉曼散射基底。
本发明通过氯金酸与泡沫镍的置换反应,在表面活性剂十六烷基三甲基溴化铵的作用下,通过简单的化学反应就可以制得高活性、高重现性的表面增强拉曼散射基底。
一种表面增强拉曼散射基底(简称AuNCA@Ni基底),其特征在于:使用十六烷基三甲基溴化铵(CTAB)作为形貌控制剂,以三维大孔泡沫镍为基质,利用氯金酸与镍的置换反应制备得到;具有丰富的高增强活性的金微纳米锥刺状结构并且其分布均匀。
上述表面增强拉曼散射基底的制备方法,其特征在于:在十六烷基三甲基溴化铵(CTAB)作用下,氯金酸与镍在20-30℃条件下反应一段时间,即制备出该表面增强拉曼散射基底(AuNCA@Ni基底)。
上述制备方法的具体步骤为:
(1)将泡沫镍片放置在小烧杯中,依次用丙酮、3mol/L的稀盐酸、超纯水各超声清洗10min得到干净的泡沫镍片,氮气吹干备用;
(2)在塑料离心管中注入2-200mg/mL的CTAB溶液1mL,然后注入24mM的HAuCl4溶液0.5mL,盖上盖子,上下翻动混匀;再打开盖子,迅速放入干净的泡沫镍片,盖上盖子上下翻动10次(约5s)后,20-30℃静置反应2-12小时;
(3)上一步结束后,取出泡沫镍片,用乙醇、超纯水依次清洗,得到表面金黄色的产物AuNCA@Ni基底。
优选的,第(2)步中CTAB溶液的浓度为20mg/mL。
优选的,第(2)步中反应温度为20℃。
优选的,第(2)步中反应时间为6小时。
本发明的有益效果是:(1)AuNCA@Ni基底含有丰富的锥刺状金微纳米结构,可以产生很高的拉曼散射信号增强效果,其增强效果比没有加入CTAB时所得到的基底增强效果提高8倍,比常用的金球状纳米颗粒的增强效果提高3倍;对拉曼探针分子(结晶紫,一种芳香烃类有机染料)的检测限可降低到10-10mol/L(比未加入CTAB时所得到的基底降低两个数量级)。(2)AuNCA@Ni基底对分子的拉曼散射增强信号具有较高的重现性:所述基底表面结构均匀,具有较大面积的均匀阵列式结构,所述基底对探针分子结晶紫的拉曼散射增强信号的相对标准偏差小于13%,而不加入CTAB时所得到基底的响应信号的相对标准偏差为24%。(3)AuNCA@Ni基底具有独特的、均匀分布的金微纳米锥状阵列式结构及三维大孔结构,可用于对环境中结晶紫、孔雀石绿、亚甲基蓝等染料分子的高灵敏表面增强拉曼光谱检测。(4)AuNCA@Ni基底的制备方法简单,成本低,易于实现;制备过程避免了专门的、昂贵的仪器(如各种刻蚀仪器系统)或者特殊的、稀有的化学试剂的使用,易于实现,可重复性高,造价低廉,产率高。
附图说明
图1是本发明所述的AuNCA@Ni基底的制备流程示意图。
图2是实施例1制备的AuNCA@Ni基底材料的表面形貌的扫描电镜图片(a-c),及其元素分析结果EDS图(d)。
图3是对比例1所制备的增强基底的表面形貌的扫描电镜图片。
图4是对比例2所制备的增强基底的表面形貌的扫描电镜图片。
图5是对比例3所制备的增强基底的表面形貌的扫描电镜图片。
图6是实施例2(a,b)和实施例3(c,d)所制备的增强基底的表面形貌的扫描电镜图片。
图7是实施例4(a,b),实施例5(c,d),实施例6(e,f)所制备的增强基底的表面形貌的扫描电镜图片。
图8(a)是染料分子结晶紫(1×10-5M)在实施例1及对比例1-3所制备的基底上的SERS响应信号强度对比图;(b)是结晶紫(1×10-5M)在实施例1基底上任意7个位置的SERS响应信号强度对比图。
图9是染料分子结晶紫(1×10-5M)在实施例1-3和对比例1所制备的基底上的SERS响应信号强度对比图。
图10是染料分子结晶紫(1×10-5M)实施例1及实施例4-6所制备的基底上的SERS响应信号强度对比图。
图11是不同浓度的结晶紫溶液在(a)实施例1所得基底(AuNCA@Ni基底)及(b)对比例1所得基底上的SERS响应信号强度对比图。
具体实施方式
以下具体实施方式中用于表征的装置为Hitachi S3400型场发射扫描电子显微镜,掘场(Horiba)JY HR800型显微激光拉曼光谱仪。所用试剂为:泡沫镍、丙酮、盐酸、氯金酸、二水合柠檬酸钠、十六烷基三甲基溴化胺(CTAB)、聚乙烯吡咯烷酮(PVP K30),所用试剂均购自上海国药化学试剂有限公司。所有溶液均用超纯水(18.2MΩ·cm)配制。
实施例1
表面增强拉曼散射基底(AuNCA@Ni基底)的制备过程如图1所示,具体制备步骤包括以下三步:
(1)泡沫镍剪成长宽都是1cm的四方片,将其放置在小烧杯中依次用10mL丙酮、10mL稀盐酸(3mol/L)、10mL超纯水各超声清洗10min得到干净的泡沫镍片,氮气吹干备用。
(2)取一个1.5mL的塑料离心管,注入1mL 20mg/mL的CTAB溶液,然后用微量移液器注入0.5mL24mM的HAuCl4溶液,盖上盖子,上下翻动10次混匀(约5秒),得到反应液。打开盖子,迅速放入1片干净的泡沫镍片,盖上盖子上下翻动10次混匀(约5秒)后,20℃静置反应6小时。
(3)上一步结束后,取出泡沫镍片,用乙醇、超纯水依次冲洗,得到表面橙黄色的产物即表面负载有金微纳米锥状结构阵列的泡沫镍片,也就是本发明所指的AuNCA@Ni基底。
实施例2
重复实施例1的操作,仅将第(2)步的CTAB溶液的浓度由20mg/mL改为2mg/mL。
实施例3
重复实施例1的操作,仅将第(2)步的CTAB溶液的浓度由20mg/mL改为200mg/mL。
实施例4
重复实施例1的操作,仅将第(2)步的反应时间由6小时改为2小时。
实施例5
重复实施例1的操作,仅将第(2)步的反应时间由6小时改为4小时。
实施例6
重复实施例1的操作,仅将第(2)步的反应时间由6小时改为12小时。
对比例1
重复实施例1的操作,仅将第(2)步的1mL20mg/mL的CTAB溶液换为1mL超纯水。
对比例2
重复实施例1的操作,仅将第(2)步的1mL 20mg/mL的CTAB溶液换为1mL 20mg/mL的PVP溶液。
对比例3
重复实施例1的操作,仅将第(2)步的1mL 20mg/mL的CTAB溶液换为1mL 20mg/mL的柠檬酸钠溶液。
AuNCA@Ni基底的形貌表征:
图2是实施例1所得到的AuNCA@Ni基底的表面形貌的扫描电镜照片。从低倍率的扫描电镜照片可以看到该AuNCA@Ni基底保留了泡沫镍的三维大孔结构(图2a);高倍率的照片表面,三维泡沫镍骨架表面均匀生长了一层刺状凸起(图2b);更高倍率的图片可以看出,这些刺状凸起呈现锥状结构,其末端较为尖锐(图2c)。锥状结构的高度在100-300nm,末端尖锐处直径在5-20nm。元素分析结果(图2d)表明这些锥状产物主要成分为Au,其他元素如Ni元素来自作为支撑骨架及反应物的Ni泡沫,C来自作为表面活性剂的CTAB。
所用表面活性剂CTAB对控制产物的形貌起到至关重要的作用。图2、3、4、5依次是实施例1、对比例1、对比例2、对比例3所得到的基底的表面形貌的扫描电镜SEM图片。通过对比这些图片可以说明,没有CTAB的情况下(对比例1,图3),或者用PVP代替CTAB(对比例2,图4),或者用柠檬酸钠代替CTAB(对比例3,图5),都不能得到金的纳米锥状阵列式结构。从而证明,表面活性剂CTAB在AuNCA@Ni基底制备中的作用至关重要。
此外,表面活性剂CTAB的用量也对最终所得到的基底的形貌具有显著的影响。图6是实施例2(图6a,b),实施例3(图6c,d)所得到的基底的表面形貌SEM图片。将其与实施例1所得的基底的SEM照片(图2)比较,可以看出CTAB浓度太低(2mg/mL,图6a,b)或者太高(200mg/mL,图6c,d)都不利于生成锥状产物,此外,产物结构也不如实施例1所得基底那样分布均匀。所以优化的CTAB浓度为20mg/mL。
最后,氯金酸与泡沫镍反应的时间也会影响产物的形貌。图7是实施例4-6所得到的基底的表面形貌SEM图片。将其与实施例1所得基底SEM图片(图2a-c)比较,可知反应时间过短或者过长都不能得到锥状结构产物。所以优化的反应时间为6小时。
AuNCA@Ni作为SERS基底的应用举例:
图8(a)是同样量的探针分子结晶紫(1mL 10-5mol/L)滴加到实施例1、对比例1、对比例2、对比例3基底上的SERS响应信号强度。通过对比可以看出,在实施例1所得基底(AuNCA@Ni基底)上的SERS信号强度是对比例1基底(没有加入CTAB时所得到的基底)上信号强度的8倍多,且响应信号明显强于对比例2基底及对比例3基底。表明表面活性剂CTAB对形貌的控制有利于提升基底的SERS增强能力。此外,结晶紫的SERS响应信号的标准偏差从对比例1基底的23.6%下降到实施例1基底的12.4%(图8b)。从而证明实施例1基底(AuNCA@Ni基底)不仅具有高的SERS信号增强能力,同时也具有很好的信号重现性。这些结果进一步表明CTAB作用至关重要以及所得的金纳米锥状结构增强基底的优越性能。
图9是同样量的探针分子结晶紫(1mL 10-5mol/L)在不同浓度的CTAB作用下得到的基底(即实施例1-3基底及对比例1基底)上的SERS响应信号。从图中可以看出,结晶紫在实施例1所得基底上的SERS响应信号最强。进一步证实优化的CTAB用量20mg/mL所得的锥状结构产物具有最好的SERS增强效果。
图10是同样量的探针分子结晶紫(1mL 10-5mol/L)在不同反应时间下得到的基底(即实施例1基底及实施例4-6基底)上的SERS响应信号。从图中可以看出,结晶紫在实施例1所得基底上的SERS响应信号最强。进一步证实优化的反应时间6小时所得的锥状结构产物具有最好的SERS增强效果。
图11是将实施例1所得到基底(a)及对比例1所得基底(b)用于水溶液中不同浓度的芳香烃类染料结晶紫的检测。在实施例1基底(AuNCA@Ni基底)上,当结晶紫的浓度低至10-10M时仍可以得到结晶紫的特征拉曼散射峰(图11a);而在没有加入CTAB时得到的对比例1基底上对结晶紫的最低检测浓度为10-8M(图11b)。即AuNCA@Ni基底对结晶紫的最低检测浓度比后者降低了两个数量级,灵敏度大幅提升。从而进一步证实CTAB对形貌控制的重要性及所得到的AuNCA@Ni基底的高效SERS增强能力。

Claims (6)

1.一种表面增强拉曼散射基底,其特征在于:使用十六烷基三甲基溴化铵(CTAB)作为形貌控制剂,以三维大孔泡沫镍为基质,利用氯金酸与镍的置换反应制备得到;具有丰富的金微纳米锥刺状结构并且锥刺状结构分布均匀。
2.权利要求1所述的表面增强拉曼散射基底的制备方法,其特征在于:在十六烷基三甲基溴化铵(CTAB)作用下,氯金酸与泡沫镍在20-30℃条件下反应一段时间,即制备出该表面增强拉曼散射基底。
3.根据权利要求2所述的制备方法,其特征在于:包括以下步骤:
(1)将泡沫镍片放置在小烧杯中,依次用丙酮、3 mol/L的稀盐酸、超纯水各超声清洗10min得到干净的泡沫镍片,氮气吹干备用;
(2)在塑料离心管中注入2-200 mg/mL的CTAB溶液,然后注入24 mM的HAuCl4溶液,盖上盖子,上下翻动混匀;再打开盖子,迅速放入干净的泡沫镍片,盖上盖子上下翻动10次后,20-30℃静置反应2-12小时;
(3)上一步结束后,取出泡沫镍片,用乙醇、超纯水依次清洗,得到表面金黄色的产物,即所述的表面增强拉曼散射基底。
4.根据权利要求3所述的制备方法,其特征在于:第(2)步中CTAB溶液的浓度为20 mg/mL。
5.根据权利要求3所述的制备方法,其特征在于:第(2)步中反应温度为20℃。
6.根据权利要求3所述的制备方法,其特征在于:第(2)步中反应时间为6小时。
CN201710350613.1A 2017-05-18 2017-05-18 一种表面增强拉曼散射基底及其制备方法 Expired - Fee Related CN107099787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710350613.1A CN107099787B (zh) 2017-05-18 2017-05-18 一种表面增强拉曼散射基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710350613.1A CN107099787B (zh) 2017-05-18 2017-05-18 一种表面增强拉曼散射基底及其制备方法

Publications (2)

Publication Number Publication Date
CN107099787A CN107099787A (zh) 2017-08-29
CN107099787B true CN107099787B (zh) 2019-12-13

Family

ID=59668972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710350613.1A Expired - Fee Related CN107099787B (zh) 2017-05-18 2017-05-18 一种表面增强拉曼散射基底及其制备方法

Country Status (1)

Country Link
CN (1) CN107099787B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107523815B (zh) * 2017-07-11 2019-11-01 长安大学 一种三维多孔泡沫镍及其制备方法
CN108318472A (zh) * 2017-12-28 2018-07-24 肇庆市华师大光电产业研究院 一种高灵敏度快速分析的表面增强拉曼散射基底的制备方法
CN109187487A (zh) * 2018-09-27 2019-01-11 肇庆市华师大光电产业研究院 一种银纳米团簇表面增强拉曼散射基底及其制备方法和应用
CN111398383A (zh) * 2020-04-26 2020-07-10 东南大学 一种金纳米粒子修饰的泡沫镍电极及其制备方法和在生物传感分析中的应用
CN113720779B (zh) * 2021-08-24 2022-10-11 东莞理工学院 一种基于电置换反应的sers增强基底的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145230A (ja) * 2004-11-16 2006-06-08 Canon Inc 被分析物担体およびその製造方法
CN101216430A (zh) * 2008-01-11 2008-07-09 清华大学 表面增强拉曼散射活性的纳米多孔金属基底及其制备方法
CN104089942A (zh) * 2014-07-14 2014-10-08 吉林大学 一种具有超疏水性质的表面增强拉曼基底及在多环芳烃检测方面的应用
CN105112897A (zh) * 2015-09-08 2015-12-02 山东省医学科学院基础医学研究所 一种多孔铜金复合纳米膜材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585349B2 (en) * 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US9086379B2 (en) * 2004-05-24 2015-07-21 OptoTrace (SuZhou) Technologies, Inc. System for chemical separation and identification
US9551025B2 (en) * 2012-10-30 2017-01-24 Samsung Electronics Co., Ltd. Nucleic acid structure complex including nucleic acids, Raman-active molecules, and metal particles, method of preparing the same, and method of detecting target material by using the nucleic acid structure complex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145230A (ja) * 2004-11-16 2006-06-08 Canon Inc 被分析物担体およびその製造方法
CN101216430A (zh) * 2008-01-11 2008-07-09 清华大学 表面增强拉曼散射活性的纳米多孔金属基底及其制备方法
CN104089942A (zh) * 2014-07-14 2014-10-08 吉林大学 一种具有超疏水性质的表面增强拉曼基底及在多环芳烃检测方面的应用
CN105112897A (zh) * 2015-09-08 2015-12-02 山东省医学科学院基础医学研究所 一种多孔铜金复合纳米膜材料的制备方法

Also Published As

Publication number Publication date
CN107099787A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN107099787B (zh) 一种表面增强拉曼散射基底及其制备方法
US10851469B2 (en) Synthesis of core-shell nanoparticles and applications of said nanoparticles for surface enhanced Raman scattering
Chen et al. Polydopamine@ gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples
Zhang et al. Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering
Zhou et al. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process
Selvakannan et al. Synthesis of aqueous Au core− Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air− water interface
Lu et al. In situ growth of catalytic active Au− Pt bimetallic nanorods in thermoresponsive core− shell microgels
CN103056384B (zh) 一种贵金属及磁性纳米颗粒的制备方法
Kou et al. One‐step synthesis of large‐aspect‐ratio single‐crystalline gold nanorods by using CTPAB and CTBAB surfactants
US20140077121A1 (en) Generic Approach for Synthesizing Asymmetric Nanoparticles and Nanoassemblies
Gupta et al. Interfacial polymerization of carbazole: Morphology controlled synthesis
Zhao et al. Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin
Nguyen et al. One-step controlled synthesis of size-tunable toroidal gold particles for biochemical sensing
Xiong et al. Galvanic replacement-mediated synthesis of hollow Cu 2 O–Au nanocomposites and Au nanocages for catalytic and SERS applications
Khan et al. Towards single crystalline, highly monodisperse and catalytically active gold nanoparticles capped with probiotic Lactobacillus plantarum derived lipase
Umar et al. Seedless synthesis of monodisperse cuboctahedral gold nanoparticles with tunable sizes
CN107879375A (zh) 一种可控管径的铌酸盐纳米管材料的制备方法
CN109850844A (zh) 一种三明治结构平板金属纳米结及其制备方法
CN102087216B (zh) 一种新型的百草枯检测方法
CN102330149A (zh) 枝状金纳米单晶的制备方法
Xiaoyan et al. A surface-enhanced Raman scattering strategy for detection of peanut allergen Ara h 1 using a bipyramid-shaped gold nanocrystal substrate with an improved synthesis
Gao et al. Selective growth of Ag nanodewdrops on Au nanostructures: a new type of bimetallic heterostructure
CN109834292A (zh) 宏观大面积二维Janus纳米金膜及其制备方法与应用
KR101519970B1 (ko) 액상과 액상 계면에서 덴드리머 형태의 금속 나노 구조체를 제조하는 방법 및 이에 따라 제조된 덴드리머 형태의 금속 나노 구조체
Wadekar et al. A review on gold nanoprticles synthesis and characterization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191213

Termination date: 20210518