CN107098416A - 一种具有缓冲装置的废水处理系统及其废水处理方法 - Google Patents

一种具有缓冲装置的废水处理系统及其废水处理方法 Download PDF

Info

Publication number
CN107098416A
CN107098416A CN201710517271.8A CN201710517271A CN107098416A CN 107098416 A CN107098416 A CN 107098416A CN 201710517271 A CN201710517271 A CN 201710517271A CN 107098416 A CN107098416 A CN 107098416A
Authority
CN
China
Prior art keywords
circulation crystallization
level
buffer
buffer device
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710517271.8A
Other languages
English (en)
Inventor
田旭峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Hi Tech (beijing) Environmental Protection Technology Ltd By Share Ltd
Original Assignee
United Hi Tech (beijing) Environmental Protection Technology Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Hi Tech (beijing) Environmental Protection Technology Ltd By Share Ltd filed Critical United Hi Tech (beijing) Environmental Protection Technology Ltd By Share Ltd
Priority to CN201710517271.8A priority Critical patent/CN107098416A/zh
Publication of CN107098416A publication Critical patent/CN107098416A/zh
Priority to PCT/CN2018/093711 priority patent/WO2019001571A1/zh
Priority to US16/342,984 priority patent/US10766788B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/01Density
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Abstract

本发明公开了一种具有缓冲装置的废水处理系统及其废水处理方法,涉及废水处理领域。所述系统包括按序顺次连通废水预处理装置、蒸发器、循环结晶器、晶体过滤装置和脱水装置,还包括一级缓冲装置和二级缓冲装置,一级缓冲装置一端与循环结晶器双向连通,另一端与蒸发器连接;二级缓冲装置与循环结晶器双向连通。所述方法:启动除一级缓冲装置和二级缓冲装置外的废水处理系统,待进入到稳定蒸发阶段时,在循环结晶器中进行波动式结晶,当循环结晶器内的溶液特征值达到预设结晶阈值时,浓缩后的液体由循环结晶器依次进入到晶体过滤装置、脱水装置生成结晶盐析出。本发明实现了高浓度废水的运行时间占比降低,减少堵管,提高装置的运行效率。

Description

一种具有缓冲装置的废水处理系统及其废水处理方法
技术领域
本发明涉及废水处理领域,尤其涉及一种具有缓冲装置的废水处理系统及其废水处理方法。
背景技术
目前,通用的废水处理系统包括预处理子系统、降膜蒸发器、强制循环结晶器、晶体过滤子系统和离心脱水子系统。其中,因结晶器结晶的粒径大小不一且不稳定,故很难精确制定晶体在结晶器的停留时间。另外,由于结晶器内易形成大块盐,故在实际运行中经常会发生堵管现象。而,堵管造成整个废水处理系统的处理效率降低、能耗升高,不利于节能减排。
发明内容
本发明的目的在于提供一种具有缓冲装置的废水处理系统及其废水处理方法,从而解决现有技术中存在的前述问题。
为了实现上述目的,本发明所述具有缓冲装置的废水处理系统,所述系统包括:废水预处理装置、蒸发器、循环结晶器、晶体过滤装置、脱水装置、一级缓冲装置和二级缓冲装置;所述废水预处理装置、所述蒸发器、所述循环结晶器、所述晶体过滤装置、所述脱水装置按序顺次连通;所述一级缓冲装置一端与所述循环结晶器双向连通,另一端与所述蒸发器连接;所述二级缓冲装置与所述循环结晶器双向连通;所述一级缓冲装置和所述二级缓冲装置均包括多个缓冲器,每个缓冲器中设置与液位相关的检测元件,所述循环结晶器中设置与浓度相关的检测元件;所述系统还包括控制器,所述控制器与所述系统的中央控制器数据通信连接,所述控制器还分别与与液位相关的检测元件和与浓度相关的检测元件连接。
优选地,所述循环结晶器的出口和入口、所述一级缓冲装置的第一开口和第二开口、所述二级缓冲装置出口和入口、每个缓冲器的出入口均设置与所述控制器且控制缓冲装置内液体流向的动力连接装置。
优选地,与液位相关的检测元件包括液位传感器;与所述浓度相关的检测元件为密度传感器、电导率仪和浊度传感器中的一种或多种。
优选地,所述缓冲器的主体结构为罐状结构,所述罐状结构上开设观察口且所述罐状结构内设置搅拌装置。
优选地,所述一级缓冲装置一端与所述循环结晶器双向连通,另一端与所述蒸发器连接,具体为:所述蒸发器的出口与所述一级缓冲装置的第一开口连接,所述循环结晶器的第一分支口与所述一级缓冲装置的第二开口连接;
所述二级缓冲装置与所述循环结晶器双向连通,具体为:所述循环结晶器的第二分支口还连接所述二级缓冲装置的入口,所述二级缓冲装置的出口与所述循环结晶器的入口连接。
本发明所述依据具有缓冲装置的废水处理系统的废水处理方法,所述方法包括:
S1,启动除一级缓冲装置和二级缓冲装置外的废水处理系统,待进入到稳定蒸发阶段时,进入S2;
S2,在循环结晶器进行结晶过程中,存在以下一种或几种工况:
工况一、当循环结晶器内的溶液特征值>预设阈值K时,控制一级缓冲装置内的液体流向循环结晶器;
工况二、当循环结晶器内的溶液特征值<预设阈值K时,控制循环结晶器内的液体流向一级缓冲装置;
工况三、当循环结晶器内的溶液特征值>预设阈值M时,控制循环结晶器内的液体流向二级缓冲装置;
工况四、当循环结晶器内的溶液特征值<预设阈值M时,控制循环结晶器内的液体流向二级缓冲装置;
S3,当循环结晶器内的溶液特征值达到预设结晶阈值时,开启循环结晶器的出口,浓缩后的液体由循环结晶器依次进入到晶体过滤装置、脱水装置生成结晶盐析出。
优选地,在步骤S1与步骤S2之间,还存在以下步骤:控制蒸发器中的液体流向一级缓冲装置,直至一级缓冲装置内的液体特征值达到预设低阈值为止。
更优选地,在工况一之后,还包括以下步骤:控制蒸发器中的液体流向一级缓冲装置,直至一级缓冲装置内的液体特征值达到预设低阈值为止。
更优选地,在工况二中,当循环结晶器内的液体流向一级缓冲装置,且直至一级缓冲装置内的液体特征值液体总量达到预设高阈值为止。
本发明的有益效果是:
本发明所述装置的循环结晶器分别连接晶体过滤装置、一级缓冲装置和二级缓冲装置,两级缓冲装置中的液体根据需要被输送回循环结晶器,然后按需调整强制循环结晶器的工作状态,从而减少循环结晶器中大块盐的产生及挂壁,实现减缓堵管。
本发明实现了高浓度废水的运行时间占比降低,减少堵管,提高装置的运行效率。废水经过本发明所述方法得到较多细致、均匀的晶核,因此,本发明所述方法提高结晶效果、降低能耗。
附图说明
图1是所述具有缓冲装置的废水处理系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
实施例
参照图1,本实施例所述具有缓冲装置的废水处理系统,所述系统包括:废水预处理装置、蒸发器、循环结晶器、晶体过滤装置、脱水装置、一级缓冲装置和二级缓冲装置;所述废水预处理装置、所述蒸发器、所述循环结晶器、所述晶体过滤装置、所述脱水装置按序顺次连通;所述一级缓冲装置一端与所述循环结晶器双向连通,另一端与所述蒸发器连接;所述二级缓冲装置与所述循环结晶器双向连通;所述一级缓冲装置和所述二级缓冲装置均包括多个缓冲器,每个缓冲器中设置与液位相关的检测元件,所述循环结晶器中设置与浓度相关的检测元件;所述系统还包括控制器,所述控制器与所述系统的中央控制器数据通信连接,所述控制器还分别与与液位相关的检测元件和与浓度相关的检测元件连接。
更详细的解释说明为:
在本实施例中,所述循环结晶器的出口和入口、所述一级缓冲装置的第一开口和第二开口、所述二级缓冲装置出口和入口、每个缓冲器的出入口均设置与所述控制器且控制缓冲装置内液体流向的动力连接装置。所述循环结晶器为强制循环结晶器。
在本实施例中,与液位相关的检测元件包括液位传感器;与所述浓度相关的检测元件为密度传感器、电导率仪和浊度传感器中的一种或多种。
在本实施例中,所述缓冲装置为任意类型的结构,只要能够储存由强制循环结晶器排出的废水即可。优选地,所述缓冲装置的主体结构为罐状结构,所述罐状结构上开设观察口。位于同一级缓冲装置中的多个缓冲器并联连接。
在本实施例中,所述一级缓冲装置一端与所述循环结晶器双向连通,另一端与所述蒸发器连接,具体为:所述蒸发器的出口与所述一级缓冲装置的第一开口连接,所述循环结晶器的第一分支口与所述一级缓冲装置的第二开口连接;
所述二级缓冲装置与所述循环结晶器双向连通,具体为:所述循环结晶器的第二分支口还连接所述二级缓冲装置的入口,所述二级缓冲装置的出口与所述循环结晶器的入口连接。
实施例2
本实施例所述具有缓冲装置的废水处理系统的废水处理方法,所述方法包括:
S1,启动除一级缓冲装置和二级缓冲装置外的废水处理系统,待进入到稳定蒸发阶段时,进入S2;
S2,在循环结晶器进行结晶过程中,存在以下一种或几种工况:
工况一、当循环结晶器内的溶液特征值>预设阈值K时,控制一级缓冲装置内的液体流向循环结晶器;
工况二、当循环结晶器内的溶液特征值<预设阈值K时,控制循环结晶器内的液体流向一级缓冲装置;
工况三、当循环结晶器内的溶液特征值>预设阈值M时,控制循环结晶器内的液体流向二级缓冲装置;
工况四、当循环结晶器内的溶液特征值<预设阈值M时,控制循环结晶器内的液体流向二级缓冲装置;
S3,当循环结晶器内的溶液特征值达到预设结晶阈值时,开启循环结晶器的出口,浓缩后的液体由循环结晶器依次进入到晶体过滤装置、脱水装置生成结晶盐析出。
在本实施例中,从循环结晶器流向二级缓存装置中的液体的污染情况重于循环结晶器流向一级缓存装置中的液体的污染情况。
更详细的解释说明
与液位相关的检测元件采集得到与液位相关的指数并传送给控制器,依据与液位相关的指数,控制器得到缓冲装置α内液体的液位值;
与浓度相关的检测元件采集得到与浓度相关的指数并传送给控制器,依据与浓度相关的指数,控制器得到循环结晶器内液体的浓度值;
控制器得到当前计算时刻从中央控制器获得的废水处理系统内部的环境参数;
在缓冲装置α内液体的液位值和循环结晶器内液体的浓度值的基础上,结合环境参数,得到当前计算时刻的指标。
(三)与液位相关的检测元件和与浓度相关的检测元件按照预先设置的时间间隔或者学习优化过的时间间隔分别液位和与浓度相关的特性值。
本实施例中,检测元件可以采用密度计来废水的密度,从而计算出对应的浓度,也可以采用电导率仪等其他现有检测技术。
在一级或二级缓冲装置与循环结晶器不进行液体流通时;一级或二缓冲装置内溶液脱离强制循环结晶器,进入另外一种循环结晶状态。因为一级或二缓缓冲装置的温度、压力不同于强制循环结晶器,晶粒生长的机制不同。本领域技术工程师选择夜间增加一级或二缓缓冲装置的溶液存储量,利用夜晚的低温,虽然晶粒生长速度缓慢,但有利于生成细致、均匀的晶核,提高结晶效果,另外也能降低能耗。
(四)在本实施例中,由于废水先流经循环结晶器之后,当达到浓度经验值之后,开始输送到一级或二缓缓冲装置中存放,然后再输送到循环结晶器中进行高于浓度经验值的浓缩,因此,通过本申请所述系统和方法,使得循环结晶器的整个运行周期中,高浓度液体在结晶器内的运行时间占比降低,从而减少了堵管,提高了系统的运行效率。
更详细的实例:
本申请中,废水蒸发工艺流程大致分为三阶段:进料预热、稳定蒸发、停车卸料。
一、进料预热:检查完设备后,启动进料泵,进料达到结晶分离器设定值标准液位时,再启动强制循环泵和出料泵,待分离器液位到设定值高液位时,进料泵自动停止,进料完成。再逐步开启蒸汽预热阀、空气压缩机等操作,使系统进入正常稳定蒸发状态。
二、稳定蒸发:系统正常蒸发时,压缩机工作频率控制44—47Hz左右,工作电流540—570A,进料温度90℃,分离器液位1400mm,强制循环蒸发器压力1250bar左右。蒸发一段时间后,通过肉眼观察分离器盐腿视镜处结晶颗粒或通过取样口取样观察,有盐结晶颗粒时及时出料。
三、停车卸料:正常停车或因外界原因需要停止系统,先停止向系统内进料,再出尽盐腿内结晶物料,最后进自来水对设备按蒸发流程蒸发清洗。
本申请中的一级缓冲装置和二级缓冲装置仅在稳定蒸发阶段运行,使循环结晶器变为波动运行状态。
在废水处理过程开始前,预先设定设置两个阈值:阈值α和阈值β,每个阈值是一个指标的集合。
阈值α{
[循环结晶器液位:小于1200mm,循环结晶器电导率:大于832S/m,温度95-970C,PH值8.31,一级缓冲罐平均液位:大于500mm];
[循环结晶器液位:大于1200mm,循环结晶器电导率:小于1839S/m,温度89-940C,PH值8.33,一级缓冲罐平均液位:小于500mm];
}
阈值β{
[循环结晶器液位:小于990mm,循环结晶器电导率:大于1931S/m,温度95-970C,PH值8.23,一级缓冲罐平均液位:大于570mm];
[循环结晶器液位:大于990mm,循环结晶器电导率:小于1339S/m,温度89-940C,PH值8.03,一级缓冲罐平均液位:小于570mm];
}
如本领域技术人员知:按照工程估算,阈值α相当于浓缩比10%,阈值β相当于浓缩比30%。在本申请中,引入一级缓冲装置和二级缓冲装置,目的使循环结晶器的浓缩比在阈值α至阈值β之间波动运行。
则废水处理系统运行时,存在以下任意一种工况:
第一种工况:循环结晶器的水质的特征值小于阈值α时,将二级缓冲装置的废水引入循环结晶器,使最终循环结晶器的水质的特征值大于阈值α。经二级缓冲装置静置过的废水内晶粒均匀,提高循环结晶器的废水结晶质量。
第二种工况:循环结晶器的水质的特征值大于阈值β时,将循环结晶器内废水引入二级缓冲装置。一段时间后,再将一级缓冲装置的废水引入循环结晶器,使最终循环结晶器的水质的特征值小于阈值β。
第三种工况:循环结晶器的水质的特征值介于阈值α和β之间时,停止缓冲装置的运行。
通过采用本发明公开的上述技术方案,得到了如下有益的效果:
本发明所述装置的循环结晶器的出口分别连接晶体过滤装置和缓冲装置,缓冲装置中的液体根据需要被输送回循环结晶器,然后按需调整强制循环结晶器的工作状态,从而减少循环结晶器中大块盐的产生及挂壁,实现减缓堵管。
本发明所述装置的高浓度废水的运行时间占比降低,减少堵管,提高装置的运行效率。废水经过本发明所述方法得到较多细致、均匀的晶核,因此,本发明所述方法提高结晶效果、降低能耗。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (9)

1.一种具有缓冲装置的废水处理系统,其特征在于,所述系统包括:废水预处理装置、蒸发器、循环结晶器、晶体过滤装置、脱水装置、一级缓冲装置和二级缓冲装置;
所述废水预处理装置、所述蒸发器、所述循环结晶器、所述晶体过滤装置、所述脱水装置按序顺次连通;
所述一级缓冲装置一端与所述循环结晶器双向连通,另一端与所述蒸发器连接;所述二级缓冲装置与所述循环结晶器双向连通;
所述一级缓冲装置和所述二级缓冲装置均包括多个缓冲器,每个缓冲器中设置与液位相关的检测元件,所述循环结晶器中设置与浓度相关的检测元件;
所述系统还包括控制器,所述控制器与所述系统的中央控制器数据通信连接,所述控制器还分别与与液位相关的检测元件和与浓度相关的检测元件连接。
2.根据权利要求1所述具有缓冲装置的废水处理系统,其特征在于,所述循环结晶器的出口和入口、所述一级缓冲装置的第一开口和第二开口、所述二级缓冲装置出口和入口、每个缓冲器的出入口均设置与所述控制器且控制缓冲装置内液体流向的动力连接装置。
3.根据权利要求1所述具有缓冲装置的废水处理系统,其特征在于,所述与液位相关的检测元件包括液位传感器;所述与浓度相关的检测元件为密度传感器、电导率仪和浊度传感器中的一种或多种。
4.根据权利要求1所述具有缓冲装置的废水处理系统,其特征在于,所述缓冲器的主体结构为罐状结构,所述罐状结构上开设观察口且所述罐状结构内设置搅拌装置。
5.根据权利要求1所述具有缓冲装置的废水处理系统,其特征在于,所述一级缓冲装置一端与所述循环结晶器双向连通,另一端与所述蒸发器连接,具体为:
所述蒸发器的出口与所述一级缓冲装置的第一开口连接,所述循环结晶器的第一分支口与所述一级缓冲装置的第二开口连接;
所述二级缓冲装置与所述循环结晶器双向连通,具体为:
所述循环结晶器的第二分支口还连接所述二级缓冲装置的入口,所述二级缓冲装置的出口与所述循环结晶器的入口连接。
6.一种依据如权利要求1-5任意一项所述具有缓冲装置的废水处理系统的废水处理方法,其特征在于,所述方法包括:
S1,启动除一级缓冲装置和二级缓冲装置外的废水处理系统,待进入到稳定蒸发阶段时,进入S2;
S2,在循环结晶器进行结晶过程中,存在以下一种或几种工况:
工况一、当循环结晶器内的溶液特征值>预设阈值K时,控制一级缓冲装置内的液体流向循环结晶器;
工况二、当循环结晶器内的溶液特征值<预设阈值K时,控制循环结晶器内的液体流向一级缓冲装置;
工况三、当循环结晶器内的溶液特征值>预设阈值M时,控制循环结晶器内的液体流向二级缓冲装置;
工况四、当循环结晶器内的溶液特征值<预设阈值M时,控制循环结晶器内的液体流向二级缓冲装置;
S3,当循环结晶器内的溶液特征值达到预设结晶阈值时,开启循环结晶器的出口,浓缩后的液体由循环结晶器依次进入到晶体过滤装置、脱水装置生成结晶盐析出。
7.根权利要求6所述废水处理方法,其特征在于,在步骤S1与步骤S2之间,还存在以下步骤:控制蒸发器中的液体流向一级缓冲装置,直至一级缓冲装置内的液体特征值达到预设低阈值为止。
8.根权利要求7所述废水处理方法,其特征在于,在工况一之后,还包括以下步骤:控制蒸发器中的液体流向一级缓冲装置,直至一级缓冲装置内的液体特征值达到预设低阈值为止。
9.根权利要求7所述废水处理方法,其特征在于,在工况二中,当循环结晶器内的液体流向一级缓冲装置,且直至一级缓冲装置内的液体特征值液体总量达到预设高阈值为止。
CN201710517271.8A 2017-06-29 2017-06-29 一种具有缓冲装置的废水处理系统及其废水处理方法 Pending CN107098416A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710517271.8A CN107098416A (zh) 2017-06-29 2017-06-29 一种具有缓冲装置的废水处理系统及其废水处理方法
PCT/CN2018/093711 WO2019001571A1 (zh) 2017-06-29 2018-06-29 一种具有缓冲装置的废水处理系统及其废水处理方法
US16/342,984 US10766788B2 (en) 2017-06-29 2018-06-29 Waste water treatment system with buffering device and waste water treatment method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710517271.8A CN107098416A (zh) 2017-06-29 2017-06-29 一种具有缓冲装置的废水处理系统及其废水处理方法

Publications (1)

Publication Number Publication Date
CN107098416A true CN107098416A (zh) 2017-08-29

Family

ID=59664667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710517271.8A Pending CN107098416A (zh) 2017-06-29 2017-06-29 一种具有缓冲装置的废水处理系统及其废水处理方法

Country Status (3)

Country Link
US (1) US10766788B2 (zh)
CN (1) CN107098416A (zh)
WO (1) WO2019001571A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019001571A1 (zh) * 2017-06-29 2019-01-03 合众高科(北京)环保技术股份有限公司 一种具有缓冲装置的废水处理系统及其废水处理方法
CN109836006A (zh) * 2019-04-10 2019-06-04 中建安装集团有限公司 一种含盐废水高效浓缩结晶装置及工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058878A (ja) * 2019-10-09 2021-04-15 三菱ケミカルエンジニアリング株式会社 洗浄廃液の処理装置および洗浄廃液の処理方法
CN111362499A (zh) * 2020-04-02 2020-07-03 安徽省灵磁新材料科技股份有限公司 一种磁钢切割液回收装置
CN114772668B (zh) * 2022-03-25 2023-06-16 国家能源集团宁夏煤业有限责任公司 多效蒸发结晶方法和多效蒸发结晶系统
CN114661074B (zh) * 2022-05-24 2022-09-20 深圳市家家分类科技有限公司 一种液位控制方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056364A (en) * 1974-08-30 1977-11-01 Amstar Corporation Two stage continuous crystallization apparatus with controls
CA1096295A (en) * 1976-05-28 1981-02-24 Tore B. Muller Process for continuous crystallization
RU2458007C1 (ru) * 2011-03-30 2012-08-10 Открытое акционерное общество "КуйбышевАзот" Способ управления процессами выпаривания сульфата аммония в производстве капролактама
CN102633834A (zh) * 2012-02-18 2012-08-15 浙江嘉化集团股份有限公司 乙酰甲胺磷的连续结晶方法
CN205023892U (zh) * 2015-09-22 2016-02-10 江苏中圣高科技产业有限公司 结晶盐处理回收装置
CN105460960A (zh) * 2015-11-20 2016-04-06 天津长芦汉沽盐场有限责任公司 两段连续结晶生产大颗粒食品级氯化钾的方法
CN205241427U (zh) * 2015-11-03 2016-05-18 中山中珠环保科技有限公司 一种脱硫废水处理系统
CN106422399A (zh) * 2016-09-22 2017-02-22 深圳市捷晶能源科技有限公司 一种盐溶液节能蒸发浓缩结晶系统及其控制方法
CN106477796A (zh) * 2016-12-21 2017-03-08 北京燕山翔宇环保工程技术有限公司 脱硫废水处理系统及方法
CN106669207A (zh) * 2017-02-27 2017-05-17 江苏省环境科学研究院 一种高盐废水的机械蒸汽再压缩蒸发结晶系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1050586A (zh) * 1964-03-02
US4180547A (en) * 1977-11-25 1979-12-25 Ecodyne Process for recovery of chemicals from saline water
US4392959A (en) * 1981-05-15 1983-07-12 Coillet Dudley W Process for sterilization and removal of inorganic salts from a water stream
WO2004041731A1 (en) * 2002-11-05 2004-05-21 Geo-Processors Pty Limited Process and apparatus for the treatment of saline water
GB2395946B (en) * 2002-12-05 2006-01-18 Thomas Altmann Method for the production of sodium chloride from seawater
US7439391B2 (en) * 2006-10-12 2008-10-21 E.I. Du Pont De Nemours And Company Multi-stage glycolic acid crystallization
CN201441835U (zh) * 2009-08-06 2010-04-28 山东阳谷华泰化工股份有限公司 多效蒸发结晶液除盐装置
US11279631B2 (en) * 2012-12-03 2022-03-22 Efc Solutions Inc. Purifying aqueous mixtures derived from hydrocarbon production processes
CN203959976U (zh) * 2014-05-30 2014-11-26 中国石油集团东北炼化工程有限公司吉林设计院 浓盐水机械蒸汽再压缩蒸发结晶系统
CN103991997B (zh) * 2014-05-30 2016-04-13 中国石油集团东北炼化工程有限公司吉林设计院 浓盐水蒸发结晶系统
CN205145621U (zh) * 2015-11-12 2016-04-13 冀州市华恒生物科技有限公司 一种mvr蒸发器
CN206872473U (zh) * 2017-06-29 2018-01-12 合众高科(北京)环保技术股份有限公司 一种具有缓冲装置的废水处理系统
CN107098416A (zh) * 2017-06-29 2017-08-29 合众高科(北京)环保技术股份有限公司 一种具有缓冲装置的废水处理系统及其废水处理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056364A (en) * 1974-08-30 1977-11-01 Amstar Corporation Two stage continuous crystallization apparatus with controls
CA1096295A (en) * 1976-05-28 1981-02-24 Tore B. Muller Process for continuous crystallization
RU2458007C1 (ru) * 2011-03-30 2012-08-10 Открытое акционерное общество "КуйбышевАзот" Способ управления процессами выпаривания сульфата аммония в производстве капролактама
CN102633834A (zh) * 2012-02-18 2012-08-15 浙江嘉化集团股份有限公司 乙酰甲胺磷的连续结晶方法
CN205023892U (zh) * 2015-09-22 2016-02-10 江苏中圣高科技产业有限公司 结晶盐处理回收装置
CN205241427U (zh) * 2015-11-03 2016-05-18 中山中珠环保科技有限公司 一种脱硫废水处理系统
CN105460960A (zh) * 2015-11-20 2016-04-06 天津长芦汉沽盐场有限责任公司 两段连续结晶生产大颗粒食品级氯化钾的方法
CN106422399A (zh) * 2016-09-22 2017-02-22 深圳市捷晶能源科技有限公司 一种盐溶液节能蒸发浓缩结晶系统及其控制方法
CN106477796A (zh) * 2016-12-21 2017-03-08 北京燕山翔宇环保工程技术有限公司 脱硫废水处理系统及方法
CN106669207A (zh) * 2017-02-27 2017-05-17 江苏省环境科学研究院 一种高盐废水的机械蒸汽再压缩蒸发结晶系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019001571A1 (zh) * 2017-06-29 2019-01-03 合众高科(北京)环保技术股份有限公司 一种具有缓冲装置的废水处理系统及其废水处理方法
CN109836006A (zh) * 2019-04-10 2019-06-04 中建安装集团有限公司 一种含盐废水高效浓缩结晶装置及工艺
CN109836006B (zh) * 2019-04-10 2024-04-16 中建安装集团有限公司 一种含盐废水高效浓缩结晶装置及工艺

Also Published As

Publication number Publication date
WO2019001571A1 (zh) 2019-01-03
US10766788B2 (en) 2020-09-08
US20200055747A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
CN107098416A (zh) 一种具有缓冲装置的废水处理系统及其废水处理方法
EP1993956A1 (en) System for energy recovery and reduction of deposits on the membrane surfaces in (variable power and variable production) reverse osmosis desalination systems
CN105271549A (zh) 热电厂循环水资源综合利用系统及方法
CN206872473U (zh) 一种具有缓冲装置的废水处理系统
CN208617612U (zh) 用于高盐废水处理系统的蒸发结晶组合设备
WO2019223225A1 (zh) 净水系统、净水方法及装置
CN110217843A (zh) 一种自动化废水三效蒸发浓缩系统
CN200999216Y (zh) 循环式高效高纯度纯水机
CN102032835A (zh) 盐水用蒸发器表面防垢方法
CN111704271A (zh) 水质管理机组
CN210303550U (zh) 一种大麻素提取用乙醇智能调配系统
CN206858352U (zh) 一种带磁化结构的净水机
CN206872601U (zh) 一种具有多套结晶器的废水处理系统
CN206929910U (zh) 冰蓄冷空调系统
CN208878072U (zh) 一种防冻净水装置
CN207259294U (zh) 一种纯化水内循环系统
CN208008561U (zh) 一种可调回收率的免安装净水系统
CN209685501U (zh) 一种高盐废水分离系统
CN216038993U (zh) 浓水循环回收系统
CN206858220U (zh) 一种废水比可调净水机
CN206940590U (zh) 臭氧协同悬浮物在线监控的循环冷却水处理系统
CN206494779U (zh) 一种自动加液装置
CN206244569U (zh) 一种带净水缓存的净水系统
CN215947029U (zh) 一种淡盐水膜法脱硝系统
CN206244521U (zh) 带净水缓存的净水系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170829